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1. I N T R O D U C T I O N  

Many physical phenomena are described by elliptic and parabolic partial differential equations 

in divergence form. Traditionally, the models used have been linearizations of strongly nonlinear 

phenomena [1]. During the last ten years or so, with very powerful new theoretical techniques 
and the ubiquity of high powered computing, the tendency has changed towards the use of 

increasingly more complex--and more strongly nonlinear--models. A choice method for the 
numerical approximation of solutions of elliptic and parabolic problems is the finite element 

method, frequently in the form of Galerkin or Ritz-Galerkin methods [2-4]. A more modern form 

of the finite element method was conceived by Brezzi twenty years ago [5] for the approximation of 

solutions of saddle point problems, rather than minimization problems--as in the case of Galerkin 

methods. The new methods were named mixed finite element methods, and a considerable 
literature was produced focusing on their analysis, especially for linear second order elliptic 
differential equations and systems [6-23]. Much less abundant in the literature on mixed methods 

applied to nonlinear elliptic problems [12,21,24,25]. Only a few papers dealt with parabolic 
problems using mixed finite element methods [26-29]. Very recently, the method was applied to 

a strongly nonlinear parabolic problem for the first time, generalized Forchheimer flow in porous 
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media [30,31]. In the present paper, we show how the methods employed in [31] can be extended 
to the analysis of the fully nonlinear second order parabolic problem in divergence form. 

In the next section, we give the details of the formulation of the continuous-time mixed finite 
element method. In Section 3, we prove existence and uniqueness of the finite element solution 
and in Section 4, we derive L2-error estimates. 

2. T H E  M I X E D  F I N I T E  E L E M E N T  P R O C E D U R E  

We shall consider a time interval J = [0, T] and a d-dimensional domain f~ CC ]~d, d < 3, with 
C2-boundary 0f~ (or smoother if necessary for the regularity of the solution of (2.1) below), and 
the following initial-boundary value problem defined in it: 

019 _ div [a(x,p, Vp)] + a(x ,p ,  Vp) = 0, c(x, p) 
p = -g ,  

p(O) = Po, 

(x, t) e x J, 

(x, t) E x J, 

x E ~ .  

(2.1) 

A mixed weak form of (2.1) will be derived by introducing the flux 

u = - a ( x ,  p, Vp). (2.2) 

We shall assume that  this relation can be inverted based on the implicit function theorem as 

Vp = - b ( x ,  p, u). (2.3) 

Next, let 
f (p,  u) = -a (p ,  Vp) = -a (p ,  -b (p ,  u)) 

and introduce the enthalpy, H(p), as a new dependent variable, 

(2.4) 

fo p 
H(p) = c(s) ds. (2.5) 

Then, (2.1)-(2.5), 
H(p)t + div u = f (p,  u), in f t x  J, 

b(p, u) + Vp = 0, in f t x  J, 

p = -g ,  on cgft x J, 

P = P0, in f~ x {0}. 

(2.6) 

Here and in the sequel, the subindex t is used to denote differentiation in time. We shall make 
the following assumptions on the coefficients of (2.1) and (2.5): 

(A1) c = c(p) e W2'°°(R), 0 < 1 / g  < c, and P0 e L2(f2). 
(A2) (b(p,z) ,z)  > Cl[[z[[ ~ - C01]p[[ 2. 
(A3) (b(p, Zl) - b(p, Z 2 )  , Z l  - -  Z 2 )  --> (~0[[Z1 - -  Z2[[ 2 or ~0I _< ~(p,z).0b 
(A4) b(p, z) and f (p,  z) are C~ in their arguments. 
(Ah) {u,p} e W I ' ~ ( J ;  g(div;  f~) x L2(ft)) is the unique solution of the mixed form (2.6). 
(A6) f ( p ( t , x ) , u ( t , x ) )  E W2'°°(J;Hk+2(f~)), u E W2'e~(J;Hk+2(f~)d), and divu,  p E W 2'°° 

(g; Hk+2(a)). 
REMARK 1. (A2) is a G£rding-type inequality. (A3) amounts to the ellipticity of the associated 
elliptic operator. (A6) is needed for higher order approximations. 

We now introduce the Hilbert spaces 

V = H(div;f~) and W = L2(~2), 

and consider the following mixed weak formulation of (2.1). 
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Find (u,  p) : J -~ V x W such t h a t  

(b(p,  u) ,  v )  - (div v , p )  = (g, v .  v) ,  

(H(p)t ,  w) + (div u, w) = ( f(p,  u),  w), 

P = P0, 

v E V ,  

w E T ,  

for t = 0. 

(2.7) 

T h e  no ta t ions  (., .) and (., .} s tand,  respectively, for the s t anda rd  inner p roduc t  in W or W d, and 
in the  Hi lber t  space L2(Of~). 

We consider now a quasi -uniform family of decomposi t ion  of f~, Th, with  b o u n d a r y  e lements  
allowed to have one curved edge or side. Associa ted with  it, consider the  Rav i a r t -Thomas -Nede l ec  
mixed  finite space [20,22], or the  Brezzi-Douglas-Marini  [6] space of index k > 0, Vh × Wh. Then,  
the  cont inuous- t ime mixed finite e lement  me thod  we shall analyze is the  following. 

F ind  (uh,Ph) : ff ~ Vh  × Wh such t h a t  

(b(ph,  Uh), v)  -- ( d i v v , p h )  = (g, v .  v) ,  

(H(ph)t ,  w) + (div Uh, W) = (f(Ph, Uh), w), 

Ph = PhPo, 

V E V h ,  

W C W h ,  

for t = 0, 

(2.8) 

where  Ph denotes  the  L 2 or thogonal  project ion of W onto Wh. 

3. EXISTENCE A N D  U N I Q U E N E S S  

We have the  following theo rem concerning the  s tabi l i ty  of the  mixed me thod  (2.8). 

THEOREM 3.1. There exists a constant C, which depends on the characteristic parameter h, 
such that 

IlPhllL°~(J;L=(a)) + lluhllLo~(J;L=(a)~) ~ c [llfllL~(J;L~(a)) + IlgllL~(J;L=(Oa)) + ILP01IL:(~)] - 

/-/ere we have  used the  notat ion f = f (p( t ,  x),  u ( t ,  x)) .  

T h e  proof  of  this t heo rem is essential ly identical  wi th  t ha t  of  [31] for Forchheimer  flows and  
we shall omi t  it here. 

Next  note  t h a t  this is an a priori es t imate  sufficient to guaran tee  the  existence of a solut ion 

(u !~) p~)) E Vh × Wh is a solut ion of (2.8), of (2.8). In  order  to  es tabl ish  uniqueness,  assume ~ h , 

i : 1 or 2. Consider  now U : u ( 1 ) -  u(h 2) E Vh  and P : p(h ' ) - p ( h  2) E Wh. Sub t rac t  the  

re la t ions (2.8) for Uh = U(h 2) and Ph = Pl 2) from those ob ta ined  for uh = u(h 1) and Ph = P(h t). In 
the  resul t ing relations,  let v = U and w = P.  Then,  we have 

[ (2), u(2)'~ , U )  - (div U,  P )  j : 0 ,  

and,  adding  these relat ions and using the  mean  value t heo rem and hypothes is  (A1), it can be 
seen f rom Gronwal l ' s  l emma,  jus t  as in [31], t h a t  

IIPtlLoc(J;L~(a)) + IIUIIL~(J;L~(a)~) ~ C311P(O)IIw = O, 

which means  P = 0 and U = 0. 
Therefore ,  we have demons t r a t ed  the  following result.  

THEOREM 3.2.  The  mixed finite element problem (2.8) admi t s  a unique solution (Uh,Ph)  : J --* 
V h  × Wh. 
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4.  L 2 - E R R O R  E S T I M A T E S  

We shall make use of the elliptic projection of the solution of (2.6), for each t E J,  onto 
Vh × Wh. Choose ~ > 6~/26o, where 60 is the constant in hypothesis (A3) and 61 is the supreme 
of 0b /~ .  Next, define (u*,p*) : J --~ Vh x Wh pointwise through the relations 

(b(p*, u*) - b(p, u), v) - (div v, p* - p) = 0, 

(div (u* - u), w) + A(p* - p, w) = 0, 

V E V h ,  
(4.1) 

w E  Wh. 

The existence, for each t E J,  of a unique (u*(t),p*(t)) E Vh x Wh follows from [25,32], since 
(4.1) corresponds to the mixed method for the elliptic problem 

-d iv  [a(x, p, XTp)] + Ap = 0. 

Furthermore, the following error estimates follow from [25,32]. 

LEMMA 4.1. Let k > 1. Then, for h samciently small, 

(a) liP-P*]I <- ghk+l(iiPiik+l + ][uik), 
(b) Iiu - u'l] < ghk+l(HPiik+l + ]luilk+l), 
(c) ]ldiv ( u -  u*)l ] < ghk+l(i[Piik+2 + Iiulik+2), 
(d) liP - P*llo,oo <- ghk+l-(1/2)~d3 (]lPllk+l-(1/2)643,oo + ]]ullk+l-(1/2)6d~,oo), 

where the constant K is independent of h. 

Since the elliptic projection commutes with differentiation in time, we also have the following 
estimates. 

LEMMA 4.2. Let k >_ 1. Then, for h sufficiently small, 

(a) II(p- p*)tlI + l[( u - u * ) t l l - < C h  s, l < s < k + l, 
(b) I I (p-p*)t t l l+lI(  u - u * ) t t i l - < c h  s, 1 < s < k  + l, 

where the constant C is independent of h. 

REMARK 2. Note that ,  using Lemma 4.2 and hypothesis (A6), we see that  

Ilu~ llLcc( J ;L~( f f t )d ) ,  

[IPt*t ' L~ (J;L~ (~)), 

are finite. 

We obtain now our first error equations by subtracting (2.8) from (2.7). 

(b(ph, Uh) -- b(p, u), v) - (div v,ph -- p) 

(H(ph)t -- H(p)t,  w) + (div (Uh -- U), W) 

-- 0, v E Vh, 
(4.2) 

= (f(Ph, Uh) -- f(p,  U), W), W E Wh. 

Using (4.1), we rewrite (4.2) in the following form: 

(b(ph, Uh) -- b(p*, u*), v) - (divv,ph -- p*) = 0, 

(H(ph)t -- H(p*)t, w) + (div (Uh -- u*), w) ---- (H(p)t - H(p *)t, w) 

+ A(p* - p, w) + (/(Ph, Uh) - - / (p ,  u), w), 

In order to simplify the notation, let 

---- U h - -  U * ,  tlr ---- U* - -  U ,  

= Ph --  P* ,  71 = P* - P.  

V C V h ,  

wE Wh. 
(4.3) 

(4.4) 

The following theorem gives the first error estimates. 
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THEOREM 4.3. For h sufficiently small, 

HUh - U[IL2(J;L2(a)a) + IIPh -- PIIL~c(J;L2(a)) <<- Chk+l,  k > 1, 

where the constant C is independent of h, but depends on norms of u and p. 

PROOF. It is easy to see that  

( f ( p h ,  uh )  - f (p ,  u) ,  ~) < ~ll¢ll 2 + c [Its1? + II~ll 2 + II~l?] • (4.5) 

Following again [31], the result follows since the left-hand side of this inequality is the only 
additional term resulting from our general parabolic operator, and all the terms on the right-hand 
side of (4.5) were already on the right-hand side of the bounding inequality in [31]. | 

We can now prove our main result. 

THEOREM 4.4. Let  k > 1. Then, for h sufficiently small, 

IlUh -- UllLCC(j;L2(a)a) -~- II(Uh - -  u)tllL~(j;L2(12)~t) -[-II(Ph -- P)tlILzc(J;L2(12)) ~- c hk ~ - l ,  

where the constant C is independent of h. 

PROOF. Comparing again with [31], we see that  the only new terms arising in the proof can be 
t reated as follows: 

( f (ph,Uh)  -- f ( p , u ) , ~ t )  <_ sll~tll 2 + C [ll~ll 2 + ]l~ll 2 + I1¢]] 2 + ]]a]]2] ~ (4.6) 

and 

(f(Ph, Uh)t -- I(P, u)t,  ~t) = (fuh" ((t + a t )  + (fu~ -- f~) " ut + fph (~t + ~h) + (fph - fp)Pt, ~t) 

< ~11~11 ~ + c [11~,112 + I1~17 + I1¢tl 2 + IIv~ll ~ + 117112 + II~ll 2 + 11~,112] 
(4.7) 

Proceeding as in [31], we combine (4.6) and (4.7) with the rest of the terms to complete the 
proof. | 

Finally, for completeness, we can derive an optimal error estimate for the divergence of the 
flux. 

THEOREM 4.5. Let k :> 1. Then, for h sufficiently small, 

[]div (u - Uh)[[L~(J;L2(U)) << Ch k+l, 

where the constant C is independent of h. 

PROOF. Combine Theorems 4.3 and 4.4 with the second equation in (4.3). 

5. LOt-ERROR E S T I M A T E S  

We can also establish pointwise error estimates. 

THEOREM 5.1. Let  k > 1. Then, for h sufficiently small, 

(a) NP--Ph[IL~(J;L~(~)) <-- Chk+l( logh-1) ,  (d = 2), 
(d) liP--Ph[[L~(J;L~(~)) <-- Ch k+(1/2), (d = 3), 

where the constant C is independent of h. 

PROOF. 
in (4.3). 

Apply Lemma 2.1 of [26] (which is also true for the case d = 3) to the first equation 
| 
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