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Abstract

We show that the non-commutati@! model coupled with Hopf term in 3 dimensions is equivalent to an interactingsspin-
theory where the spin-of the dual theory is related to the coefficient of the Hopf term. We use the Seiberg—Witten map in
studying this non-commutative duality equivalence, keeping terms to éréed show that the spin of the dual theory do
not get any-dependant corrections. The map between current letors shows that topological index of the solitons in the
non-commutativeCP! model is unaffected by where as the Noether charge of the corresponding dual particle dosget a
dependence. We also show that this dual theory smoothly goes to thé kmid giving dual theory in the commutative plane.
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1. Introduction

The recent developments in naommutative (NC) geometifit] and string theory2] have motivated the study
of different features of field theompodels constructed on NC space-tif8k The non-commutativity of the space—
time introduces non-linear and non-locdieett and hence the field theory models constructed on such spaces have
many interesting features which their commutative cerpdrts do not share, like the possibility of novel soliton
solutiong4], UV/IR mixing [5], etc. The UV/IR mixing which is a characteristic feature of non-commutative (NC)
field theories affect their renormalisabil{y,6]. Recently renormalisability of super-symmetric field theory models
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in NC setting have also been studied and it has been argued that the non-commutative (NC) super-symmetric
gauge theories have better renormalisab[ify NC super-symmetric quantum mechanical mod@]shave also

been constructed and studied. Recently fermionid fietory models have been studied on NC space—time which
avoids the fermion doubling problem and sexas alternative to lattice regularisati@®. Quantum theories with
space—time non-commutativity vealso been considered retgmwith potential applicationgl0].

Seiberg-Witten (SW) maf2] allows to re-express the NC gauge theoretic models in terms of the ordinary
gauge fields and the NC paramefeaind has been employed to study various aspects of NC field theoretic models
[11,12] The SW map is derived by demanding that the ordinary gauge fields which are connected by a gauge
transformation are mapped to NC fields which are likewise related by the corresponding NC gauge transformation
and this map smoothly reduces to the commutative limit whes 0. Using SW map, it has been shown recently
that the NC Chern—Simons term get mapped to standard Chern—Simons term in the commutatjl@bltrnas
been argued that the commutative limit (i€ 0) of NC models may not be smoofh,13]. Therefore it is of
interest to see how some of the well-established fie&btetic notions in the commutative spaces generalises to
NC settings. In this Letter we investigate one such problem, namely the dualisa@$tt ofiodel with Hopf term
in NC plane.

Study of the duality between bosonic and fermionic theories in commutative spaces has a long hifldiy. In
the equivalence between sine-Gordon and massive Thirring modet ihdimension has been studied. Following
[15], boson—fermion transmutatidi2 + 1)-dimensional field theoretic models were studied1f,17] and also
perturbatively in[19]. In [17] it has been shown that the non-linear sigma model when coupled to Hopf term
(written in CP! language) is equivalent to an interacting spify = % 1,...) theory and the mapping between
the dual fields has been obtained. Duality and bosonisatimon-linear and non-Abelian theories has also been
studied recently20,21]

The duality between Maxwell-Chern—Simons theory and self-dual modetitt dimension$22] (which is a
crucial ingredient in obtaining the ‘bosonisation’ rules for massive Thirring modehiriiaZlimensions) has been
recently analysed in the NC setting3] using SW map to the ordér. Following this it has been shown that the
equivalence between the massive Thirring model and Maxwell-Chern—Simons theoryléadthg order in the
inverse fermion mass) is (not) valid in the NC space where aglthel)-dimensional bosonisation is intact in NC
settings[24]. The study of NC duality and bosonisation is also of interest as these studies can shed further light
to the similar problems in the non-Abelian gauge theories since later have a similar gauge structure as NC gauge
theories. In this Letter we study the dualisation of 8! model coupled with Hopf term. ThéP! model in
NC plane has been studied and soliton solutions were obtained recently. It has been argued that the equivalence o
non-linear sigma model ar@P! model in the commutative plane do not hold good in the NC set{@@js

In this Letter we show that the NCP! model coupled with Hopf term is equivalent to NC spitheory. We
obtain this duality equivalence using the path integral method deve[@peh7]in implementing the approach of
[15] in (2 + 1)-dimensional field theoretic models. We apply this method, after re-expressing ti@PN@odel
coupled with Hopf term in terms of the commutative fields and NC pararietsing SW map. We obtain the dual
interacting spins theory where the spin-s given bys = 7- wherea is the coefficient of the Hopf term. Here we
obtain exact duality equivalence between BB model coupled with Hopf term and NC spirtheory. We also
obtain the mapping between the current correlators of these two equivalent NC models.

2. NC CP! model and SW map
The CP! model in commutative plane is described by the action
2

S=/d3x|(aﬂq>a—iAﬂq>a) a=1,2, (1)
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where the complex doublet field, satisfies the conditions

| @112 + |P2|? = 482, )
—i® D, D, =4g%A,,. 3)
It has been shown that the above lotdll) invariant action when coupled to the Hopf term
iA
H=— o ) d xe/ka BVAA, (4)

is equivalent to spin-theory[17]. Here the spinsis related to the coupling strengthof the Hopf term. In this
Letter we investigate this equivalence in the NC plaree NC space—time is defineg the coordinates obeying

[X/u Xv]*:igwu (5)

where thex product is defined as

f(x)*gx)= eégijafa}'f(x)g(y)Ix:y- (6)

In the following we take the anti-symmetric tengty, to be a constant.
We start with the NGCP! model action coupled to the Hopf term

iA 2i A
S /d x|:(D/L¢a) (D/L¢> ) fuv)\(A avAA+ 3 A/LAVA)\>}7 (7)
where the covariant derivative is definedla,§d3 =9, ® —iA,® and all the products in the above argroducts.
This action is invariant under the N&Z(1) transformations
&—->U®, A,—UAU"—i3,00". 8)

We re-express this action in terms of the commutative fields and the non-commutative patansatgrSeiberg—
Witten (SW) map. The SW map for the complex scalar field and the gauge field, to thédasdgven by

. 1
b =&~ OuAud P, 9)

A 1
AuzAH—EGMAV(Z);LAM+FM), (20)

respectively.

Since the NC Chern—Simons term get mapped to the standard Chern—-Simons term in the commutative plane
under the SW map, all the-dependant terms come from the first term when we apply SW map to the action in
Eq. (7). To the ordep, the SW mapped action is

iA
=/d3x|DM€Da| —hw(D,® ) (D, Pg) — EW;\AME),,A;L, (12)
where
1 1
h;w = é 0/L0(F0(v + elwt Fom + é’?uveaﬂFaﬂ . (12)

The second term in the action above is the Medependant interaction term introduced by the non-commutative
nature of the space—time. The partition function for this theory is

Z= / Da Dy DA D®! D®,e™5, (13)
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where

S= /d3x[|aﬂqba|2 — 482 AL + hyuy (P, Do + A% AL AL) — € Audv A,

l
472
— 0 (4g% AL + D}, Pa) + 0 — 2inyp(1P1l* + |P2|? — 4g2)]. (14)

Here, notice that constraint @P* fields in Eq.(2) is implemented in the path integral througt| @12 + |®2|% —
42)2, with the parametérp — oo and this term is then linearised using an auxiliary figld@he constraint given

in Eq. (3) is introduced using the multiplier fields,i.2 Now introducing the field$,, anda, we linearise the
quadratic term il4,, and the Chern—Simons term (Hopf term), respectively, to write the partition function of this
theory as

Z =/DC Da D DB Da DA Db DY D®, e, (15)
where the action

S= /d3x O [~DuDy + V1I®y — Cpu (90,0, P + 4% AL AY) + (Cpuv + i) By

2

— 492 2 _gi,2 2| Y :
4g a/LA/L +n Slg 77\/:(_) +4g 4 + a/L(b/L + lke/wkauak)
— 482 [ 2ike,vabydvas — k(€10 0va2)? + ikea,dvas]. (16)

Using the auxiliary fieldC,,, and B,,, we have conveniently re-expressed the above action where there is no
direct coupling betwees-dependant terms and t@P?! fields @,. Here the covariant derivative is defined as
D, =9, +iW, where the gauge field is given by

1
Wye = by + S + ikeundvar, 17)
with
k= * and V =2in/p (18)
RIS e

3. Duality equivalence

We now carry out the integrations ovej and®,, in the partition function in Eq(15) after re-writing the action
in Eq.(16)as

S= /d3x DFOD, + So. (19)

where

1 The constraints are treated as functioneltafunction following our earlier workl 7] and also that of Mitter and RamdHs3].
2 All the 9-dependant terms coming from the constraint in @ywhen SW map is applied cancel when plugged back into SW mapped
CP! action. This justifies the use of the commutative constraint in the SW mapped actid@5Btee a detailed discussion on this aspect.
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So= f d3x Cpu[i8, Wy — 2-4g° W, Ay — 4g° W, W, ] — 482C v Ay Ay + (Cpuy + ) By

Ol2
- 4g2a/1,Au + 772 - 81'8277\//_? - 4g2|:jﬂ + Olp,(bu + ike/},vkavak)]
— 42[2ike by dvar — k2(€010va3)? + ik€ynian dvas ], (20)

and the operata® is given by

O = _(3/LV + C/LV)DMDV + V (21)
Thus the partition function reduces to
Z= / DC Do Dy DB Da DA Db ¢~ S0—2Indet0, (22)
Using the well-known proper time representation of determinant for the op&adefined in Eq(21), we get
(0.¢]
—2Indet® =2 f % f qu,(f) e—fég dt [%(Buu—cuu)éuq'u"rV]—i’fc Wy dxlt. (23)
A2

Notice that the de® depends on the gauge fieW,, through the Wilson loop. Also the auxiliary field,,,
appears in the det where as there is no exglidependence.
Substituting this in Eq(22) and expanding2'"9¢!© e get the partition function as

o0
Z
Z:/DC Do Dy DB Da DA Db(l—i—Z—':)eSO, (24)
i1 n:
where
oo i .i .
zi=[]2 / % f D, (v) &8 AT O VI e, W (25)
i=1 i

Here we notice that all the dependence of the partition function on the NC parahueteres througlso.

Notice that the ternil+ ) 72 %) in Eq.(24)above containall the terms in the series expansioreof Ndet©
We do not neglect any terms here and thus we are evaluating the partition fuaetitly. Z,, in the above can be
taken as the defining the pathsa®f particles[17].

We consider the first term in E(R4)

Zo= / DC Do Dy DB Da DA Db e~
which after the integrations oveéy,, A,, anda,, becomes
Zo=/DC Da Dy DB Dvj, e~ 5, (26)
where the effective action is
2
o o, F,0) 1 F,0)\ _ F, ()
Soe = | d3x40?| 2K 4 ZTHIHY L AN Folms v
eff / x g[4+ 2 agz T\t gz )Cw |t

1 I _ .
+ Wﬂf(@) + Wgzkme)dwlme) + CuvByuy +n? +18g%n/p
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z4g
2

In the above we have used the definition

1 1 1,
— Gy + 820 Co)? = L 0 Cundis | 18709 Cpa — 5 Fa 0 | + 307 (27)

1
FH(9) = |:9”"‘8"‘BW — 0P19* B + E9"‘“8"3(,(,}, (28)

andd,,, = —€,,,.0;. Also we useC;; whereC,,, C;;t = 8, In Eq.(26) we have introduced a new fielg in the
measure and a Gaussian factor in the action (se€#)). This is done for later convenience (see Ef) below).

Thus theZg in Eq. (26) contains the contribution from the first term in the series expansiend?e© Next we
evaluate the contribution to the partition function from the remaining terms of this series. Fro@&cmd (25)

we see that these terms contain expectation value of the products of Wilson loops (far ievEry (25) we have

a Wilson loop to be averaged with weight fact). Here we use the fact that the averaging over the products of
Wilson loops is factorisable and hence it is equal to the product of the averaging over the Wilson loops when the
coefficient of the Hopf term. = 7. That is, we use the property of the expectation value of Wilson 100 ),

n

(W ---we)=]]{we) (29)
i=1
whenx = 7-, which can be easily verified in a straightforward manner in the present case by considering that the

Wilson loops are non-intersectifify7]. Also notice that the product of Wilson loop is nothing but the union of the
Wilson loops. Using these results we get the second term ii2@jjto be

/DQ[HZ”/ /Dq (T)e /0 dT( (ap.v Cﬂu)ququ‘l’v)} lfc le_ dxP— S() (30)

where the measurBs2 = DC Da Dy DB Da DA Db.
Now we carry out the integrations over the fieldand A. Here the terms coming from the Wilson loops also
contribute to these integrations unlike in the cas&®fn Eg. (26). The partition function becomes

o0
~ dp; : B Si i
ZiZ/DQ[l |2”/_13/3l fDQL(T)e_fO df(:ZL(‘Slw_c/w)q;lqv""v)j|S(X)e_sl’ (31)
i=1 !

where the measure B2 = DC Da Dy DB Da. The integration over the vector potenti4), gives the delta
function in Eq.(31). The explicit form of this delta function is

8(x) =8(Fu(0) +iJy — 4828y Cop — 2i - 4gke . 0vay) (32)
with F,(0) as given in Eq(28). The actionSy in Eq.(31)is given as

2k
S1= éﬁ — fd3x 4g2 [(keuuxavak)z — @eﬂvkluayax +ikeyvyaudvas, + 8 20[”]“1| (33)

The Si4 here is same aSeft|,,—0. The J,, that appears in Eq¢32) and (33)is the current associated with the
particles moving along the Wilson loogs and is given by

" [ o] _
JM:Z/S—:(SS(q—qE’). (34)
1

From Eq.(32), we note that even when the coefficient of the Hopf tansiset to zero (i.ek = 0) the current/,,
do not vanish because of thie-dependant terms. Thus the non-comntiviiy of the space—time which gave rise
to new interaction terms also resulte@n-vanishing current even whei = 0. This has to be contrasted with the
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commutative case where the current vanishes wher® signalling the confinement of particles and anti-particles
and a non-vanishing leads to deconfinemefit7]. Here, in our case, we see that when the NC parameter is
non-vanishing, there is no confinement of particles and anti-particles eveniwwhén

Now we integrate over the field, in the partition function in Eq(31). With the delta function in Eq.32) this
is done trivially, leading to

Zl:/DQ{ﬁzn/%/DqL(,)effdr(i(awcﬂu)q',iq'iﬂo}e(sewsj), (35)
i=1
where |
S,-=_/d3 [4 i 5 ZJIL(I(FIL(9)+4g ) + dWF (9))}
+Ju[§d;3+aw]aacw— [ @ Evlﬁ s Juvu] (36)

and D2 = DC Da Dy DB Dv. Here the fieldv, is introduced to linearise the quadratic term in the curdent
With J, as given in Eq(34)andd,,, = €,,,,.0,, the contribution from the first term df; is well known:

iz 2 il
E_% fd3x J;A.d;w Jy e%(z;l:]_W(Ci)-’rZi#j 2n,-j). (37)

In the above/V(C;) is the writhe of the curve which in terms of the solid angle subtended by the tangentdp the
on a sphere traced out by it and eaid integer adV(C;) = %Q(Ci) + (2k + 1). n;; is the linking number of the
curvesC; andC; and its contribution to partition function isity wheni = 7-. Using these results in E(35),

we get

o0
Zl:/DQ[HZn/ﬁfe—fé’dr<%<8,w—c,l.,>c'/;lc;:',+V)+(—)2$im—iwJ,l}e—seﬁ_ (38)
i=1 pi ;
n
Here
i 1 i 1,
VM=2‘4g2 i(Fu(0)+4g au)+kd LF,(0) zgvﬂ de,w i8,0 |04 Cav- (39)

Notice the(—)% factor in Eq.(38) above. This factor is due to the odd integér21 appearing in the expression
of writhe W(C;).
We now use th&p andZ; given above in Eq(24)to get

Z:/D:} eXp{—<Seff—2f %fe—fcf’df<i@w—Cum';;é/:;+V>+<—>2é"59—"Wﬂ)}. (40)
m

Here we notice that the@ dependence of the partition function comes frSg and also through the potentid], .

The effect of adding the Polyakov phase factor to the path integral of spinless particle for free as well as in
presence of background fields has been studied and it is well known to give path integral corresponding to particles
with spins [16,17] This has been shown using t88(2) coherent state path integral which gives

f DU o Jo AT HO+2) _ Tp((7|isH @) |y, (41)

U0)=0x)
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whereU are theSU(2) coherent states ang are the generators of spinrepresentation d8U (2) [26]. We adapt
these results to our present case and obtain

o oo

/ﬁfe—fé‘ At GO Cun )iV I+ Pis @i § Viedzy _ (25 f B ¢, B E+ 5 v m) (42)
p B ’

A2 qu A2

whereA is the cut-off andD = sgn»)(id,, — V,,)t*. Herer, are the generators of spinrepresentation odU (2),

M= ALY |y /dei(s,, — Cpry) andV is defined in Eq(18).
Using this in Eq(40)we get

- D AL
Z= / D2 e Set =D det{ﬁ + ﬁ4 V4 M]. (43)

The above determinant can be expressed as a functional integrak amed ¥ which are complex doublet fields
or fermionic fields depending whethes 2 1 is odd or even integer. Here we see that the facto?® appeared
in Eg.(38) (coming from the writhe of the Wilson loop calculated in Eg7)) is the important factor deciding the
statistics of the dual theory. This factor @£)% in the exponential in Eq38), in turn, is obtained by choosing the
coefficient of the Hopf term in Eq7). Since the Hopf term do not change under the SW map, we see that the NC
parameter do not affect the statistics of the dual fields.

Thus exponentiating the determinantliretabove, we get the partition function as

Z= / DO DU D ¢~ Setig [ X VUG + 5V (44)

Thus we see that all the dependence on the NC parame@mes through terms linear and quadrafia6)
appearing ineft and also from the v, 7, ¥ where it is coupled linearly. Since we have kept only terms of ofder
in SW map while writing the NC action in terms of commutative fields &nid Eq. (11), in the action—S;4
appearing in Eq(44) also we keep only linear terms éhand carry out integrations ovey,, v, andn. Thus we
get the partition function of the dual theory as

Z:/DC DB DW DW ¢, (45)
where the dual action is

1 . 1 i
S= /dgx C;wB/w - %avcuvdlw} [lgzaﬂcﬂa - _Fa(e)] - EF/L(Q)aaCa/L + gz(avclw)z

+ 8206 Cpac (80 + C, )aﬁcﬁv+w[ g )(18 — VTt + (M+2g2pﬁA1)]w
o - o 3 - 2 1 - -1,=
+ e P+ 7168725%2(%”4/) + 716g2S2A2(wrﬂw)(aw +CH W) (46)
Here
~ I 1/1 _ . -1
v MVF(9)+ kd/w—18,w+CW 3 Cav- (47)

Notice here that througﬁu, thed-dependant terms directly get coupledftoand¥ . The dual action has further
0-dependant terms which are coupled to the auxiliary f@ld. In the commutative limit all these later terms
vanish and the integrations over the fiegls, andC,,, become trivial giving the action in the commutative plane

() (48)

sgnx) 1 -
S = /d3 |: it"o, +(M+2g pJTA™ )]W+w('ﬂml]/)2+
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obtained in[17]. The four-Fermi interaction term in the dual theory comes when we integrate over the auxiliary
field . This field was introduced in the action (see EI§)) to incorporate the condition in E§2) which is the
same in the commutative case also. Thus it is not surprising to see that the four-Fermi interaction term in both NC
case and commutative model are the same. In contrast, the Thirring termégé¢epandence (through). Notice
that the duality shown here is exact, to allers in fermion mass and coupling constants.

Our dual theory in terms of spinfields is non-local as expected for adi¢heory on a non-commutative space.
Our first aim is to see what is the dual theory foEB* model in NC space—-time by starting from a SW mapped
CP! model. Our results clearly point to the fact that the dual action obtained her¢4@&jpjis not the naive NC
generalisation of the commutative action obtainefllirj (but in the limité6 — 0, we recover the action obtained
in [17]). Similar feature was also noticed in the context of the duality between Maxwell-Chern—-Simons theory and
self-dual model in the NC setting24]. Also it has been shown that the effect of NC is same as that of a field-
dependant gravitational backgrouj#¥] and thus the proper time determinant in E23) can be thought of as
evaluated in a non-trivial background. It is this baakgnd dependence coming because of the non-commutativity
which leads to the appearance.4f * and (5., + C;;;)~* in the dual action. In spite of these non-local and
non-polynomial nature of the dual theory one would be able to show various relations between these theories by
formally taking functional derivatives.

From the equivalence of the partition functions in Ep) and Eq.(45) obtained here we can derive the map-
pings between various-point correlators o€P* model and the dual spintheory in the NC plane by introducing
appropriate source terms. The form of the SW mapped Hopf term and the SW mapped field strength of the vector
field is suggestive to couple a topologically invariant current of the form

P = %emaum (49)
using a source (a vector field here) to the partition function of the SW ma@pédnodel with Hopf term in
Eq.(15). Repeating the steps leading to Ep), we get the dual partition function where the source filed-dependant
terms are present. Now by taking functional derivatives we get

. . 1
<J/£op>NCCP1 = 251<J/iv +2F,(0) — z4g23vC,w + @ewxa,\aacw>Nc B (50)
spirrs

whereJl’L\’ = sgm@ﬁw. The over all factoi in the above will be removed when we do a Wick rotation from
Euclidean space. From E@6)it is clear that the currem,f’ gets the dependence through. Thus the above map
between correlators shows the interesting feature that the Noether chadgpisndant where as the corresponding

soliton charge is not. We also notice that a spiparticle in the NC dual theory corresponds to a soliton of index
2s as in the commutative case.

4. Conclusion

We have studied the duality equivalence in the NC plane and showed that tt@PN@odel coupled with
Hopf term is equivalent to an interacting NC spirtheory withs = Z- whereJ is the coupling strength of the
Hopf term. We have shown this equivalence after re-expressing theM@nodel with Hopf term using SW map,
keeping terms to ordet. We recover the dual interacting spirtheory constructed in the commutative plane in
the limit & — 0 from the NC dual theory obtained here. There @aple of points worth mentioning here. Ours
is among the first to study the NC dual equivalence using path integral approach. Secondly@Rahuddel in
NC space is different from NC version of the dual@®* model in commutative space. We have also shown here
that the statistics of the dual theory do not get affettgthe non-commutativity athe space—time. The mapping
between the correlators of topological and Noether currents shows that while the topological index is unaffected
by NC parametef the Noether charge of the NC dual theory dependg.on
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It will be of interest to see what are the new solutions in BE' model obtained iff28] correspond to in
the dual spins theory obtained here€P! model coupled with Hopf term has been constructed and studied in the
non-commutative sphere al$29]. It will be interesting to study whether the equivalence obtained here can be
generalised to fuzzy sphere and to analyse the various limits of the dual theory on fuzzy sphere.
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