Construction of Optimal Linear Codes Using Flats and Spreads in a Finite Projective Geometry

Nobory Hamada and Fumikazu Tamari

Abstract

In this paper, we shall consider a problem of constructing an optimal linear code whose code length n is minimum among ($*, k, d ; s$)-codes for given integers k, d and s. In [5], we showed that this problem is equivalent to Problem B of a linear programming which has some geometrical structure and gave a geometrical method of constructing a solution of Problem B using a set of flats in a finite projective geometry and obtained a necessary and sufficient conditions for integers k, d and s that there exists such a geometrical solution of Problem B for given integers k, d and s. But there was no space to give the proof of the main theorem 4.2 in [5]. The purpose of this paper is to give the proof of [5, Theorem 4.2], i.e. to give a systematic method of constructing a solution of Problem B using flats and spreads in a finite projective geometry.

1. Introduction

Let $V(n ; s)$ be an n-dimensional vector space over a Galois field $G F(s)$ of order s where n is a positive integer and s is a prime or prime power. A k-dimensional subspace C of $V(n ; s)$ is said to be an ($n, k, d ; s$)-code (or an s-ary linear code with code length n, the number of information symbols k and the minimum distance d) if the minimum distance of the code C is equal to d (cf. [1, 2, 6]). In this paper, we shall consider the following problem.

Problem A. Find a linear code C (called an optimal linear code) whose code length n is minimum among $(*, k, d ; s)$-codes for given integers k, d and s.

In [5], we showed that Problem A is equivalent to Problem B of a linear programming which has some geometrical structure and gave a geometrical method of constructing a solution of Problem B using a set of flats in a finite projective geometry and obtained a necessary and sufficient condition (cf. [5, Theorems 4.1 and 4.2]) for integers k, d and s that there exists such a geometrical solution of Problem B for given integers k, d and s. But there was no space to give the proof of the main theorem 4.2 in [5].
The purpose of this paper is to give the proof of [5, Theorem 4.2], i.e. to give a systematic method of constructing a solution of Problem B using flats and spreads in a finite projective geometry. Using these results, we can obtain solutions of Problems A and B for many integers k, d and s even if d is not so large.
In the following, let k and d be any given integers such that $k \geqslant 3$ and $d \geqslant 1$ and let s be any given prime or prime power and let us denote by $\theta_{0}+\theta_{1} s+\cdots+\theta_{k-2} s^{k-2}$ and θ_{k-1} the remainder and the quotient of $d-1$, respectively, when it is divided by s^{k-1}, i.e.

$$
\begin{equation*}
d=1+\theta_{0}+\theta_{1} s+\theta_{2} s^{2}+\cdots+\theta_{k-2} s^{k-2}+\theta_{k-1} s^{k-1} \tag{1.1}
\end{equation*}
$$

where θ_{i} s are integers such that $\theta_{k-1} \geqslant 0$ and $0 \leqslant \theta_{i} \leqslant s-1$ for $i=0,1, \ldots, k-2$.

2. Preliminary Results

Let k, d and s be given integers and let $\varepsilon_{i}=(s-1)-\theta_{i}$ for $i=0,1, \ldots, k-2$ and let $D=\left\{\mu: \varepsilon_{\mu} \neq 0,0 \leqslant \mu \leqslant k-2\right\}$ where θ_{i} s are integers given by (1.1). Let \mathscr{B} be a set of ε_{0} 0 -flats, $\varepsilon_{1} 1$-flats, $\ldots, \varepsilon_{k-3}(k-3)$-flats and $\varepsilon_{k-2}(k-2)$-flats in a finite projective geometry
$P G(k-1, s)$, i.e. let

$$
\begin{equation*}
\mathscr{B}=\left\{V_{i}^{(\mu)}: i=1,2, \ldots, \varepsilon_{\mu}, \mu \in D\right\} \tag{2.1}
\end{equation*}
$$

where $V_{i}^{(\mu)}\left(i=1,2, \ldots, \varepsilon_{\mu}\right)$ denote (not necessarily distinct) $\varepsilon_{\mu} \mu$-flats in $\operatorname{PG}(k-1, s)$ for each integer μ in D (cf. Appendix I). In the special case $\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k-2}\right)=$ $(0,0, \ldots, 0), \mathscr{B}$ is the empty set \varnothing. Let $\eta_{i}(\mathscr{B})\left(j=1,2, \ldots, v_{k}\right)$ be the number of flats $V_{i}^{(\mu)}\left(1 \leqslant i \leqslant \varepsilon_{\mu}, \mu \in D\right)$ in \mathscr{B} which contain the j th point in $P G(k-1, s)$ where $v_{k}=$ $\left(s^{k}-1\right) /(s-1)$. Let us denote by $\mathscr{F}\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$, a family of all sets \mathscr{B} which consist of $\varepsilon_{0} 0$-flats, $\varepsilon_{1} 1$-flats, $\ldots, \varepsilon_{k-3}(k-3)$-flats and $\varepsilon_{k-2}(k-2)$-flats in $P G(k-1, s)$.

In [5], we showed that Problem A is equivalent to the following Problem B (cf. [5, Theorem 2.1]) and gave a geometrical method of constructing a solution of Problem B using a set of flats in $P G(k-1, s)$ (cf. [5, Theorem 3.1]).

Problem B. Find a vector $\mathbf{x}^{\mathrm{T}}=\left(x_{1}, x_{2}, \ldots, x_{v_{k}}\right)$ of non-negative integers $x_{j}(j=$ $1,2, \ldots, v_{k}$) that minimizes the summation $\sum_{j=1}^{v_{k}} x_{j}$ subject to the following inequality:

$$
\begin{equation*}
\sum_{j=1}^{v_{k}}\left(1-n_{i j}\right) x_{j} \geqslant d \quad\left(i=1,2, \ldots, v_{k}\right) \tag{2.2}
\end{equation*}
$$

for given integers k, d and s where $n_{i j}=1$ or 0 according to whether or not the j th point in $P G(k-1, s)$ is contained in the i th hyperplane in $P G(k-1, s)$.

Theorem 2.1. If there exists a set \mathscr{B} in $\mathscr{F}\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ such that $\max \left\{\eta_{j}(\mathscr{B})-\right.$ $\left.1: 1 \leqslant j \leqslant v_{k}\right\} \leqslant \theta_{k-1}$ for given integers k, d and s, the vector \mathbf{x} whose j th component x_{j} $\left(1 \leqslant j \leqslant v_{k}\right)$ is given by

$$
\begin{equation*}
x_{j}=\theta_{k-1}-\left(\eta_{j}(\mathscr{B})-1\right) \tag{2.3}
\end{equation*}
$$

is a solution of Problem B for given integers k, d and s where $\varepsilon_{i}=(s-1)-\theta_{i}$ for $i=$ $0,1, \ldots, k-2$ and θ_{i} s are integers given by (1.1).

From the actual point of view, it is desirable to obtain a solution of Problem A (i.e. Problem B) for comparatively small integers k, d and s. Since d can be expressed as (1.1) and $\theta_{k-1} \geqslant 0$, it is necessary that θ_{k-1} is a small integer in order that d is a small integer. Hence it is necessary to obtain a set \mathscr{B} in $\mathscr{F}\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ such that $\max \left\{\eta_{j}(\mathscr{B})-1: 1 \leqslant j \leqslant v_{k}\right\}$ is minimum for given integers k, s and $\varepsilon_{j}(j=0,1, \ldots, k-2)$, that is, it is necessary to obtain a necessary and sufficient condition for integers k, s and $\varepsilon_{j}(j=0,1, \ldots, k-2)$ that there exists a set \mathscr{B} in $\mathscr{F}\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ such that

$$
\begin{equation*}
\max \left\{\eta_{i}(\mathscr{B})-1: 1 \leqslant j \leqslant v_{k}\right\} \leqslant t \tag{2.4}
\end{equation*}
$$

for a given non-negative integer t.
Let $E(k, s)$ be a set of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ of integers $\varepsilon_{i}(i=1,2, \ldots, k-2)$ such that $0 \leqslant \varepsilon_{i} \leqslant s-1$ and let $E_{t}(k, s)(t=0,1,2, \ldots)$ be a set of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)$ such that either (a) $\sum_{i=1}^{k-2} \varepsilon_{i} \leqslant t+1$ or (b) $\sum_{i=1}^{k-2} \varepsilon_{i} \geqslant t+2$ and $\beta_{1}+\beta_{2}+\cdots+\beta_{t+2} \leqslant(t+1) k-(t+2)$ for the first $t+2$ integers $\beta_{1}, \beta_{2}, \ldots, \beta_{t+2}$ (cf. Sections 3 and 4) in the following series:

The purpose of this paper is to give the proof of the following Theorem 2.3.

Theorem 2.2. A necessary condition for $\varepsilon_{j}(j=0,1, \ldots, k-2)$ that there exists a set \mathscr{B} in $\mathscr{F}\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ which satisfies condition (2.4) for given integers k, s and t is that $0 \leqslant \varepsilon_{0} \leqslant s-1$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{t}(k, s)$.

Theorem 2.3. Let k, s and $\varepsilon_{j}(j=0,1, \ldots, k-2)$ be any integers such that $k \geqslant 3$ and $0 \leqslant \varepsilon_{j} \leqslant s-1$. If $0 \leqslant \varepsilon_{0} \leqslant s-1$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{t}(k, s)$ for $t=0$ or 1 , there exists a set \mathscr{B} in $\mathscr{F}\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ which satisfies condition (2.4). (Cf. [5, Theorem 4.2].)

Remark 2.1. It follows from [5, Corollary 3.2] that Theorem 2.3 holds for the case $k=3$. Hence it is sufficient to show that Theorem 2.3 holds for $k \geqslant 4$.

Remark 2.2. It follows from [5, Lemma 4.1] that in order to show that Theorem 2.3 holds, it is sufficient to show that if $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{t}(k, s)$ for $t=0$ or 1 , there exists a set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ such that

$$
\begin{equation*}
\max \left\{\eta_{j}(\mathcal{N}): 1 \leqslant j \leqslant v_{k}\right\} \leqslant t+1 \tag{2.6}
\end{equation*}
$$

In the special case $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)=(0,0, \ldots, 0), \mathcal{N}=\varnothing$ and $\eta_{j}(\mathcal{N})=0$ for $j=$ $1,2, \ldots, v_{k}$, i.e. $\max \left\{\eta_{j}(\mathcal{N}): 1 \leqslant j \leqslant v_{k}\right\}=0$.

Remark 2.3. In the case $\sum_{i=1}^{k-2} \varepsilon_{i} \leqslant t+1$, any set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k\right.$, $\left.s\right)$ satisfies condition (2.6). In the case $\sum_{i=1}^{k-2} \varepsilon_{i} \geqslant t+2$, a set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ satisfies condition (2.6) if and only if $\bigcap_{i=1}^{t+2} U_{i}=\varnothing$ for any $t+2$ flats $U_{i}(i=1,2, \ldots, t+2)$ in \mathcal{N}.

Remark 2.4. Let \mathcal{N} be a set in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ and let \mathcal{N}^{*} be a set in $\mathscr{F}\left(0, \varepsilon_{1}^{*}, \ldots, \varepsilon_{k-2}^{*} ; k, s\right)$ such that $\mathcal{N}^{*} \subset \mathcal{N}$ where $0 \leqslant \varepsilon_{i}^{*} \leqslant \varepsilon_{i}$ for $i=1,2, \ldots, k-2$. Then $\eta_{i}\left(\mathcal{N}^{*}\right) \leqslant \eta_{j}(\mathcal{N})$ for $j=1,2, \ldots, v_{k}$.

3. The Proof of Theorem 2.3 for the Case $t=0$

In order to show that Theorem 2.3 holds for the case $t=0$, we shall give another characterization of the set $E_{0}(k, s)$ where $k \geqslant 4$. Since $E_{0}(k, s)$ is a set of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)$ such that either (a) $\sum_{i=1}^{k-2} \varepsilon_{i} \leqslant 1$ or (b) $\sum_{i=1}^{k-2} \varepsilon_{i} \geqslant 2$ and $\beta_{1}+\beta_{2} \leqslant$ $k-2$ for the first two integers β_{1} and β_{2} in the series (2.5), it follows that $\sum_{i=\omega+1}^{k-2} \varepsilon_{i}=0$ or 1 if $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{0}(k, s)$ where $\omega=[(k-2) / 2]$ and $[x]$ denotes the greatest integer not exceeding x.

Let $E_{00}(k, s)$ be a set of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)$ such that $\sum_{i=\omega+1}^{k-2} \varepsilon_{i}=0$ and $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\omega} \leqslant s-1$ (i.e. $\beta_{2} \leqslant \beta_{1} \leqslant \omega$). Let $E_{01}(k, s)$ be a set of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)$ such that $\sum_{i=\omega+1}^{k-2} \varepsilon_{i}=1$ (i.e. $\varepsilon_{r}=1$ for some integer r such that $\omega+1 \leqslant r \leqslant k-2), 0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-r-2} \leqslant s-1$ and $\varepsilon_{j}=0$ for any integer j such that $k-r-1 \leqslant j \leqslant \omega$ (i.e. $\beta_{1}=r$ and $\beta_{2} \leqslant k-r-2$). Then $E_{00}(k, s) \cap E_{01}(k, s)=\varnothing$ and we have the following lemma.

Lemma 3.1. An ordered set $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)$ belongs to $E_{0}(k, s)$ if and only if it belongs to either $E_{00}(k, s)$ or $E_{01}(k, s)$.

Lemma 3.2. For any ordered set $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E_{00}(k, s)$, there exists a set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ such that $\max \left\{\eta_{j}(\mathcal{N}): 1 \leqslant j \leqslant v_{k}\right\}=1$ unless $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)=$ $(0,0, \ldots, 0)$ where $k \geqslant 4$.

Proof

(I) In the case $k=2 m+2(m \geqslant 1)$, it follows that $\omega=[(k-2) / 2]=m$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{00}(k, s)$ if and only if $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m} \leqslant s-1$ and $\varepsilon_{m+1}=\varepsilon_{m+2}=$
$\cdots=\varepsilon_{k-2}=0$. Hence it is sufficient to show that Lemma 3.2 holds for the case $\varepsilon_{1}=\varepsilon_{2}=$ $\cdots=\varepsilon_{m}=s-1$ and $\varepsilon_{m+1}=\varepsilon_{m+2}=\cdots=\varepsilon_{2 m}=0$ (cf. Remark 2.4).
From Theorem I. 1 in Appendix I, it follows that there exists an m-spread in PG($2 m+$ $1, s)$. Let $\left\{W_{i}: i=1,2, \ldots, s^{m+1}+1\right\}$ be an m-spread in $P G(2 m+1, s)$ and let $V_{j}^{(\mu)}$ $(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant m)$ be any μ-flat in $W_{(\mu-1)(s-1)+j}$ and let

$$
\begin{equation*}
\mathcal{N}=\left\{V_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, m\right\} . \tag{3.1}
\end{equation*}
$$

Then \mathcal{N} is a desired set since $|\mathcal{N}|=m(s-1) \leqslant s^{m+1}+1$ for any integer $m \geqslant 1$ and $U_{1} \cap U_{2}=$ \varnothing for any two flats U_{1} and U_{2} in \mathcal{N}. Note that $W_{i} \cap W_{j}=\varnothing$ for any integers i and j such that $1 \leqslant i<j \leqslant s^{m+1}+1$.
(II) In the case $k=2 m+1 \quad(m \geqslant 2)$, it follows that $\omega=[(k-2) / 2]=m-1$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{00}(k, s)$ if and only if $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m-1} \leqslant s-1$ and $\varepsilon_{m}=\varepsilon_{m+1}=$ $\cdots=\varepsilon_{k-2}=0$. Let \mathcal{N} be a set of flats in $P G(2 m+1, s)$ given by (3.1) and let H be a hyperplane in $P G(2 m+1, s)$ defined by

$$
\begin{equation*}
H=\left\{(\mathbf{c}): \mathbf{h}^{\mathrm{T}} \mathbf{c}=0 \text { over } G F(s), \mathbf{c} \in V(2 m+2 ; s)\right\} \tag{3.2}
\end{equation*}
$$

for a vector $\mathbf{h}^{\mathrm{T}}=(0,0, \ldots, 0,1)$ in $V(2 m+2 ; s)$. Then H consists of $v_{2 m+1}$ points in $P G(2 m+1, s)$ whose last components are all zero.
Let $U_{j}^{(\mu)}(1 \leqslant j \leqslant s-1, \quad 1 \leqslant \mu \leqslant m-1)$ be any μ-flat in $H \cap V_{j}^{(\mu+1)}$ and let $\tilde{\mathcal{N}}=$ $\left\{\tilde{U}_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, m-1\right\}$ where $\tilde{U}_{j}^{(\mu)}$ denotes the μ-flat in $P G(2 m, s)$ which is obtained from the μ-flat $U_{j}^{(\mu)}$ in $P G(2 m+1, s)$ by deleting the last component from all points in $U_{j}^{(\mu)}$. Then $\tilde{\mathcal{N}}$ is a desired set for the case $\varepsilon_{1}=\varepsilon_{2}=\cdots=$ $\varepsilon_{m-1}=s-1$ and $\varepsilon_{m}=\varepsilon_{m+1}=\cdots=\varepsilon_{2 m-1}=0$ since the last component of any point in $U_{j}^{(\mu)}(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant m-1)$ is zero. This completes the proof.

Lemma 3.3. For any ordered set $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E_{01}(k, s)$, there exists a set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ such that $\max \left\{\eta_{j}(\mathcal{N}): 1 \leqslant j \leqslant v_{k}\right\}=1$ where $k \geqslant 4$.

Proof

(I) In the case $k=2 m+2(m \geqslant 1)$, it follows that $w=[(k-2) / 2]=m$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right.$, $\left.\varepsilon_{k-2}\right) \in E_{01}(k, s)$ if and only if $\varepsilon_{r}=1,0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-r-2} \leqslant s-1$ for some integer r such that $m+1 \leqslant r \leqslant 2 m$ and $\varepsilon_{j}=0$ for any other integer j. Hence it is sufficient to show that Lemma 3.3.holds for the case $\varepsilon_{r}=1, \varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{k-r-2}=s-1$ and $\varepsilon_{j}=0$ for any other integer j. Let $e=r-m$. Then $1 \leqslant e \leqslant m$ and $k-r-2=m-e$.

In the case $e=m$ (i.e. $\varepsilon_{2 m}=1$ and $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{2 m-1}=0$), let H_{1} be any hyperplane in $P G(2 m+1, s)$ and let $\mathcal{N}=\left\{H_{1}\right\}$. Then \mathcal{N} is a desired set.

In the case $1 \leqslant e<m$ (i.e. $r=m+e ; m+1 \leqslant r<2 m$), let $\left\{W_{i}^{*}: i=1,2, \ldots, s^{m+1}+1\right\}$ be an m-spread in $P G(2 m+1, s)$ and let V_{1}^{*} be any $(m-e)$-flat in $P G(2 m+1, s)$ such that $V_{1}^{*} \subset W_{1}^{*}$. Let W_{i} and V_{1} be the dual space of W_{i}^{*} and V_{1}^{*} in $P G(2 m+1, s)$, respectively (cf. Definition I. 1 in Appendix I). Since $\operatorname{dim}\left(W_{i}^{*} \oplus W_{i}^{*}\right)=2 m+1, W_{i}^{*} \cap$ $W_{j}^{*}=\varnothing(i \neq j), V_{1}^{*} \subset W_{1}^{*}$ and $\operatorname{dim}\left(V_{1}^{*} \oplus W_{l}^{*}\right)=2 m+1-e$ for $l=2,3, \ldots, s^{m+1}+1$, it follows from Definitions I. 1 and I. 2 that $\left\{W_{i}: i=1,2, \ldots, s^{m+1}+1\right\}$ is an m-spread in $P G(2 m+1, s)$ and V_{1} is an $(m+e)$-flat in $P G(2 m+1, s)$ such that $W_{1} \subset V_{1}$ and $\operatorname{dim}\left(V_{1} \cap\right.$ $\left.W_{l}\right)=e-1$ for $l=2,3, \ldots, s^{m+1}+1$ where " $\operatorname{dim}(W)=\mu$ " means that W is a μ-flat. Hence there exists an ($m-e$) -flat R_{l} in W_{l} such that $V_{1} \cap R_{l}=\varnothing$ for $l=2,3, \ldots, s^{m+1}+1$. Let $V_{j}^{(\mu)}(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant m-e)$ be any μ-flat in $R_{(\mu-1)(s-1)+j+1}$ and let

$$
\begin{equation*}
\mathcal{N}=\left\{V_{1}\right\}+\left\{V_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, m-e\right\} . \tag{3.3}
\end{equation*}
$$

Then \mathcal{N} is a desired set since $|\mathcal{N}|=(m-e)(s-1)+1 \leqslant s^{m+1}+1$ for any integer $m \geqslant 1$ and $U_{1} \cap U_{2}=\varnothing$ for any two flats U_{1} and U_{2} in \mathcal{N}.
(II) In the case $k=2 m+1 \quad(m \geqslant 2)$, it follows that $\omega=[(k-2) / 2]=m-1$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{01}(k, s)$ if and only if $\varepsilon_{r}=1,0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-r-2} \leqslant s-1$ for some integer r such that $m \leqslant r \leqslant 2 m-1$ and $\varepsilon_{j}=0$ for any other integer j. Let $e=r-m$. Then $0 \leqslant e \leqslant m-1$ and $k-r-2=m-e-1$.
In the case $1 \leqslant e \leqslant m-1$, let \mathcal{N} be a set of flats in $P G(2 m+1, s)$ given by (3.3) and let H be the hyperplane in $P G(2 m+1, s)$ defined by (3.2). Since we can assume without loss of generality that $\mathrm{h} \subset V_{1}^{*} \subset W_{1}^{*}$ in (I), it follows that $H \supset V_{1} \supset W_{1}$. Let $U_{j}^{(\mu)}$ $(1 \leqslant j \leqslant s-1, \quad 1 \leqslant \mu \leqslant m-e-1) \quad$ be any μ-flat in $H \cap V_{j}^{(\mu+1)}$ and let $\tilde{\mathcal{N}}=$ $\left\{\tilde{V}_{1}\right\}+\left\{\tilde{U}_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, m-e-1\right\}$. Then $\tilde{\mathcal{N}}$ is a desired set for the case $\varepsilon_{r}=1, \varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{k-r-2}=s-1$ and $\varepsilon_{j}=0$ for any other integer j where $r=m+e$ and $1 \leqslant e \leqslant m-1$.

In the case $e=0$ (i.e. $\varepsilon_{m}=1,0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m-1} \leqslant s-1$ and $\varepsilon_{m+1}=\varepsilon_{m+2}=\cdots=$ $\left.\varepsilon_{2 m-1}=0\right)$, let $U_{j}^{(\mu)}(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant m-1)$ be any μ-flat in $H \cap W_{(\mu-1)(s-1)+j+1}$ and let $\tilde{\mathcal{N}}=\left\{\tilde{W}_{1}\right\}+\left\{\tilde{U}_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, m-1\right\}$ where $\left\{W_{i}: i=1,2, \ldots\right.$, $\left.s^{m+1}+1\right\}$ is an m-spread in $P G(2 m+1, s)$ such that $W_{1} \subset H$. Then \mathcal{N} is a desired set for the case $\varepsilon_{m}=1, \varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{m-1}=s-1$ and $\varepsilon_{m+1}=\varepsilon_{m+2}=\cdots=\varepsilon_{2 m-1}=0$. This completes the proof.

From the above lemmas and the remarks in Section 2, it follows that Theorem 2.3 holds for the case $t=0$.

Corollary 3.1. Let k, d and s be any integers such that $k \geqslant 3$ and $d \geqslant 1$. If $0 \leqslant \theta_{0} \leqslant s-1,\left(s-1-\theta_{1}, s-1-\theta_{2}, \ldots, s-1-\theta_{k-2}\right) \in E_{0}(k, s)$ and $\theta_{k-1} \geqslant 0$, there exists an ($n, k, d ; s$)-code which attains a lower bound

$$
\begin{equation*}
n \geqslant k+\theta_{0} v_{1}+\theta_{1} v_{2}+\cdots+\theta_{k-1} v_{k}, \tag{3.4}
\end{equation*}
$$

where θ_{i} are integers given by (1.1) and $v_{i}=\left(s^{i}-1\right) /(s-1)$ for $i=1,2, \ldots, k$.
Remark 3.1. The lower bound (3.4) for n is essentially due to G. Solomon and J. J. Stiffler [7].

Remark 3.2. With respect to a necessary and sufficient condition for an ordered set ($\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}$) in $E(k, s)$ that ($\left.\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{0}(k, s)$, see (I) and (II) in the proofs of Lemmas 3.2 and 3.3.

Example 3.1. Consider the case $k=8, d=105$ and $s=2$. Since $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{7}\right)=$ $(0,0,0,1,0,1,1,0)$ and $\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{6}\right)=(1,1,1,0,1,0,0)$ in this case, it follows from Corollary 3.1 and ($1,1,0,1,0,0) \in E_{0}(8,2)$ (cf. (I) in the proof of Lemma 3.3) that there exists an ($n, 8,105 ; 2$)-code which attains the lower bound (3.4) (i.e. $n=213$). Using the method in [5] (cf. [5, Theorems 2.1, 3.1 and Lemma 4.1]) and the constructive method of \mathcal{N} in Lemma 3.3, we can construct such an optimal linear code.

Example 3.2. Consider the case $k=6, s=3$ and $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{4}\right)=(1,0,0,2,2)$ (i.e. $\quad\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{4}\right)=(1,2,2,0,0)$). Since $\quad\left(\theta_{0}, \theta_{1}, \ldots, \theta_{4} ; \theta_{5}\right)=(1,0,0,2,2 ; 0)$, $(1,0,0,2,2 ; 1),(1,0,0,2,2 ; 2), \ldots$ according to whether $d=218,461,704, \ldots$, it follows from Corollary 3.1 and $(2,2,0,0) \in E_{0}(6,3)$ (cf. (I) in the proof of Lemma 3.2) that there exists an ($n, 6, d ; 3$)-code which attains the lower bound (3.4) for $d=218$, 461, 704,

Example 3.3. In the case where $k=2 m+2(m \geqslant 1), 0 \leqslant \theta_{0}, \theta_{1}, \ldots, \theta_{m} \leqslant s-1$ and $\theta_{m+1}=\theta_{m+2}=\cdots=\theta_{2 m}=s-1$, it follows from Corollary 3.1 and (I) in the proof of

Lemma 3.2 that there exists an ($n, 2 m+2, d ; s$)-code which attains the lower bound (3.4) for any integer $\theta_{2 m+1} \geqslant 0$ where d is an integer given by (1.1).

4. The Proof of Theorem 2.3 for the Case $t=1$

In the case $t=1, E_{t}(k, s)$ is a set of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)$ such that either (a) $\sum_{i=1}^{k-2} \varepsilon_{i} \leqslant 2$ or (b) $\sum_{i=1}^{k-2} \varepsilon_{i} \geqslant 3$ and $\beta_{1}+\beta_{2}+\beta_{3} \leqslant 2 k-3$ for the first three integers β_{1}, β_{2} and β_{3} in the series (2.5). Hence $\sum_{i=\tau+1}^{k-2} \varepsilon_{i}=0,1$ or 2 if $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{1}(k, s)$ where $\tau=[(2 k-3) / 3]$.

Let $E_{10}(k, s)$ be a set of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)-E_{0}(k, s)$ such that $\sum_{i=\tau+1}^{k-2} \varepsilon_{i}=0$ and $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\tau} \leqslant s-1$ (i.e. $\beta_{3} \leqslant \beta_{2} \leqslant \beta_{1} \leqslant \tau$). Let $E_{11}(k, s)$ be a set of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)-E_{0}(k, s)$ such that (i) $\sum_{i=\tau+1}^{k-2} \varepsilon_{i}=1$ (i.e. $\varepsilon_{r}=1$; $\beta_{1}=r$) and (ii) either (a) there exists a pair of integers f and $g(f+g+r=2 k-3$ and $f<g \leqslant \tau ; \beta_{2}=g$ and $\left.\beta_{3} \leqslant f\right)$ such that $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{f} \leqslant s-1, \varepsilon_{g}=1$ and $\varepsilon_{j}=0$ for any integer $j(f<j \leqslant \tau$ and $j \neq g$) or (b) there exists an integer $g(2 g+r \leqslant 2 k-3$ and $g \leqslant \tau$; $\beta_{2}=\beta_{3}=g$) such that $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{g-1} \leqslant s-1,2 \leqslant \varepsilon_{g} \leqslant s-1$ (i.e. $s \geqslant 3$) and $\varepsilon_{j}=0$ for any integer $j(g<j \leqslant \tau)$. Let $E_{12}(k, s)$ be a set of ordered sets $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)-E_{0}(k, s)$ such that (i) $\sum_{i=\tau+1}^{k-2} \varepsilon_{i}=2$ (i.e. $\varepsilon_{r}=2$ or $\varepsilon_{r_{1}}=\varepsilon_{r_{2}}=1 ; \beta_{1}=\beta_{2}=r$ or $\beta_{1}=r_{1}$ and $\beta_{2}=r_{2}$) and (ii) $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{h} \leqslant s-1$ and $\varepsilon_{h+1}=\varepsilon_{h+2}=\cdots=\varepsilon_{\tau}=0$ (i.e. $\beta_{3} \leqslant h$) where $h=2 k-3-2 r$ or $2 k-3-r_{1}-r_{2}$ and $\tau+1 \leqslant r_{2}<r_{1} \leqslant k-2$. Then we have the following lemma.

Lemma 4.1. An ordered set $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E(k, s)$ belongs to $E_{1}(k, s)-E_{0}(k, s)$ if and only if it belongs to either $E_{10}(k, s), E_{11}(k, s)$ or $E_{12}(k, s)$.

Lemma 4.2. For any integer $m \geqslant 1$, there exists a set of $(2 m+1)$-flats $Y_{l}(l=$ $\left.1,2, \ldots, s^{m+1}+1\right)$ in $P G(3 m+2, s)$ such that $Y_{i} \cap Y_{j} \cap Y_{k}=\varnothing$ for any integers i, j and k such that $1 \leqslant i<j<k \leqslant s^{m+1}+1$.

Proof. Let α be a primitive element of $G F\left(s^{3 m+3}\right)$ and let

$$
W_{i}^{*}=\left\{\left(\alpha^{i}\right),\left(\alpha^{\theta+i}\right),\left(\alpha^{2 \theta+i}\right), \ldots,\left(\alpha^{(\omega-1) \theta+i}\right)\right\}
$$

for $i=0,1, \ldots, \theta-1$ where $w=\left(s^{m+1}-1\right) /(s-1)$ and $\theta=\left(s^{3 m+3}-1\right) /\left(s^{m+1}-1\right)$. Then it follows from Theorem I. 1 in Appendix I that $\left\{W_{i}^{*}: i=0,1, \ldots, \theta-1\right\}$ is an m-spread in $P G(3 m+2, s)$. Since $\left(\alpha^{\theta}\right)^{s^{m+1}-1}=\alpha^{s^{3 m+3-1}}=1, \alpha^{l \theta}$ is an element of $G F\left(s^{m+1}\right)$ for $l=0,1, \ldots, w-1$. Hence each m-flat $W_{i}^{*}(0 \leqslant i<\theta)$ can be regarded as a point $\left(\alpha^{i}\right)$ in $P G\left(2, s^{m+1}\right)$. Since there are $q+1$ points in $P G(2, q)$ in which no three points are linearly dependent upon $G F(q)$ for any prime power q, there exist $q+1 m$-flats $Y_{l}^{*} \quad(l=$ $1,2, \ldots, q+1)$ in $\left\{W_{i}^{*}: i=0,1, \ldots, \theta-1\right\}$ such that no three points Y_{i}^{*}, Y_{j}^{*} and Y_{k}^{*} $(1 \leqslant i<j<k \leqslant q+1)$ in $P G(2, q)$ are linearly dependent upon $G F(q)$ (i.e. $\operatorname{dim}\left(Y_{i}^{*} \oplus\right.$ $\left.\left.Y_{i}^{*} \oplus Y_{k}^{*}\right)=3 m+2\right)$ where $q=s^{m+1}$. Let $Y_{l}\left(l=1,2, \ldots, s^{m+1}+1\right)$ be the dual space of Y_{l}^{*} in $P G(3 m+2, s)$. Then $\left\{Y_{l}: l=1,2, \ldots, s^{m+1}+1\right\}$ is a desired set.

REMARK 4.1. $\operatorname{dim}\left(W_{i}^{*} \oplus W_{j}^{*} \oplus W_{k}^{*}\right)=2 m+1$ or $3 m+2$ (i.e. $W_{k}^{*} \subset W_{i}^{*} \oplus W_{i}^{*}$ or $\left(W_{i}^{*} \oplus W_{j}^{*}\right) \cap W_{k}^{*}=\varnothing$) according as there exist two elements a and b in $P G\left(s^{m+1}\right)$ such that $a \alpha^{i}+b \alpha^{j}=\alpha^{k}$ or not.

Remark 4.2. If $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E(k, s)-E_{0}(k, s)$, it follows from Theorem 2.2 that $\max \left\{\eta_{j}(\mathcal{N}): 1 \leqslant j \leqslant v_{k}\right\} \geqslant 2$ for any set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$.

Proposition 4.1. For any ordered set $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E_{10}(k, s)$, there exists a set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ such that $\max \left\{\eta_{j}(\mathcal{N}): 1 \leqslant j \leqslant v_{k}\right\}=2$ where $k \geqslant 4$.

Proof

(I) In the case $k=3 m+3(m \geqslant 1)$, it follows that $\tau=[(2 k-3) / 3]=2 m+1$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in E_{10}(k, s)$ if and only if $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{2 m+1} \leqslant s-1$ and $\varepsilon_{2 m+2}=$ $\varepsilon_{2 m+3}=\cdots=\varepsilon_{3 m+1}=0$. Hence it is sufficient to show that Proposition 4.1 holds for the case $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{2 m+1}=s-1$ and $\varepsilon_{2 m+2}=\varepsilon_{2 m+3}=\cdots=\varepsilon_{3 m+1}=0$.

Let $Y_{i}\left(i=1,2, \ldots, s^{m+1}+1\right)$ be $(2 m+1)$-flats in $P G(3 m+2, s)$ given in Lemma 4.2 and let $V_{j}^{(\mu)}(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant 2 m+1)$ be any μ-flat in $Y_{(\mu-1)(s-1)+j}$ and let

$$
\begin{equation*}
\mathcal{N}=\left\{V_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, 2 m+1\right\} . \tag{4.1}
\end{equation*}
$$

Then \mathcal{N} is a desired set since $|\mathcal{N}|=(2 m+1)(s-1) \leqslant s^{m+1}+1$ for any integer $m \geqslant 1$ and $U_{1} \cap U_{2} \cap U_{3}=\varnothing$ for any three flats U_{1}, U_{2} and U_{3} in \mathcal{N}.
(II) In the case $k=3 m+2(m \geqslant 1)$, it follows that $\tau=2 m$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in$ $E_{10}(k, s)$ if and only if $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{2 m} \leqslant s-1$ and $\varepsilon_{2 m+1}=\varepsilon_{2 m+2}=\cdots=\varepsilon_{3 m}=0$. Let \mathcal{N} be a set of flats in $P G(3 m+2, s)$ given by (4.1) and let H be a hyperplane in $P G(3 m+2, s)$ given by (II.1) in Appendix II. Let $U_{j}^{(\mu)}(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant 2 m)$ be any μ-flat in $H \cap V_{j}^{(\mu+1)}$ and let $\tilde{\mathcal{N}}=\left\{\tilde{U}_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, 2 m\right\}$. Then $\tilde{\mathcal{N}}$ is a desired set for the case $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{2 m}=s-1$ and $\varepsilon_{2 m+1}=\varepsilon_{2 m+2}=\cdots=\varepsilon_{3 m}=0$.
(III) In the case $k=3 m+1(m \geqslant 1)$, it follows that $\tau=2 m-1$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right) \in$ $E_{10}(k, s)$ if and only if $0 \leqslant \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{2 m-1} \leqslant s-1$ and $\varepsilon_{2 m}=\varepsilon_{2 m+1}=\cdots=\varepsilon_{3 m-1}=0$. Let \mathcal{N} be a set of flats in $P G(3 m+2, s)$ given by (4.1) and let G be a $3 m$-flat in $P G(3 m+2, s)$ given by (II.2) in Appendix II. Let $U_{j}^{(\mu)}(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant 2 m-1)$ be any μ-flat in $G \cap V_{i}^{(\mu+2)}$ and let $\tilde{\mathcal{N}}=\left\{\tilde{U}_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, 2 m-1\right\}$ where $\tilde{U}_{j}^{(\mu)}$ denotes the μ-flat in $P G(3 m, s)$ which is obtained from the μ-flat $U_{j}^{(\mu)}$ in $P G(3 m+2, s)$ by deleting the last two components from all points in $U_{j}^{(\mu)}$. Then $\tilde{\mathcal{N}}$ is a desired set for the case $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{2 m-1}=s-1$ and $\varepsilon_{2 m}=\varepsilon_{2 m+1}=\cdots=\varepsilon_{3 m-1}=0$. This completes the proof.

The proof of the following lemma will be given in Appendix II.
Lemma 4.3. For any integers e_{1} and e_{2} such that $1 \leqslant e_{1} \leqslant m$ and $0 \leqslant e_{2} \leqslant e_{1} / 2$, there exists a set of one $\left(2 m+1+e_{1}\right)$-flat V_{1}, one $\left(2 m+1-e_{2}\right)$-flat $R_{2}, \rho\left(2 m+1-e_{1}+e_{2}\right)$-flats $R_{j}(j=3,4, \ldots, \rho+2)$ and $s^{m+1}-1-\rho\left(2 m+1-e_{1}\right)$-flats $T_{l}\left(l=1,2, \ldots, s^{m+1}-1-\rho\right)$ in $P G(3 m+2, s)$ such that the intersection of any three flats in the set is empty, where ρ is any integer such that $0 \leqslant \rho \leqslant s^{\pi}$ and $\pi=\left[e_{1} / 2\right]$.

Remark 4.3. In Lemma 4.3, we can assume without loss of generality that (i) $V_{1}=H$ in the case $e_{1}=m$ and (ii) $V_{1} \subset G \subset H$ in the case $1 \leqslant e_{1} \leqslant m-1$ where H and G are a hyperplane and a $3 m$-flat in $P G(3 m+2, s)$ given by (II.1) and (II.2) in Appendix II, respectively. (Cf. the proof of Lemma II. 1 in Appendix II.)

Proposition 4.2. For any ordered set $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E_{11}(k, s)$, there exists a set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ such that $\max \left\{\eta_{j}(\mathcal{N}): 1 \leqslant j \leqslant v_{k}\right\}=2$ where $k \geqslant 4$.

Proof

(I) In the case $k=3 m+3$, it is sufficient to show that Proposition 4.2 holds for the following two cases.
(i) In the case where $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{2 m+1-e_{1}+e_{2}}=s-1, \varepsilon_{2 m+1-e_{2}}=\varepsilon_{2 m+1+e_{1}}=1$ for some integers e_{1} and $e_{2}\left(1 \leqslant e_{1} \leqslant m\right.$ and $\left.0 \leqslant e_{2}<e_{1} / 2\right)$ and $\varepsilon_{j}=0$ for any other integer j (i.e. $\beta_{1}=r=2 m+1+e_{1}, \beta_{2}=g=2 m+1-e_{2}$ and $\beta_{3}=f=2 m+1-e_{1}+e_{2}$), let $V_{j}^{(\mu)}\left(1 \leqslant j \leqslant s-1,2 m+2-e_{1} \leqslant \mu \leqslant 2 m+1-e_{1}+e_{2}\right.$ and $\left.e_{2} \neq 0\right)$ be any μ-flat in $R_{(\mu-\zeta)(s-1)+j+2}\left(\zeta=2 m+2-e_{1}\right)$ and let $V_{j}^{(\mu)}\left(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant 2 m+1-e_{1}\right)$
be any μ-flat in $T_{(\mu-1)(s-1)+j}$ and let

$$
\mathcal{N}=\left\{V_{1}, R_{2}\right\}+\left\{V_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, \xi\right\}
$$

where $V_{1}, R_{i} \mathrm{~s}$ and T_{i} s are flats in $P G(3 m+2, s)$ given in Lemma 4.3 and $\xi=$ $2 m+1-e_{1}+e_{2}$. Then \mathcal{N} is a desired set, since $\rho=e_{2}(s-1) \leqslant \pi(s-1) \leqslant s^{\pi}$ and $|\mathcal{M}|=\left(2 m+1-e_{1}+e_{2}\right)(s-1)+2 \leqslant 2 m(s-1)+2 \leqslant s^{m+1}+1$ for any integer $m \geqslant 1$ where $\pi=\left[e_{1} / 2\right]$.
(ii) In the case where $s \geqslant 3, \varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{2 m+1-e_{2}}=s-1, \varepsilon_{2 m+1+e_{1}}=1$ for some integers e_{1} and $e_{2}\left(1 \leqslant e_{1} \leqslant m\right.$ and $\left.e_{1}=2 e_{2}\right)$ and $\varepsilon_{j}=0$ for any other integer j (i.e. $\beta_{1}=r=2 m+1+e_{1}$ and $\left.\beta_{2}=\beta_{3}=g=2 m+1-e_{2}\right)$, let $V_{j}^{(\mu)}(1 \leqslant j \leqslant s-1,2 m+2-$ $\left.e_{1} \leqslant \mu \leqslant 2 m+1-e_{2}\right)$ be any μ-flat in $R_{(\mu-\zeta)(s-1)+j+1}\left(\zeta=2 m+2-e_{1}\right)$ and let $V_{j}^{(\mu)}$ $\left(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant 2 m+1-e_{1}\right)$ be any μ-flat in $T_{(\mu-1)(s-1)+j}$ and let

$$
\mathcal{N}=\left\{V_{1}\right\}+\left\{V_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, \xi\right\}
$$

where $\xi=2 m+1-e_{2}$. Then \mathcal{N} is a desired set.
(II) In the case $k=3 m+2$, let ($\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{3 m}$) be any ordered set in $E_{11}(3 m+2, s)$ and let us denote by r the greatest integer in D where $D=\left\{\mu: \varepsilon_{\mu} \neq 0,1 \leqslant \mu \leqslant 3 m\right\}$. Then $2 m+1 \leqslant r \leqslant 3 m, \varepsilon_{r}=1$ and $\varepsilon_{2 m+1}=\varepsilon_{2 m+2}=\cdots=\varepsilon_{r-1}=\varepsilon_{r+1}=\cdots=\varepsilon_{3 m}=0$. Let

$$
\begin{equation*}
\varepsilon_{1}^{*}=0, \quad \varepsilon_{r}^{*}=\varepsilon_{r-1}+1, \quad \varepsilon_{r+1}^{*}=0 \quad \text { and } \quad \varepsilon_{i+1}^{*}=\varepsilon_{i} \tag{4.2}
\end{equation*}
$$

for $i=1,2, \ldots, r-2, r+1, r+2, \ldots, 3 m$.
(a) In the case $2 m+2 \leqslant r \leqslant 3 m$, it follows that $\left(\varepsilon_{1}^{*}, \varepsilon_{2}^{*}, \ldots, \varepsilon_{3 m+1}^{*}\right) \in E_{11}(3 m+3, s)$ since $\varepsilon_{r}^{*}=1$ (i.e. $\varepsilon_{r-1}=0$). Hence there exists a set \mathcal{N}^{*} in $\mathscr{F}\left(0, \varepsilon_{1}^{*}, \ldots, \varepsilon_{3 m+1}^{*} ; 3 m+\right.$ $3, s)$ such that $\max \left\{\eta_{j}\left(\mathcal{N}^{*}\right): 1 \leqslant j \leqslant v_{k}\right\}=2$.
(b) In the case $r=2 m+1$, it follows that $\varepsilon_{2 m+2}^{*}=\varepsilon_{2 m+3}^{*}=\cdots=\varepsilon_{3 m+1}^{*}=0$ and $\varepsilon_{2 m+1}^{*}=$ s or $1 \leqslant \varepsilon_{2 m+1}^{*} \leqslant s-1$ according to whether or not $\varepsilon_{2 m}=s-1$. Using a similar method in Proposition 4.1, we can show that there exists a set \mathcal{N}^{*} in $\mathscr{F}\left(0, \varepsilon_{1}^{*}, \ldots, \varepsilon_{3 m+1}^{*} ; 3 m+3, s\right)$ such that $\max \left\{\eta_{j}\left(\mathcal{N}^{*}\right): 1 \leqslant j \leqslant v_{k}\right\}=2$ even if $\varepsilon_{2 m+1}^{*}=s$.
Let H be the hyperplane in $P G(3 m+2, s)$ given by (II.1) in Appendix II and let $U_{i}^{(\mu)}$ $\left(1 \leqslant i \leqslant \varepsilon_{\mu}, \mu \in D-\{r\}\right)$ be any μ-flat in $H \cap V_{i}^{(\mu+1)}$ and let $\mathcal{N}=\left\{\tilde{V}_{1}\right\}+\left\{\tilde{U}_{i}^{(\mu)}: i=\right.$ $\left.1,2, \ldots, \varepsilon_{\mu}, \mu \in D-\{r\}\right\}$ where V_{1} and $V_{i}^{(\mu+1)}$ s are an r-flat and ($\mu+1$)-flats in \mathcal{N}^{*} of (a) or (b). Then \mathcal{N} is a desired set. Note that $V_{1} \subset H$, i.e. the last component of any point in V_{1} is zero (cf. Remark 4.3).
(III) In the case $k=3 m+1$, we can construct a set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{3 m-1} ; 3 m+1, s\right)$ such that $\max \left\{\eta_{j}(\mathcal{N}): 1 \leqslant j \leqslant v_{k}\right\}=2$ for any ordered set $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{3 m-1}\right)$ in $E_{11}(3 m+$ $1, s)$ from a set of flats in $P G(3 m+1, s)$ using a similar method in (II). This completes the proof.

The proof of the following lemma will be given in Appendix III.
Lemma 4.4. For any integers e_{1} and e_{2} such that $1 \leqslant e_{1}, e_{2} \leqslant m$, there exists a set of one $\left(2 m+1+e_{1}\right)$-flat V_{1}, one $\left(2 m+1+e_{2}\right)$-flat V_{2} and $s^{m+1}-1\left(2 m+1-e_{1}-e_{2}\right)$-flats $K_{j}\left(j=3,4, \ldots, s^{m+1}+1\right)$ in $P G(3 m+2, s)$ such that the intersection of any three flats in the set is empty.

Proposition 4.3. For any ordered set $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k-2}\right)$ in $E_{12}(k, s)$, there exists a set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{k-2} ; k, s\right)$ such that $\max \left\{\eta_{j}(\mathcal{N}): 1 \leqslant j \leqslant v_{k}\right\}=2$ where $k \geqslant 4$.

Proof

(I) In the case $k=3 m+3$, it is sufficient to show that Proposition 4.3 holds for the case $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{h}=s-1, \varepsilon_{2 m+1+e_{1}}=\varepsilon_{2 m+1+e_{2}}=1\left(1 \leqslant e_{1}<e_{2} \leqslant m\right)$ or $\varepsilon_{2 m+1+e_{1}}=2$ ($e_{1}=e_{2}$) and $\varepsilon_{i}=0$ for any other integer i where $h=2 m+1-e_{1}-e_{2}$.

Let $V_{j}^{(\mu)} \quad(1 \leqslant j \leqslant s-1, \quad 1 \leqslant \mu \leqslant h)$ be any μ-flat in $K_{(\mu-1)(s-1)+j+2}$ and let $\mathcal{N}=$ $\left\{V_{1}, V_{2}\right\}+\left\{V_{j}^{(\mu)}: j=1,2, \ldots, s-1, \mu=1,2, \ldots, h\right\}$ where V_{1}, V_{2} and K_{i} s are flats in $P G(3 m+2, s)$ given in Lemma 4.4. Then \mathcal{N} is a desired set.
(II) In the case $k=3 m+2$, it is sufficient to show that Proposition 4.3 holds for the following two cases.
(i) In the case where $s \geqslant 3, \varepsilon_{r}=2, \varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{h}=s-1$ and $\varepsilon_{j}=0$ for any other integer $j(h=2 k-3-2 r$ and $2 m+1 \leqslant r \leqslant 3 m)$, let $\varepsilon_{1}^{*}=0, \varepsilon_{r}^{*}=1, \varepsilon_{r+1}^{*}=1$ and $\varepsilon_{i+1}^{*}=\varepsilon_{i}$ for $i=1,2, \ldots, r-2, r+1, r+2, \ldots, 3 m$. Then it is easy to see that there exists a set \mathcal{N}^{*} in $\mathscr{F}\left(0, \varepsilon_{1}^{*}, \ldots, \varepsilon_{3 m+1}^{*} ; 3 m+3, s\right)$ such that $\max \left\{\eta_{j}\left(\mathcal{N}^{*}\right): 1 \leqslant j \leqslant v_{k}\right\}=$ 2. Let $V_{1}=V_{1}^{(r)}$ and $V_{2}=H \cap V_{1}^{(r+1)}$ and let $U_{j}^{(\mu)}(1 \leqslant j \leqslant s-1,1 \leqslant \mu \leqslant h)$ be any μ-flat in $H \cap V_{j}^{(\mu+1)}$ and let $\mathcal{N}=\left\{\tilde{V}_{1}, \tilde{V}_{2}\right\}+\left\{\tilde{U}_{j}^{(\mu)}: j=1,2, \ldots, s-1, \quad \mu=\right.$ $1,2, \ldots, h\}$ where $V_{j}^{(\mu)}$ s are μ-flats in \mathcal{N}^{*}. Then \mathcal{N} is a desired set. Note that $\varepsilon_{r-1}=0$ in this case and $V_{1}^{(r)}$ is an r-flat in \mathcal{N}^{*} such that $V_{1}^{(r)} \subset H$ and $H \cap V_{1}^{(r+1)}$ is an r-flat in H.
(ii) In the case where $\varepsilon_{r_{1}}=\varepsilon_{r_{2}}=1, \varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{h}=s-1$ and $\varepsilon_{j}=0$ for any other integer $j\left(h=2 k-3-r_{1}-r_{2}\right.$ and $\left.2 m+1 \leqslant r_{2}<r_{1} \leqslant 3 m\right)$, we can construct a desired set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{3 m} ; 3 m+2, s\right)$ using a similar method to that in (i).
(III) In the case $k=3 m+1$, we can obtain a desired set \mathcal{N} in $\mathscr{F}\left(0, \varepsilon_{1}, \ldots, \varepsilon_{3 m-1} ; 3 m+\right.$ $1, s$) using a similar method to that in (II). This completes the proof.

From the above propositions and the remarks in Section 2, it follows that Theorem 2.3 holds for the case $t=1$. We can easily generalize our results to the case $t \geqslant 2$. But it is very complicated to investigate completely whether or not Theorem 2.3 holds for each integer $t(2 \leqslant t \leqslant k-2)$.

Corollary 4.1. Let k, d and s be any integers such that $k \geqslant 3$ and $d \geqslant 1$. If $0 \leqslant \theta_{0} \leqslant s-1,\left(s-1-\theta_{1}, s-1-\theta_{2}, \ldots, s-1-\theta_{k-2}\right) \in E_{1}(k, s)-E_{0}(k, s)$ and $\theta_{k-1} \geqslant 1$, there exists an ($n, k, d ; s$)-code which attains the lower bound (3.4).

Remark 4.4. In the case where $0 \leqslant \theta_{0} \leqslant s-1$ and ($s-1-\theta_{1}, s-1-\theta_{2}, \ldots, s-1-$ $\left.\theta_{k-2}\right) \in E_{1}(k, s)-E_{0}(k, s)$, we can construct a solution of Problem B (i.e. Problem A) using Theorem 2.1 if $\theta_{k-1} \geqslant 1$, but we can not construct a solution of Problem B using Theorem 2.1 if $\theta_{k-1}=0$. Note that $E_{0}(k, s) \subset E_{1}(k, s) \subset \cdots \subset E_{k-2}(k, s)=E(k, s)$.

Example 4.1. In the case where $k=8, s=2$ and $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{6}\right)=(0,0,0,0,1,0)$ (i.e. $\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{6}\right)=(1,1,1,1,1,0,1)$), it follows that $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{6}\right) \notin E_{0}(8,2)$ but $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{6}\right) \in E_{1}(8,2)$. Since $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{6} ; \theta_{7}\right)=(0,0,0,0,0,1,0 ; 0),(0,0,0,0,0,1$, $0 ; 1),(0,0,0,0,0,1,0 ; 2), \ldots$ according to whether $d=33,161,289, \ldots$, it follows from Corollary 4.1 that there exists an ($n, 8, d ; 2$)-code which attains the lower bound (3.4) for $d=161,289, \ldots$ Using the method in [5] and the constructive method of \mathcal{N} in Proposition 4.2, we can construct such an optimal linear code.

Example 4.2. In the case where $k=3 m+3(m \geqslant 1), 0 \leqslant \theta_{0}, \theta_{1}, \ldots, \theta_{2 m+1} \leqslant s-1$ and $\theta_{2 m+2}=\theta_{2 m+3}=\cdots=\theta_{3 m+1}=s-1$, it follows from Corollary 4.1 and (I) in the proof of Proposition 4.1 that there exists an ($n, 3 m+3, d ; s$)-code which attains the lower bound (3.4) for any integer $\theta_{3 m+2} \geqslant 1$ where d is an integer given by (1.1). (Cf. (I), (II) and (III) in the proofs of Propositions 4.1, 4.2 and 4.3 for further details.)

Appendix I. A μ-flat and a μ-Spread in $P G(t, s)$

A finite projective geometry $P G(t, s)$ of t dimensions $(t \geqslant 2)$ can be defined as a set of points satisfying the following conditions:
(a) A point in $P G(t, s)$ is represented by (ν) where ν is a non-zero element of $G F\left(s^{t+1}\right)$.
(b) Two points $\left(\nu_{1}\right)$ and $\left(\nu_{2}\right)$ represent the same point when and only when there exists a non-zero element σ of $G F(s)$ such that $\nu_{1}=\sigma \nu_{2}$.
(c) A μ-flat, $0 \leqslant \mu \leqslant t$, in $P G(t, s)$ is defined as a set of points

$$
\left\{\left(a_{0} \nu_{0}+a_{1} \nu_{1}+\cdots+a_{\mu} \nu_{\mu}\right): \cdots\right\}
$$

where a_{i} s run independently over the elements of $G F(s)$ and are not all simultaneously zero and $\nu_{0}, \nu_{1}, \ldots, \nu_{\mu}$ (called a generator of the μ-flat) are linearly independent elements of $G F\left(s^{t+1}\right)$ over the coefficient field $G F(s)$. Hence there are $\left(s^{t+1}-1\right) /(s-1)$ points in $P G(t, s)$ and each μ-flat consists of $\left(s^{\mu+1}-1\right) /(s-1)$ points in $P G(t, s)$. In the special case $\mu=t-1$, a $(t-1)$-flat in $P G(t, s)$ is called a hyperplane. A t-flat in $P G(t, s)$ is a set of all points in $P G(t, s)$ and a (-1)-flat is an empty set \varnothing. Note that the intersection of any two flats is also a flat.
Since every non-zero element of $G F\left(s^{t+1}\right)$ may be represented either as a power of the primitive element α or as a polynomial in α, of degree at most t, with coefficients from $G F(s)$ (cf. [3]), every point in $P G(t, s)$ can be expressed by using either a power of the primitive element α or a vector of $V(t+1 ; s)$ and a μ-flat $W(0 \leqslant \mu<t)$ may be defined as a set

$$
\begin{equation*}
W=\{(\mathbf{c}): A \mathbf{c}=\mathbf{0} \text { over } G F(s), \mathbf{c} \in V(t+1 ; s)\} \tag{I.1}
\end{equation*}
$$

using a $(t-\mu) \times(t+1)$ matrix A whose entries are elements of $G F(s)$ and whose rank over $G F(s)$ is equal to $t-\mu$.

Definition 1.1. Let W be a μ-flat $(0 \leqslant \mu<t)$ in $P G(t, s)$ defined by (I.1). The ($t-\mu-1$)-flat W^{*} generated by $t-\mu$ column vectors of A^{T} is said to be the dual space of W in $P G(t, s)$. In the special case $W=\varnothing$ (i.e. $\mu=-1$), the dual space of W in $P G(t, s)$ is a t-flat and the dual space of a t-flat W in $P G(t, s)$ is an empty set.

Definition I.2. A set Ω of μ-flats $(0<\mu<t)$ in $P G(t, s)$ is said to be a μ-spread in $P G(t, s)$ if every point in $P G(t, s)$ is contained in exactly one μ-flat of the set Ω (cf. [4]). That is, a μ-spread in $P G(t, s)$ is a partition of all points in $P G(t, s)$ by μ-flats.

Definition I.3. The minimum flat which contains r flats $V_{i}(i=1,2, \cdots, r)$ in $P G(t, s)$ is denoted by $V_{1} \oplus V_{2} \oplus \cdots \oplus V_{r}$ where $r \geqslant 2$. In the special case where $r=2$ and V_{1} and V_{2} are a μ-flat and a ν-flat in $P G(t, s)$, respectively, such that $V_{1} \cap V_{2}=\varnothing$, $V_{1} \oplus V_{2}$ is a $(\mu+\nu+1)$-flat in $P G(t, s)$.

The following theorem (cf. [4, 8]) plays an important role in constructing a set \mathscr{B} which satisfies the condition in Theorem 2.3.

Theorem 1.1

(i) There exists a μ-spread in $P G(t, s)$ if and only if $t+1$ is a multiple of $\mu+1$.
(ii) Let t and $\mu(1 \leqslant \mu<t)$ be any positive integers such that $t+1$ is a multiple of $\mu+1$ and let

$$
\begin{equation*}
W_{i}=\left\{\left(\alpha^{i}\right),\left(\alpha^{\theta+i}\right),\left(\alpha^{2 \theta+i}\right), \ldots,\left(\alpha^{(\omega-1) \theta+i}\right)\right\} \tag{I.2}
\end{equation*}
$$

for $i=0,1, \ldots, \theta-1$ where $w=\left(s^{\mu+1}-1\right) /(s-1), \theta=\left(s^{t+1}-1\right) /\left(s^{\mu+1}-1\right)$ and α is a primitive element of $G F\left(s^{t+1}\right)$. Then $\left\{W_{i}: i=0,1, \ldots, \theta-1\right\}$ is a μ-spread in $P G(t, s)$.

Remark I.1. Let $\left\{W_{i}: i=1,2, \ldots, \xi\right\}$ be any μ-spread in $P G(t, s)$ and let f be any linear mapping from $P G(t, s)$ onto $P G(t, s)$. Then $\left\{f\left(W_{i}\right): i=1,2, \ldots, \xi\right\}$ is also a μ-spread in $P G(t, s)$.

Remark 1.2. There exist a μ-flat V and a ν-flat W in $P G(t, s)$ such that $V \cap W=\varnothing$ if and only if $\mu+\nu+1 \leqslant t$.

Remark I. 3

(i) Let W_{1} and W_{2} be two flats in $P G(t, s)$ and let W_{i}^{*} be the dual space of W_{i} in $P G(t, s)$. Then $W_{1} \subset W_{2}$ if and only if $W_{1}^{*} \supset W_{2}^{*}$.
(ii) Let $V_{i}(i=1,2, \ldots, r)$ be flats in $P G(t, s)$ and let V_{i}^{*} be the dual space of V_{i} in $P G(t, s)$ where $r \geqslant 2$. Then the dual space of $\bigcap_{i=1}^{r} V_{i}$ is $V_{1}^{*} \oplus V_{2}^{*} \oplus \cdots \oplus V_{r}^{*}$. Hence $\bigcap_{i=1}^{r} V_{i}=\varnothing$ if and only if $\operatorname{dim}\left(V_{1}^{*} \oplus \cdots \oplus V_{r}^{*}\right)=t$.

Appendix II. The Proof of Lemma 4.3

In order to prove Lemma 4.3, we shall prepare two lemmas. Let

$$
\begin{equation*}
H=\left\{(\mathbf{c}): \mathbf{b}_{1}^{\mathrm{T}} \mathbf{c}=0 \text { over } G F(s), \mathbf{c} \in V(3 m+3 ; s)\right\} \tag{II.1}
\end{equation*}
$$

and

$$
\begin{equation*}
G=\left\{(\mathbf{c}): \mathbf{b}_{1}^{\mathrm{T}} \mathbf{c}=\mathbf{b}_{2}^{\mathrm{T}} \mathbf{c}=0 \text { over } G F(s), \mathbf{c} \in V(3 m+3 ; s)\right\} \tag{II.2}
\end{equation*}
$$

where $\mathbf{b}_{1}^{\mathrm{T}}=(0,0, \ldots, 0,0,1)$ and $\mathbf{b}_{2}^{\mathrm{T}}=(0,0, \ldots, 0,1,0)$. Then H is a hyperplane in $P G(3 m+2, s)$ such that the last component of any point in H is zero and G is a $3 m$-flat in $P G(3 m+2, s)$ such that the last two components of any point in G are zero.

Lemma II.1. For any integers m and e_{1} such that $m \geqslant 1$ and $0 \leqslant e_{1} \leqslant m$, there exist one $\left(2 m+1+e_{1}\right)$-flat V_{1} and $s^{m+1}+1 \quad(2 m+1)$-flats $Y_{i}\left(i=1,2, \ldots, s^{m+1}+1\right)$ in $P G(3 m+2, s)$ such that (a) $\operatorname{dim}\left(Y_{\alpha} \cap Y_{\beta}\right)=m$ and $Y_{\alpha} \cap Y_{\beta} \cap Y_{\gamma}=\varnothing$ for any distinct integers $\alpha, \beta, \gamma\left(1 \leqslant \alpha, \beta, \gamma \leqslant s^{m+1}+1\right)$ and $(\mathrm{b}) \operatorname{dim}\left(V_{1} \cap Y_{\beta}\right)=m+e_{1}$ and $\operatorname{dim}\left(V_{1} \cap Y_{\beta} \cap\right.$ $\left.Y_{\gamma}\right)=e_{1}-1$ for any distinct integers β and $\gamma\left(2 \leqslant \beta, \gamma \leqslant s^{m+1}+1\right)$ and (c) $Y_{1} \subset V_{1} \subset H$, $\operatorname{dim}\left(H \cap Y_{j}\right)=2 m$ and $\operatorname{dim}\left(G \cap Y_{j}\right)=2 m-1$ for $j=2,3, \ldots, s^{m+1}+1$.

Proof. Let $Y_{l}^{*}\left(l=1,2, \ldots, s^{m+1}+1\right)$ be m-flats in $P G(3 m+2, s)$ defined in the proof of Lemma 4.2 such that $\operatorname{dim}\left(Y_{i}^{*} \oplus Y_{j}^{*}\right)=2 m+1$ (i.e. $Y_{i}^{*} \cap Y_{j}^{*}=\varnothing$) and $\operatorname{dim}\left(Y_{i}^{*} \oplus Y_{j}^{*} \oplus Y_{k}^{*}\right)=3 m+2$ for any distinct integers i, j and $k\left(1 \leqslant i, j, k \leqslant s^{m+1}+1\right)$. We can assume without loss of generality (cf. Remark I.1) that Y_{1}^{*} contains two points \mathbf{b}_{1} and \mathbf{b}_{2} (i.e. $\mathbf{b}_{1} \oplus \mathbf{b}_{2} \subset Y_{1}^{*}$). Let V_{1}^{*} be any ($m-e_{1}$)-flat in $P G(3 m+2, s)$ such that $\mathbf{b}_{1} \subset V_{1}^{*} \subset Y_{1}^{*}$ or $\mathbf{b}_{1} \oplus \mathbf{b}_{2} \subset V_{1}^{*} \subset Y_{1}^{*}$ according to whether $e_{1}=m$ or $0 \leqslant e_{1} \leqslant m-1$ and let V_{1} and $Y_{j}\left(1 \leqslant j \leqslant s^{m+1}+1\right)$ be the dual spaces of V_{1}^{*} and Y_{j}^{*} in $P G(3 m+2, s)$, respectively. Then V_{1} and Y_{s} are a $\left(2 m+1+e_{1}\right)$-flat and $(2 m+1)$-flats in $P G(3 m+2, s)$, respectively, which satisfy the three conditions (a), (b) and (c) in Lemma II.1. This completes the proof.

Lemma II.2. Let m, e_{1} and e_{2} be any integers such that $m \geqslant 2,2 \leqslant e_{1} \leqslant m$ and $0 \leqslant e_{2} \leqslant\left[e_{1} / 2\right]$. Then there exists a set of one $\left(2 m+1+e_{1}\right)$-flat V_{1}, one $\left(2 m+1-e_{2}\right)$-flat R_{2} and $s^{\pi}\left(2 m+1-e_{1}+e_{2}\right)$-fats $R_{j}\left(j=3,4, \ldots, s^{\pi}+2\right)$ in $P G(3 m+2, s)$ such that $V_{1} \cap R_{\beta} \cap R_{\gamma}=\varnothing$ and $R_{\alpha} \cap R_{\beta} \cap R_{\gamma}=\varnothing$ for any distinct integers α, β and $\gamma(2 \leqslant \alpha, \beta, \gamma \leqslant$ $\left.s^{\pi}+2\right)$ where $\pi=\left[e_{1} / 2\right]$.

Proof. In order to show that Lemma II. 2 holds, it is sufficient to show that there exists a set of one $\left(m-e_{1}\right)$-flat V_{1}^{*}, one $\left(m+e_{2}\right)$-flat R_{2}^{*} and $s^{\pi}\left(m+e_{1}-e_{2}\right)$-flats R_{j}^{*} $\left(j=3,4, \ldots, s^{\pi}+2\right)$ in $P G(3 m+2, s)$ such that

$$
\begin{equation*}
\operatorname{dim}\left(V_{1}^{*} \oplus R_{\beta}^{*} \oplus R_{\gamma}^{*}\right)=3 m+2 \quad \text { and } \quad \operatorname{dim}\left(R_{\alpha}^{*} \oplus R_{\beta}^{*} \oplus R_{\gamma}^{*}\right)=3 m+2 \tag{II.3}
\end{equation*}
$$

for any distinct integers α, β and γ (cf. Remark I.3).
Let V_{1}^{*} and $Y_{l}^{*}\left(l=1,2, \ldots, s^{m+1}+1\right)$ be an $\left(m-e_{1}\right)$-flat and m-flats in $P G(3 m+2, s)$ such that $V_{1}^{*} \subset Y_{1}^{*}, Y_{i}^{*} \cap Y_{j}^{*}=\varnothing$ and $\operatorname{dim}\left(Y_{i}^{*} \oplus Y_{j}^{*} \oplus Y_{k}^{*}\right)=3 m+2$ for any distinct integers i, j and k.
(a) In the case $e_{1}=2 \pi(1 \leqslant \pi \leqslant m / 2)$, there exists a $(2 \pi-1)$-flat Z_{1} in Y_{1}^{*} such that $Z_{1} \cap V_{1}^{*}=\varnothing$ (i.e. $Z_{1} \oplus V_{1}^{*}=Y_{1}^{*}$) and there exists a ($\pi-1$)-spread $\left\{Z_{1 i}: j=\right.$ $\left.2,3, \ldots, s^{\pi}+2\right\}$ in Z_{1}.

In the case $e_{2}=\pi$ (i.e. $e_{2}=e_{1}-e_{2}=\pi$), let $R_{j}^{*}=Y_{j}^{*} \oplus Z_{1 j}$ for $j=2,3, \ldots, s^{\pi}+2$. Then R_{j}^{*} s are ($m+\pi$)-flats (i.e. ($m+e_{1}-e_{2}$)-flats) in $P G(3 m+2, s$) which satisfy condition (II.3) since $R_{j}^{*} \supset Y_{j}^{*}, V_{1}^{*} \oplus Z_{1 \beta} \oplus Z_{1 \gamma}=Y_{1}^{*}$ and $V_{1}^{*} \oplus R_{\beta}^{*} \oplus R_{\gamma}^{*}=Y_{1}^{*} \oplus$ $Y_{\beta}^{*} \oplus Y_{\gamma}^{*}$.

In the case $0 \leqslant e_{2}<\pi$ (i.e. $e_{1}-e_{2}>\pi$), there exist an ($e_{2}-1$)-flat $Z_{12}(1)$ and a ($\pi-e_{2}-1$)-flat $Z_{12}(2)$ in the ($\pi-1$)-flat Z_{12} such that $Z_{12}(1) \cap Z_{12}(2)=\varnothing$ (i.e. $\left.Z_{12}(1) \oplus Z_{12}(2)=Z_{12}\right)$. Let $R_{2}^{*}=Y_{2}^{*} \oplus Z_{12}(1)$ and $R_{j}^{*}=Y_{j}^{*} \oplus Z_{1 j} \oplus Z_{12}(2)$ for $j=$ $3,4, \ldots, s^{\pi}+2$. Then R_{2}^{*} and R_{j}^{*} s are an $\left(m+e_{2}\right)$-flat and ($m+e_{1}-e_{2}$)-flats in $P G(3 m+2, s)$ which satisfy condition (II.3).
(b) In the case $e_{1}=2 \pi+1(1 \leqslant \pi \leqslant(m-1) / 2)$, there exist a $(2 \pi-1)$-flat Z_{1} and one point P in the m-flat Y_{1}^{*} such that $Z_{1} \cap V_{1}^{*}=\varnothing$ and $V_{1}^{*} \oplus Z_{1} \oplus P=Y_{1}^{*}$. Let $\left\{Z_{1 j}: j=2,3, \ldots, s^{\pi}+2\right\}$ be a $(\pi-1)$-spread in Z_{1} and let $R_{2}^{*}=Y_{2}^{*} \oplus Z_{12}(1)$ and $R_{j}^{*}=Y_{j}^{*} \oplus Z_{1 j} \oplus Z_{12}(2) \oplus P$ for $j=3,4, \ldots, s^{\pi}+2$. Then V_{1}^{*}, R_{2}^{*} and $R_{j}^{*} \mathrm{~s}$ are desired flats. This completes the proof.

Proof of Lemma 4.3

(i) In the case $e_{1}=1$, it follows that $e_{2}=0, \pi=0$ and $\rho=0$ or 1 . Let V_{1}^{*} and P be an ($m-1$)-flat and one point in the m-flat Y_{1}^{*} such that $P \notin V_{1}^{*}$ (i.e. $V_{1}^{*} \oplus P=Y_{1}^{*}$) and let $R_{2}^{*}=Y_{2}^{*}$.

In the case $\rho=0$, let $T_{j}^{*}=Y_{j+2}^{*} \oplus P$ for $j=1,2, \ldots, s^{m+1}-1$ and let V_{1}, R_{2} and $T_{j}\left(1 \leqslant j \leqslant s^{m+1}-1\right)$ be the dual spaces of V_{1}^{*}, R_{2}^{*} and T_{j}^{*}, respectively. Then V_{1}, R_{2} and T_{j} s are desired flats.

In the case $\rho=1$, let $R_{3}^{*}=Y_{3}^{*} \oplus P$ and $T_{j}^{*}=Y_{j+3}^{*} \oplus P$ for $j=1,2, \ldots, s^{m+1}-2$ and let V_{1}, R_{2}, R_{3} and $T_{j}\left(1 \leqslant j \leqslant s^{m+1}-2\right)$ be the dual spaces of $V_{1}^{*}, R_{2}^{*}, R_{3}^{*}$ and T_{j}^{*}, respectively. Then V_{1}, R_{2}, R_{3} and T_{i} s are desired flats.
(ii) In the case $2 \leqslant e_{1} \leqslant m$ and $0 \leqslant e_{2} \leqslant e_{1} / 2$, let V_{1}^{*} and $Y_{l}^{*}\left(l=1,2, \ldots, s^{m+1}+1\right)$ be an $\left(m-e_{1}\right)$-flat and m-flats in $P G(3 m+2, s)$ such that $V_{1}^{*} \subset Y_{1}^{*}, Y_{i}^{*} \cap Y_{j}^{*}=\varnothing$ and $\operatorname{dim}\left(Y_{i}^{*} \oplus Y_{j}^{*} \oplus Y_{k}^{*}\right)=3 m+2$ for any distinct integers i, j and k. Then there exists an ($e_{1}-1$)-flat Z in Y_{1}^{*} such that $Z \cap V_{1}^{*}=\varnothing$ (i.e. $Z \oplus V_{1}^{*}=Y_{1}^{*}$). Let $T_{l}^{*}=Z \oplus Y_{l+\rho+2}^{*}$ for $l=1,2, \ldots, s^{m+1}-1-\rho$ and let $\mathscr{C}^{*}=\left\{V_{1}^{*}\right\}+\left\{R_{j}^{*}: j=\right.$ $2,3, \ldots, \rho+2\}+\left\{T_{l}^{*}: l=1,2, \ldots, s^{m+1}-1-\rho\right\}$, where V_{1}^{*} and R_{i}^{*} s are flats defined in the proof of Lemma II.2. Then it is easy to see that $\operatorname{dim}\left(U_{1} \oplus U_{2} \oplus U_{3}\right)=$ $3 m+2$ for any three flats U_{1}, U_{2} and U_{3} in \mathscr{C}^{*}. Hence \mathscr{C} is a desired set where \mathscr{C} is a set of the dual spaces of all flats in \mathscr{C}^{*}.

Appendix III. The Proof of Lemma 4.4

Let V_{1}^{*} and $Y_{j}^{*}\left(j=1,2, \ldots, s^{m+1}+1\right)$ be an $\left(m-e_{1}\right)$-flat and m-flats in $P G(3 m+2, s)$, respectively, which are given in the proof of Lemma II. 1 and let V_{2}^{*} be any ($m-e_{2}$)-flat
in Y_{2}^{*}. Let Y_{j} and $V_{l}(l=1,2)$ be the dual spaces of Y_{j}^{*} and V_{1}^{*} in $P G(3 m+2, s)$, respectively. Since $\operatorname{dim}\left(Y_{i} \cap Y_{j}\right)=m(i \neq j)$ and $\operatorname{dim}\left(V_{l} \cap Y_{\beta} \cap Y_{\gamma}\right)=e_{l}-1$ for any distinct integers l, β and γ, there exist an ($m-e_{2}$)-flat E_{j} in $Y_{1} \cap Y_{j}$ and an ($m-e_{1}$)-flat F_{j} in $Y_{2} \cap Y_{j}$ such that

$$
E_{i} \cap\left(Y_{1} \cap V_{2} \cap Y_{j}\right)=\varnothing \quad \text { and } \quad F_{j} \cap\left(V_{1} \cap Y_{2} \cap Y_{j}\right)=\varnothing
$$

for $j=3,4, \ldots, s^{m+1}+1$. Let $K_{j}=E_{j} \oplus F_{j}$ for $j=3,4, \ldots, s^{m+1}+1$. Then $K_{\alpha}(3 \leqslant \alpha \leqslant$ $\left.s^{m+1}+1\right)$ is a $\left(2 m+1-e_{1}-e_{2}\right)$-flat in Y_{α} such that

$$
V_{1} \cap V_{2} \cap K_{k}=\varnothing, \quad V_{l} \cap K_{i} \cap K_{k}=\varnothing \quad \text { and } \quad K_{i} \cap K_{i} \cap K_{k}=\varnothing
$$

for any distinct integers l, i, j and k since $V_{1} \cap K_{k}=E_{k}, E_{k} \cap V_{2}=\varnothing, V_{l} \cap K_{j} \subset Y_{l} \cap Y_{j}$, $K_{k} \subset Y_{k}$ and $Y_{i} \cap Y_{j} \cap Y_{k}=\varnothing$. This completes the proof.

References

1. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
2. I. F. Blake and R. C. Mullin, The Mathematical Theory of Coding, Academic Press, New York, 1975.
3. R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, Dover, New York, 1956.
4. P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1968.
5. N. Hamada and F. Tamari, Construction of optimal codes and optimal fractional factorial designs using linear programming, Ann. Discrete Math. 6 (1980), 175-188.
6. W. W. Peterson and E. J. Weldon, Jr., Error Correcting Codes, 2nd edn., MIT Press, Cambridge, 1972.
7. G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control 8 (1965), 170-179.
8. S. Yamamoto, T. Fukuda and N. Hamada, On finite geometries and cyclically generated incomplete block designs, J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 137-149.

Received 13 January 1981 and in revised form 19 March 1982
N. Hamada

Department of Mathematics, Faculty of Science, Hiroshima University, Hiroshima, Japan
F. TAMARI

Department of Mathematics, Fukuoka University of Education,
Akama, Munakata, Fukuoka, Japan

