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Construction of Optimal Linear Codes Using Flats and Spreads in
a Finite Projective Geometry

NoBORU HAMADA AND FuMikazu TAMARI

In this paper, we shall consider a problem of constructing an optimal linear code whose code
length n is minimum among (%, k, d; s)-codes for given integers k, d and s. In [5], we showed
that this problem is equivalent to Problem B of a linear programming which has some geometrical
structure and gave a geometrical method of constructing a solution of Problem B using a set of
flats in a finite projective geometry and obtained a necessary and sufficient conditions for integers
k, d and s that there exists such a geometrical solution of Problem B for given integers k, d and
s. But there was no space to give the proof of the main theorem 4.2 in [5]. The purpose of this
paper is to give the proof of [5, Theorem 4.2], i.e. to give a systematic method of constructing
a solution of Problem B using flats and spreads in a finite projective geometry.

1. INTRODUCTION

Let V(n;s) be an n-dimensional vector space over a Galois field GF(s) of order s
where n is a positive integer and s is a prime or prime power. A k-dimensional subspace
C of V(n;s) is said to be an (n, k, d; s)-code (or an s-ary linear code with code length
n, the number of information symbols k and the minimum distance d) if the minimum
distance of the code C is equal to d (cf. [1, 2, 6]). In this paper, we shall consider the
following problem.

ProBLEM A. Find a linear code C (called an optimal linear code) whose code length
n is minimum among (%, K, d ; s)-codes for given integers &, d and s.

In [5], we showed that Problem A is equivalent to Problem B of a linear programming
which has some geometrical structure and gave a geometrical method of constructing a
solution of Problem B using a set of flats in a finite projective geometry and obtained
a necessary and sufficient condition (cf. [5, Theorems 4.1 and 4.2]) for integers k,d
and s that there exists such a geometrical solution of Problem B for given integers
k, d and s. But there was no space to give the proof of the main theorem 4.2 in {5].

The purpose of this paper is to give the proof of [5, Theorem 4.2}, i.e. to give a
systematic method of constructing a solution of Problem B using flats and spreads in
a finite projective geometry. Using these results, we can obtain solutions of Problems
A and B for many integers k, d and s even if d is not so large.

In the following, let k and d be any given integers such that k=3 and d =1 and let
s be any given prime or prime power and let us denote by 6o+ 615+ -+ * + 6k 2Sk -2 and
0._1 the remainder and the quotient of d — 1, respectively, when it is dmded bys* 7} ie.

d=1+00+01S+02S2+"'+0k_2S —2 +60r_1S _1, (11)

where 6;s are integers such that 6,_;=0and 0<@;<s—1fori=0,1,...,k—2.

2. PRELIMINARY RESULTS

Let k, d and s be given integers and let ;= (s —1)—6; for i =0, 1,...,k—2 and let
D={u:e,#0,0<u <k~—2} where 6;s are integers given by (1.1). Let & be a set of o
0-flats, £, 1-flats, . . ., ex_3 (k —3)-flats and £, (k —2)-flats in a finite projective gecometry
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PGk —1,s),i.e. let
B={V®:i=1,2,...,e,neD}, (2.1)

where V® (i=1,2,..., €,.) denote (not necessarily distinct) £, u-flats in PG(k -1, 5)
for each integer u in D (cf. Appendix I). In the special case (g0, €1,...,Ek-2)=
0,0,...,0), B is the empty set &. Let n;(B) (j=1,2,...,v¢) be the number of flats
v (I1=sis<e, weD) in B which contain the jth point in PG(k —1, s) where v, =
(s*-1)/(s —1). Let us denote by F(eo, €1, ..., Ek—2; Kk, 8), a family of all sets B which
consist of g, 0-flats, ¢, 1-flats, . .., x_3 (k —3)-flats and & _, (k —2)-flats in PG (k — 1, s5).

In [5], we showed that Problem A is equivalent to the following Problem B (cf. [5,
Theorem 2.1]) and gave a geometrical method of constructing a solution of Problem B
using a set of flats in PG(k —1, s) (cf. [5, Theorem 3.1]).

ProBLEM B. Find a vector X' = (x1, X2, . . . , Xy, ) of non-negative integers x; (j =
Vr

1,2,..., v;) that minimizes the summation Z,.=1 x; subject to the following inequality:
Z (1—n,~,~)x,~>d (i=l, 2,.. .,l)k) (22)
i=1

for given integers k, d and s where n; = 1 or 0 according to whether or not the jth point
in PG(k —1, s) is contained in the ith hyperplane in PG(k — 1, s).

THEOREM 2.1. Ifthere exists aset Bin F(eo, €1, . . . , Ex—2; K, ) such that max{n;(B)—
1:1<j<uv}<6i_1 for given integers k, d and s, the vector x whose jth component x;
(1<j<uv) is given by

Xj = 01— (n;(B)—-1) (2.3)

is a solution of Problem B for given integers k, d and s where ¢, =(s —1)—8; for i =
0,1,...,k—2 and 6;s are integers given by (1.1).

From the actual point of view, it is desirable to obtain a solution of Problem A (i.e.
Problem B) for comparatively small integers k, d and s. Since d can be expressed as
(1.1) and 6,1 =0, it is necessary that 6,_, is a small integer in order that d is a small
integer. Hence it is necessary to obtain a set B in F(eq, €1,..., €x.2; kK, s) such that
max{n;(#)—1: 1<j=<uv,}is minimum for given integers k, s and ¢; (=0, 1,...,k—2),
that is, it is necessary to obtain a necessary and sufficient condition for integers k, s and
g (j=0,1,..., k—2) that there exists a set B in F(eo, €1, - . - , £x—2; k, §) such that

max{n;(B)—1:1sjsuv}st (2.4)

for a given non-negative integer ¢.

Let E(k, s) be a set of ordered sets (1, €2, ..., ex—2) Oof integerse; (i=1,2,...,k—2)
such that 0<g;<s—1 and let E/k,s) (¢t=0,1,2,...) be a set of ordered sets
(£1, €2, - .., £x—2) in E(k, s) such that either (a) Y1 e;<t+1 or (b) Y1 e;=t+2 and
B1+Bart+- - +Pa<(t+1)k—(t+2) for the first r+2 integers By, B2, ..., B2 (cf.
Sections 3 and 4) in the following series:

Ek-2 Ek-3 €1
r A ~ r A ~ —f—— (25)
k—2,k-2,...,k—-2; k-3,k-3,...,k-3; ...; 1,1,...,1

The purpose of this paper is to give the proof of the following Theorem 2.3.
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THEOREM 2.2. A necessary condition for ¢; (j =0,1, ...,k —2) that there exists a set
B in F(eo, €1, - - - , £x—2; k, s) which satisfies condition (2.4) for given integers k, s and t
isthat 0<go<s—1and (e, €2,..., €x_2) € Eik,s).

THEOREM 2.3. Letk,sande; (j=0,1,...,k —2) be any integers such that k =3 and
O<¢g;s5s—1.IfOsgoss—1and (e1, 82, ..., €x—2)EEi(k, s) for t =0 or 1, there exists a
set B in Fleo, €1, - - - , €x—2; k, ) which satisfies condition (2.4). (Cf. [5, Theorem 4.2].)

REMARK 2.1. It follows from [5, Corollary 3.2] that Theorem 2.3 holds for the case
k = 3. Hence it is sufficient to show that Theorem 2.3 holds for k =4.

REMARK 2.2. It follows from [5, Lemma 4.1] that in order to show that Theorem
2.3 holds, it is sufficient to show that if (¢4, €2, ..., ex-2)€ E;(k, s) for t =0 or 1, there
existsaset A in (0, €4, ..., €x—2; k, §) such that

max{n;(N): 1<sjsuvtst+1. (2.6)

In the special case (e5,&2,..., £¢—2)=(0,0,...,0), ¥=C and n;(N)=0 for j=
1,2,..., 0 i.e. max{n;(N): 1<j=<up,}=0.

REMARK 2.3. In the case Z:.:f gi<t+1,anyset N in F(0,¢4,..., ex_2; k, s) satisfies
condition (2.6). In the case Y17 ¢;=t+2, aset N in F(0,e1,..., ex—2; k, 5) satisfies
condition (2.6) if and only if (23 U; = & for any t+2 flats U; (i=1,2,...,t+2) in &,

REMARK 2.4. Let & be a set in F(0,¢e1,...,cc_2; k,s) and let #* be a set in
FO,e¥,...,e¥-2;k, s)such that ¥*c & where O0<ef <g; fori=1,2,...,k—2. Then
nW*<snW¥forj=1,2,..., v

3. THE PROOF OF THEOREM 2.3 FOR THE CASE ¢t =0

In order to show that Theorem 2.3 holds for the case ¢ =0, we shall give another
characterization of the set Eqo(k, s) where k =4. Since Ey(k, s) is a set of ordered sets
(1, €2, . . ., €x—2) in E(k, 5) such that either (a) 2:12 gi=<1lor(b) Z::lz g;=2and él +B,=<
k -2 for the first two integers 81 and 8, in the series (2.5), it follows that Z::..,H g=0
or 1if (ey,€2,...,6ex_2)€Eolk,s) where w =[(k —2)/2] and [x] denotes the greatest
integer not exceeding x.

Let Eqo(k, s) be a set of ordered sets (€1, €3, . . . , £x—2) in E (k, s) such that Z:::“ g,=0
and 0<¢y,62,...,6,<5—1 (i.e. B2<Bi=w). Let Ep(k,s) be a set of ordered sets
(e1,€2,...,€k-2) in E(k, s) such that Zf:iﬂ €; =1 (i.e. &, =1 for some integer r such
that w +1sr<k—2),0<ey,¢63...,e——2<s—1 and ¢ =0 for any integer j such that
k-r-1<j<w (i.e. B1=r and Bo<k —r—2). Then Eoolk,s)nEoi(k,s)=J and we
have the following lemma.

LEMMA 3.1. An ordered set (e, €2,...,€r—2) in E(k,s) belongs to Eo(k,s) if and
only if it belongs to either Eoo(k, s) or Eo1(k, 5).

LEMMA 3.2. For any ordered set (g1, €2, - . . , €k—2) in Eoolk, 8), there exists a set X in
F,¢e1,...,ex-2,k,5) such that max{n;(N): 1<j<suv}=1 unless (e1,€2,...,Ek-2)=
(0,0,...,0) where k =4.

PrOOF
(D In the case k=2m+2 (m=1), it follows that o =[(k—2)/2]=m and
(€1, €2,..., €x—2)EEoolk, s) if and only if 0<g,€5,...,6m<s—1 and ens1=Ems2=
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- -+ =g,_»=0. Hence it is sufficient to show that Lemma 3.2 holds for the case ¢; =¢,=
ve=g,=5—1and €41 =Ems2="""*=€2, =0 (cf. Remark 2.4).

From Theorem I.1 in Appendix I, it follows that there exists an m-spread in PG (2m +
1,s). Let {W;:i=1,2,...,s™"'+1} be an m-spread in PG(2m +1,5) and let V}“)
(1=j=ss-1, 1syu <m) be any p-flat in W, 1)s—1)+; and let

N={v®.j=1,2,...,s—1,u=1,2,...,m}. (3.1)

Then  is a desired set since |¥| =m(s —1)<s™*'+ 1 foranyintegerm =1and U, " U, =
& for any two flats U; and U, in . Note that W;~ W; = for any integers { and
such that 1si<j<s™*'+1.

(ID) In the case k=2m+1 (m=2), it follows that w=[(k—2)/2]=m -1 and
(e1,€2,..., ex—2) € Eoo(k, s) if and only if 0<e1,82,...,6m1=5—1 and ¢, =€m1 =
-v =g, »,=0. Let & be a set of flats in PG(2m +1, 5) given by (3.1) and let H be a
hyperplane in PG (2m + 1, 5) defined by

H ={(c): h"c=0over GF(s),ce V2m +2;s)} 3.2)

for a vector hT=(O, 0,...,0,1) in V(2m+2;s). Then H consists of v,,,+1 points in
PG(2m +1, s) whose last components are all zero.

Let U,(“) (1<js<s—1, 1su<m—1) be any u-flat in HAV*™" and let N=
{(7,(-“):j=1,2,...,s——1,u =1,2,...,m—1} where 17,(-“) denotes the pu-flat in
PG(2m, s) which is obtained from the u-flat U }“) in PG(2m +1, 5) by deleting the last
component from all points in U ,(f‘). Then & is a desired set for the case e, =g,="""=
em-1=5~1 and &,, =€m+1="" ' =&€2-1=0 since the last component of any point in
U,(-“) (1=sj<s-1,1=su <m—1)is zero. This completes the proof.

LeEMMA 3.3. For any ordered set (g1, €2, . .., ex-2) in Eoi(k, 5), there exists a set N in
F0,€e1,...,81-2;k, 8) such that max{n;(N): 1<j<uv,}=1 where k =4.

PROOF

() In the case k =2m +2 (m =1), it follows that w =[(k —2)/2]=m and (1, €2, . . -,
ex-2)€Epi(k,s)ifandonlyif e, =1,0<¢y, €2,. .., exk—,—2<s5— 1 for some integer r such
that m +1<r<2m and ¢; =0 for any other integer j. Hence it is sufficient to show that
Lemma 3.3 holds for the case e, = 1,61 =¢2="+ - * = g4_,—» =5 — 1 and ¢; = 0 for any other
integerj. Lete=r—m. Then lsesmand k~r—2=m—e.

Inthecase e =m (i.e. eam=1and e1=e2=""+"=¢g2,-1=0), let H; be any hyperplane
in PG(2m +1, s) and let ¥ ={H,}. Then & is a desired set.

Inthe case 1<e<m (i.e.r=m+e; m+1=<r<2m), let {WF¥:i=1,2,... ,s™ 41}

be an m-spread in PG(2m +1,s) and let V¥ be any (m —e)-flat in PG(2m +1, 5) such
that V¥ < W¥. Let W; and V, be the dual space of W§ and V§ in PG(2m +1,5),
respectively (cf. Definition 1.1 in Appendix I). Since dim(W¥ @W})=2m+1, W n
W= (i#]), VI c WT anddim(VI ®@W)=2m+1—e for [ =2,3, co, st
follows from Definitions 1.1 and 1.2 that {W,:i=1,2,...,s™ ' +1} is an m-spread in
PG(2m +1,s)and V,isan (m +e)-flatin PG(2m + 1, s) such that W; < V; and dim(V; n
W)=e—1for I=2,3,...,s""" +1 where “dim(W)=pu" means that W is a u-flat.
Hence there exists an (m —e)-flat R;in Wysuchthat Vi "R, = Jforl=2,3,..., s™H 4.
Let Vi* (Isj<s—1,1<pu <m—e)be any u-flat in R, _1)c_1)+j+1 and let

N={V}H{V¥:i=1,2,...,s-1,u=1,2,...,m—e}. (3.3)

Then & is a desired set since |#|=(m—e)(s—1)+1<s™""+1 for any integer m =1
and U, n U, = for any two flats U; and U, in ¥.
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(II) In the case k=2m+1 (m=2), it follows that w=[(k—2)/2]=m—~1 and
(61,€25...,6x—2)€Eo1(k,s) if and only if &, =1, 0<<ey, €2, ..., ex_,_2=<5—1 for some
integer r such that m <r <2m —1 and ¢; = 0 for any other integer j. Let ¢ =r —m. Then
Osesm-—-landk-r—-2=m-—-e—1.

In the case 1se<m—1, let A be a set of flats in PG(2m +1, s) given by (3.3) and
let H be the hyperplane in PG (2m + 1, s) defined by (3.2). Since we can assume without
loss of generality that he V¥ < W¥ in (I), it follows that H > V;> W;. Let U
(1<js<s-1, 1su<sm-e—1) be any pu-flat in HAV**"Y and let #=
(V3+{O®:j=1,2,...,s-1,u=1,2,...,m—e—1}. Then A is a desired set for the

case £,=1, e1=e2="'-=¢€r—,—2=5—1 and ¢ =0 for any other integer j where
r=m+eandl<se<m-1.
In the case e =0 (i.e. em=1, O0<eq, €2,...,6m-1<5—1 and eps1=€Eps2="++=

E2m-1=0), let U (1<j<s-1, 1su<m—1) be any u-flat in H A Wi _1)s-1y+j+1
andlet ¥ ={W}+{U":j=1,2,...,s-1,u=1,2,...,m—1}where{W;:i=1,2,...,
s™ 1+ 1}is an m-spread in PG(2m + 1, s) such that W, < H. Then & is a desired set for
the case €m=1, E1=Ex="" ‘=£m_1=S—1 and em+1=Em+2="" '=52m—1=0- This
completes the proof.

From the above lemmas and the remarks in Section 2, it follows that Theorem 2.3
holds for the case ¢t =0.

CoOROLLARY 3.1. Let k, d and s be any integers such that k=3 and d=1. If
Os6pss—1, (s—1-601,5s—1—-0,,...,5—1—6c_2)e Eylk,s) and 6r_1=0, there exists
an (n, k, d; s)-code which attains a lower bound

n=k+0ov1+60i02+ *+ G —10k, (3.4)

where 6;s are integers given by (1.1) and v; = (s' —1)/(s = 1) fori=1,2,...,k.

ReMARK 3.1. The lower bound (3.4) for n is essentially due to G. Solomon and
J. 1. Stiffler [7].

REMARK 3.2. With respect to a necessary and sufficient condition for an ordered set
(€1, €2, ..., &k—2) in E(k, s) that (1, &2, . .., £xk—2) € Eo(k, 5), see (I) and (II) in the proofs
of Lemmas 3.2 and 3.3.

ExaMprLE 3.1. Consider the case kK =8, d =105 and s =2. Since (6o, 61,...,07) =
0,0,0,1,0,1,1,0) and (g9, £1,...,86)=(1,1,1,0,1, 0, 0) in this case, it follows from
Corollary 3.1 and (1, 1,0, 1, 0, 0) € E(8, 2) (cf. (I) in the proof of Lemma 3.3) that there
exists an (n, 8, 105; 2)-code which attains the lower bound (3.4) (i.e. n =213). Using
the method in [5] (cf. [5, Theorems 2.1, 3.1 and Lemma 4.1]) and the constructive
method of # in Lemma 3.3, we can construct such an optimal linear code.

ExaMmprLE 3.2. Consider the case k=6, s=3 and (8o, 64,...,04)=(1,0,0,2,2)
(le (80, Elyeny 54) = (1, 2, 2, 0, O)) Since (00, 01, ey 04; 05) = (1, 0, 0, 2, 2, 0),
1,90,0,2,2;1), (1,0,0,2,2;2),... according to whether d =218, 461, 704, ..., it
follows from Corollary 3.1 and (2, 2, 0, 0) € E¢(6, 3) (cf. (I) in the proof of Lemma 3.2)
that there exists an (n, 6, d; 3)-code which attains the lower bound (3.4) for d =218,
461,704, ....

ExaMPLE 3.3. In the case where k=2m+2 (m=1),0=<6, 01,...,0,,<s—1 and
0ms1=0n2="-+=062,,=s—1, it follows from Corollary 3.1 and (I) in the proof of
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Lemma 3.2 that there exists an (n,2m +2, d; s)-code which attains the lower bound
(3.4) for any integer 62,,+1=0 where d is an integer given by (1.1).

4. THE PROOF OF THEOREM 2.3 FOR THE CASE t=1

In the case t— 1, Ei(k,s) i is a set of ordered sets (g1, €3, . . ., £xk—2) in E(k, s) such that
either (a) Z, 1 gis2or (b)Z,=1 =3 and B1+ B2+ B3=<2k —3 for the first three integers
B1, B2 and B3 in the series (2.5). Hence Z, ,2+1 g,=0,1o0r2if (1, €2,..., xk—2)€E(k,s)
where 7 =[(2k —3)/3].

Let E1o(k, s) be a set of ordered sets (€1, €2, .. ., £x~2) in E(k, s)— Eo(k, s) such that
Zf‘ +1€6=0and0s<sey,6z,...,6,s5s—1 (e BasB<pi1s7). Let Eu(k s) be a set of
ordered sets (g1, €2, . . ., €x—2) in E(k, s)—Eo(k, s) such that (i) Z, ,H g,=1(3e. e =1;
B1=r) and (ii) either (a) there exists a pair of integers f and g (f+g+r=2k—3 and
f<gs=st;B2=gand B3<f)suchthat0<e,€,,...,6,<5—1, e, =1 and ¢ =0 for any
integer j (f<j<=r7 and j # g) or (b) there exists an integer g 2g+r<2k—3 and g<r;
B2=Bs=g)suchthat 0<eq,e2,...,60-15—1,2<¢,<5—1 (i.e. s=3) and ¢ =0 for
any integer j (g <js=r). Let E12(k s) be a set of ordered sets (eq, €2,..., £x—2) In
E(k,s)—Ey(k, s)suchthat(l)Z, ,+1 ;=2 (l.e.e,=20re,=¢,=1;B1=B2=rorBi=nr
and B;=r;) and (ii)) O0<ey, €2,...,6,=5—1 and 8h+1—5h+2— -=g,=0 (i.e. Bs<h)
where h=2k—-3—-2r or 2k—-3—~ri~r, and r+1=<r,<ri<k—2. Then we have the
following lemma.

LEMMA 4.1. An ordered set (€1, €2, . .., €x-2) in E(k, s) belongs to E,(k, s)—Eo(k, s)
if and only if it belongs to either E1o(k, s), E11(k, s) or E1»(k, s).

LEMMA 4.2. For any integer m =1, there exists a set of 2m+1)-flats Y, (I=
1,2,...,8™+1) in PGBm+2,5) such that Y; n Y; Yy = for any integers i, j and
k such that 1<i<j<k<s™"'+1.

PROOF. Let a be a primitive element of GF (s*™*%) and let
Wi ={@"), @®"), @®"),..., (@™ ")}

for i=0,1,...,6~1 where w=(s"""—1)/(s—1) and 6 =(s*"**—1)/(s™"'—1). Then
it follows from Theorem ILlin Appendlx Ithat {W¥:i=0,1,...,60—1}is an m-spread
in PG(3m +2,5). Since ()" " t=a""? =1, " is an element of GF(s"‘“) for
[=0,1,...,w—1. Hence each m-flat W} (0=<i/<§) can be regarded as a point (a") in
PG(2,s m+1) Since there are q + 1 points in PG (2, q) in which no three points are linearly
dependent upon GF(q) for any prime power ¢, there exist g+1 m-flats Y¥ (I=
1,2,...,q+1)in{W¥:i=0,1,...,6—1} such that no three points Y}, Y} and Y}
(Isi<j<k=q+1) in PG(2, q) are linearly dependent upon GF(q) (i.e. dim(Y* @

Y* ®YF)=3m+2)whereq=s""". Let Y; (l = 1 2,...,s™" ' +1) be the dual space of

¥ inPGB3m+2,s5). Then{Y;:1=1,2,... +1} 1sades1red set.

REMARK 4.1. dim(W}@W}@®Wi)=2m+1 or 3m+2 (i.e. Wi cWF¥@W} or
(W¥ @W*)n Wi = @) according as there exist two elements a and b in PG(s"'”)
such that aa’ +ba’ = a* or not.

REMARK 4.2. If (e1,€2,...,€ex-2)€ E(k,s)—Eo(k,s), it follows from Theorem 2.2
that max{n;(¥): 1sj<uv,}=2 for any set ¥/ in F(0, ey, ..., ex-2;k, §).

PrROPOSITION 4.1. For any ordered set (g1, €3, . . ., €x—2) in E1o(k, s), there exists a set
NinFQO,e1,...,ex-2;k,s) such that max{n;(N): 1 <j<suvi}=2 where k =4.
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PrROOF

(I) In the case k=3m+3 (m=1), it follows that r=[(2k~3)/3]=2m+1 and
(€1, €2, ..., ex-2)€ Eqo(k, s) if and only if 0<eq,€2,...,€2me1=s—1 and Eoam+2 =
€2m+3=""'"=¢€3m+1=0. Hence it is sufficient to show that Proposition 4.1 holds for the
case 61=€2=" =Eyp+1=5—l1and exms2=€om+3 ="' ' = E3m+1=0.

Let Y; (i=1,2,...,s™"" +1) be (2m +1)-flats in PG(3m +2, s5) given in Lemma 4.2
and let V{*' (1<j<s—1,1<u <2m+1) be any u-flat in Y. _1)s-1)+; and let

N={V#:j=1,2,...,s-1,u=1,2,...,2m+1} 4.1)

Then A is a desired set since |¥|=(2m +1)(s —1)<s™""+1 for any integer m =1 and
UinU,nUs = for any three flats U,, U, and Us in N,

(I) In the case k =3m+2 (m=1), it follows that 7=2m and (g1, &2,..., ex—2) €
Elo(k, S) if and only if O0<egq,eq... ,€am<=s5s—1and Eam+1=Eoam+2="*=¢€3, =0. Let
N be a set of flats in PG(3m +2,s) given by (4.1) and let H be a hyperplane in
PG(3m+2,s) given by (IL.1) in Appendix II. Let U (1<j<s—1, 1<p<2m) be
any p-flat inHme-““) and let./\7={l7f~“):j=1,2,...,s—l, w=1,2,...,2m}. Then

N isadesiredsetforthecasee;=¢g,=" =gy, =s —landesms1=E2ms2=""* = €3m = 0.
(ITI) In the case k =3m +1 (m =1), it follows that r=2m —1 and (1, €2, ..., £k_2) €
Elo(k, S) if and Ol'lly if0<eq,€2,...,80m-1=<s—1and Eam =Eomi1="'"'"=E3m-1=0.Let

N be a set of flats in PG(3m +2, s) given by (4.1) and let G be a 3m-flat in PG(3m +2, s)
given by (IL.2) in Appendix I Let U (1<j<ss—1, lsu<2m—1) be any u-flat
in GnV}‘”z) and let J\?={(7§“):j=1,2,...,s—1, w=1,2,...,2m—1} where lj'ﬁ“)
denotes the u-flat in PG (3m, s) which is obtained from the u-flat U in PG(3m +2, 5)
by deleting the last two components from all points in U f»“). Then W is a desired set for
the case e1=€2="""=¢€m-1=5—1 and €2, = €2m+1=" " * = €3m-1 =0. This completes
the proof. '

The proof of the following lemma will be given in Appendix II.

LEMMA 4.3. For any integers ey and e, such that 1<e,<m and 0<e,<e /2, there
exists a set of one (2m +1+e,)-flat V1, one 2m +1—e,)-flat Ry, p 2m +1—e,+e5)-flats
R (j=3,4,...,p+2) and s™ "' —=1-p Cm+1-e)-flas T, I=1,2,...,s™" —1—p)
in PG(3m +2, s) such that the intersection of any three flats in the set is empty, where p
is any integer such that 0<p <s™ and 7 =[e1/2].

ReMARK 4.3. InLemma 4.3, we can assume without loss of generality that (i) V; =H
in the case e;=m and (ii) Vi< G < H in the case 1<e¢;<m —1 where H and G are a
hyperplane and a 3m-flat in PG(3m +2, s) given by (II.1) and (I1.2) in Appendix II,
respectively. (Cf. the proof of Lemma II.1 in Appendix II.)

PROPOSITION 4.2.  For any ordered set (g1, €4, . . ., £xk—2) in E11(k, s), there exists a set
NinF0,¢e1,...,cx-2;k,s) such that max{n;(N): 1<j<uv,}=2 where k =4.

PrROOF

(I) In the case k =3m +3, it is sufficient to show that Proposition 4.2 holds for the

following two cases.

(i) In the case where e1=€2=""*=é€omit-e;+e, =5 — 1, Eams1-e, = Eam+1+e, = 1 fOr
some integers e; and e, (1<e;<m and 0<e,<e1/2) and ¢; =0 for any other
integerj (i.e.f1=r=2m+1+e;,Ba=g=2m+1—-erandB:=f=2m+1—e,+e,),
let V¥ (1sj<s~1,2m+2—e;<u<2m+1—e;+e, and e, #0) be any u-flat
in R —pis-1ysj+2 (=2m+2—e;) and let VI (Isj<s-1, lspu<2m+1-e,)
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be any /.L-ﬂat in T(u-l)(s—1)+j and let
N={V, R}+H{V¥:j=1,2,...,s-1,u=1,2,...,¢&

where V,, Rs and T;s are flats in PG(3m +2,s) given in Lemma 4.3 and ¢ =
2m+1—e;+e,. Then N is a desired set, since p=ez(s—1)<w(s—1)<s" and
Wl=02m+1—-ei+ex)(s—1)+2<2m(s—1)+2=<s™""+1 for any integer m =1
where 7 =[e,/2].

(ii) In the case where s =3, e1=€2=" " * = €2m+1-¢; =5 — 1, €2m+14¢, =1 for some
integers e; and e; (1 se;<m and e; = 2¢;) and ¢; = 0 for any other integer j (i.e.
Bi=r=2m+1+e;and B,=Bs=g=2m+1-ey),let VI (I1<j<s—1,2m+2—
ey<p <2m+1—e,) be any u-flat in R, _ye-1)+j+1 (( =2m +2—e;) and let VI
(Isjss—-1,1su<2m+1—e;) be any u-flat in T, —1)s-1y+; and let

N={V}+{Vv®:j=1,2,...,s-1,u=1,2,..., ¢}

where £ =2m +1—e,. Then A is a desired set.

(II) In the case k =3m +2, let (1, €2, ..., £3,) be any ordered set in E11(3m +2,5)
and let us denote by r the greatest integer in D where D ={u: ¢, #0, 1 <u <3m}. Then
2m+1l<r<3m,e,=land espi1 =Eame2 =" " =E-1= 641 =" *=¢€3, =0. Let

e¥ =0, e¥ =g, _1+1, e¥*,=0 and e =& 4.2)

fori=1,2,...,r=2,r+1,r+2,...,3m.

(a) In the case 2m +2<r=<3m, it follows that (¢¥,e3,...,e¥nr1)€E11(3m+3,s)
since eF =1 (i.e. £,_1 = 0). Hence there exists aset *in #(0, e ¥,..., e5ns1;3m +
3, s) such that max{n;(#*): 1 sj <y, }=2.

(b) Inthecaser =2m +1,itfollowsthat 3,2 =e¢3msza=-+-=¢eF, 1 =0and el .1 =
s or 1<¢%,+1 <s—1 according to whether or not g5, =s—1. Using a similar
method in Proposition 4.1, we can show that there exists a set #* in
FO,e¥,...,6%0401;3m+3,5) such that max{n;(¥/*):1<j<uvi}=2 even if
€ §m+1 =S.

Let H be the hyperplane in PG (3m +2, s) given by (IL.1) in Appendix II and let U*’
(1<i<e, peD-{r}) be any u-flat in HAVH#*™Y and let ¥ ={V}+{U":i=
1,2,...,&,, nweD—{r}} where V; and V#*s are an r-flat and (u +1)-flats in A™* of
(a) or (b). Then & is a desired set. Note that V; < H, i.e. the last component of any
point in V; is zero (cf. Remark 4.3).

(IIT) In the case k =3m + 1, we can construct aset &/ in #(0, €1, ..., e3m-1;3m +1,5)
such that max{n;(¥): 1<j<uv,}=2 for any ordered set (e1, €2,..., €3m-1) in E1;;(3m +
1, s) from a set of flats in PG(3m + 1, s) using a similar method in (II). This completes
the proof.

The proof of the following lemma will be given in Appendix III.

LEMMA 4.4. For any integers e1 and e, such that 1<e,, e, <m, there exists a set of
one 2m+1+ey)-flat Vi, one @m+1+ey)-flat V, and s™ ' —1 @m +1—e,—e,)-flats
K;(j=3,4,...,s" +1) in PG(3m +2, s) such that the intersection of any three flats in
the set is empty.

PROPOSITION 4.3. For any ordered set (g1, €2, . . ., €x~2) in E1a2(k, s), there exists a set
Nin F(O,€1,...,¢ex-2;k,5) such that max{n;(N): 1<j<uv,}=2 where k =4.
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PROOF
(I) In the case k =3m +3, it is sufficient to show that Proposition 4.3 holds for the
case €1=€2=" "' =€, =85~ 1, Eamstire; = E2mrive, =1 (1 <e1<e2<m) O €a2mi14e; =2

(e1 =e2) and &; = 0 for any other integer i where h =2m +1—¢;—e,.

Let V* (1<js<s—1, 1<su<h) be any u-flat in K, 1), 1++2 and let &=
{Vy, V2}+{Vf~“):j= 1,2,...,s=1, u=1,2,..., h} where V|, V, and Kjs are flats in
PG(3m +2,s) given in Lemma 4.4. Then A is a desired set.

(IT) In the case k =3m +2, it is sufficient to show that Proposition 4.3 holds for the
following two cases.

(i) In the case where s =3, ¢, =2, e1=€,=-*-=¢g,=s5—1 and ¢ =0 for any other
integer j (h=2k—3-2r and 2m+1=<r=<3m), let ¥ =0, e} =1, ¢¥,=1 and
efi=gfori=1,2,...,r=2,r+1,r+2,...,3m. Then it is easy to see that there
existsaset A*in (0, ¥, ..., e5n+1; 3m +3, s)such thatmax{n;(¥*): 1<j< v, }=
2.Let Vi=V{ and Vo=H A V{*" andlet U™ (1<j<s—1,1<p <h)be any
p-flat in HAVE™Y and let ¥ ={V, V}+{U™:j=1,2,...,s~1, p=
1,2,..., h} where V}“)s are p-flats in /*. Then & is a desired set. Note that
e,-1=0 in this case and V! is an r-flat in #* such that V" < H and H ~ V{*V
is an r-flat in H.

(ii) In the case where &,=¢,=1, e1=e6,=-:-=¢g,=5—1 and ¢; =0 for any other
integerj (h =2k —3—-ri—r,and 2m +1<r,<r;<3m), we can construct a desired
set Nin F(0,€e1,..., €3m; 3m +2, s) using a similar method to that in (i).

(III) In the case k =3m + 1, we can obtain a desired set /" in #(0, €41, ..., €3m_1; 3m +

1, s) using a similar method to that in (IT). This completes the proof.

From the above propositions and the remarks in Section 2, it follows that Theorem
2.3 holds for the case t =1. We can easily generalize our results to the case t=2. But
it is very complicated to investigate completely whether or not Theorem 2.3 holds for
each integer t 2<t<k —2).

CoROLLARY 4.1. Let k, d and s be any integers such that k=3 and d=1. If
Oseoss—l, (s-—1—01, N “1_02, ey s—1—0k_2)eE1(k, S)_Eo(k, S) and G_1= 1,
there exists an (n, k, d; s)-code which attains the lower bound (3.4).

REMARK 4.4. In the case where 0<@p<s—1land (s—1—-6,,5—-1-65,...,5s—1—
Or_2)e E1(k,s)—Eo(k,s), we can construct a solution of Problem B (i.e. Problem A)
using Theorem 2.1 if 6,_, =1, but we can not construct a solution of Problem B using
Theorem 2.1 if ,_, =0. Note that Eo(k, s) < Eq(k,s)<- - < Ex_»(k,s)=E(k,s).

ExXAMPLE 4.1. In the case where k=8, s =2 and (6o, 61,...,6¢ =(0,0,0,0,1,0)
(i.e. (eo,€1,...,€6)=(1,1,1,1,1,0,1)), it follows that (g1, e2,...,€6) € Eo(8,2) but
(e1,€2,...,c6)€ E((8, 2). Since (6o, 61, . .., 0s; 607)=(0,0,0,0,0,1,0;0),(0,0,0,0,0, 1,
0;1), (0,0,0,0,0,1,0;2),... according to whether d =33, 161, 289, ..., it follows
from Corollary 4.1 that there exists an (n, 8, d; 2)-code which attains the lower bound
(3.4) for d =161, 289, . ... Using the method in [5] and the constructive method of &
in Proposition 4.2, we can construct such an optimal linear code.

EXAMPLE 4.2. In the case where k=3m+3 (m=1), 0<64,04,...,02m+1=5—1
and 02,n12=02m13="* * =03m+1 =5 — 1, it follows from Corollary 4.1 and (I) in the proof
of Proposition 4.1 that there exists an (n,3m +3, d; s)-code which attains the lower
bound (3.4) for any integer 63,,..2=1 where d is an integer given by (1.1). (Cf. (I), (II)
and (III) in the proofs of Propositions 4.1, 4.2 and 4.3 for further details.)
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APPENDIX I. A u-FLAT AND A u-SPREAD IN PG(t,s)

A finite projective geometry PG(t, s) of ¢ dimensions (¢ =2) can be defined as a set
of points satisfying the following conditions:
(a) A pointin PG, s) is represented by (v) where v is a non-zero element of GF (s
(b) Two points (v1) and (v) represent the same point when and only when there exists
a non-zero element o of GF(s) such that v; =gv,.
(c) A u-flat, 0=y <t, in PG(t, s) is defined as a set of points

t+1).

{(a0V0+01V1+' . -+a#,,“): .. }

where as run independently over the elements of GF(s) and are not all simul-
taneously zero and o, v1,..., v, (called a generator of the u-flat) are linearly
independent elements of GF(s'*") over the coefficient field GF(s). Hence there
are (s"*'—1)/(s — 1) points in PG (1, s) and each u-flat consists of (s*“*'—1)/(s —1)
points in PG(t, s). In the special case 4 =¢—1, a (r —1)-flat in PG (¢, s) is called a
hyperplane. A t-flat in PG(t, s) is a set of all points in PG (¢, s) and a (—1)-flat is
an empty set J. Note that the intersection of any two flats is also a flat.

Since every non-zero element of GF(s'*') may be represented either as a power of
the primitive element o or as a polynomial in a, of degree at most ¢, with coefficients
from GF(s) (cf. [3]), every point in PG (¢, s) can be expressed by using either a power
of the primitive element a or a vector of V(¢+1;s) and a u-flat W (0<pu <t) may be
defined as a set

W ={(¢): Ac=0over GF(s),ce V(t+1;s)} (1.1)

using a (f—pu) X (f+1) matrix A whose entries are elements of GF(s) and whose rank
over GF(s) is equal to ¢ — .

DEerFINITION L1, Let W be a u-flat (0<u <¢) in PG(¢,s) defined by (I.1). The
(t—p —1)-flat W* generated by ¢ —u column vectors of A™ is said to be the dual space
of W in PG(t, s). In the special case W = J (i.e. u = —1), the dual space of W in PG ({, 5)
is a t-flat and the dual space of a r-flat W in PG (¢, s) is an empty set.

DEFINITION 1.2. A set (2 of u-flats (0 <u <t) in PG (¢, s) is said to be a u-spread in
PG (1, s) if every point in PG (¢, s) is contained in exactly one u-flat of the set 2 (cf. [4]).
That is, a w-spread in PG(t, s) is a partition of all points in PG (¢, s) by u-flats.

DerFINITION 1.3. The minimum flat which contains r flats V; (i=1,2,:-:-,r) in
PG(t,s) is denoted by V1@ V,®: - @V, where r=2. In the special case where r=2
and V; and V; are a u-flat and a v-flat in PG (s, s5), respectively, such that Vin V,=J,
Vi®@V,isa (u+v+1)-flat in PG(s, s).

The following theorem (cf. [4, 8]) plays an important role in constructing a set &
which satisfies the condition in Theorem 2.3.

THEOREM 1.1

(i) There exists a u-spread in PG(t, s) if and only if t + 1 is a multiple of u + 1.

(ii) Let t and u (1<u <t) be any positive integers such that t +1 is a multiple of u +1
and let

Wi={a"), @), @*"),..., @™ """} 1.2)

fori=0,1,...,0 1 wherew=(s""'=1)/(s=1), 6 =(s""=1)/(s*"' = 1) and a is
a primitive element of GF(s'*"). Then {W;:i=0,1,...,6 -1} is a u-spread in
PGt s).
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REMARK I.1. Let {W;:i=1,2,..., ¢} be any u-spread in PG(t, s) and let f be any
linear mapping from PG(t, s) onto PG (¢, 5). Then{f(W):i =1, 2,..., £}isalsoa u-spread
in PG(t, s).

ReEMARK 1.2, There exist a u-flat V and a v-flat W in PG (¢, s) suchthat VAW =
ifandonlyif u +v+1=<s

REMARK 1.3

(i) Let W, and W, be two flats in PG(t,s) and let WF be the dual space of W; in
PG(t, s). Then W, c W, if and only if WT > W%,

(ii) Let V; (i=1,2,...,r) be flats in PG(t,s) and let V¥ be the dual space of V; in
PG(t,s) where r=2. Then the dual space of (),_, Vi is VI®Vi® - - @V}
Hence ();_, V;= if and only if dim(V¥ @ - -@V})=1.

APPENDIX II. THE PROOF OF LEMMA 4.3

In order to prove Lemma 4.3, we shall prepare two lemmas. Let
H ={(c): blc=0 over GF(s), c€e V(3m +3;s)} (11.1)
and

G ={(c): bie=brc=0over GF(s),ce V(3m +3; )} (IL2)

where bi =(0,0,...,0,0,1) and by =(0,0,...,0,1,0). Then H is a hyperpiane in
PG(3m +2, s) such that the last component of any point in H is zero and G is a 3m-flat
in PG(3m +2, s) such that the last two components of any point in G are zero.

LEMMA I1.1. For any integers m and ey such that m =1 and 0<e,<m, there exist
one 2m+1+ey)-flat Vi and s"'+1 Cm+D-flats Y; (=1,2,...,s""+1) in
PG(3m+2,s) such that (a) dim(Y,nYg)=m and Y. YznY, = for any distinct
integersa, B,y (1<a,B,v <s™*'+1) and (b) dim(V; N Yg)=m+e,and dim(Vin Yz
Y,)=e1~1 for any distinct integers B and y 2<pB, y<s™*'+1) and (c) Y, V,cH,
dimH N Y;)=2m and dm(GNY;))=2m—1forj=2,3,...,s" " +1.

Proor. Let Y¥ (I=1,2,...,s™" +1) be m-flats in PG(3m +2,s) defined in the
proof of Lemma 4.2 such that dim(Y¥®@Y})=2m+1 (ie. Y nY} =) and
dim(Y} @Y} ®YF)=3m +2 for any distinct integers i, j and k (1<i,j, k<s™"'+1).
We can assume without loss of generality (cf. Remark I.1) that YT contains two points
b; and b, (i.e. b;®b, < YT). Let V§ be any (m —e,)-flat in PG(3m +2, s) such that
bic V¥ c YT orbi®b,c V§ c YT according to whether e;=m or 0<e;<m—1 and
let V; and Y; (1<j<s™"'+1) be the dual spaces of V¥ and Y in PG(3m +2,s),
respectively. Then V; and Ys are a (2m + 1 +¢,)-flat and (2m + 1)-flats in PG(3m + 2, 5),
respectively, which satisfy the three conditions (a), (b) and (c¢) in Lemma II.1. This
completes the proof.

LEMMA I1.2. Let m, e; and e, be any integers such that m =2, 2<e;<m and
0<e,<[e1/2]. Then there exists a set of one 2m +1+e,)-flat Vi, one 2m +1—ey)-flat
R, and s™ 2m+1—ei+ey)-flats R; (j=3,4,...,8"+2) in PG(B3m +2,s) such that
VinRgnR,=Z and R, nRg ~ R, = & forany distinctintegersa,Bandy 2<a, B,y <
sT+2) where m=[e1/2].
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ProoF. In order to show that Lemma II.2 holds, it is sufficient to show that there
exists a set of one (m —e;)-flat V¥, one (m +e,)-flat R and s” (m +e;—ey)-flats R}
(j=3,4,...,s7+2) in PG(3m +2, s) such that

dim(V ®RE®R*)=3m+2 and dimR}®REDORY)=3m+2  (IL3)

for any distinct integers a, 8 and y (cf. Remark 1.3).

LetV¥and Y¥ (I=1,2,...,s™""! +1)be an (m —e,)-flat and m-flats in PG(3m +2, )
such that V¥c Y, Y¥* N Y} =0 and dim(Y7 @ Y] @ Y¥)=3m +2 for any distinct
integers i, j and k.

(a) In the case e; =27 (1< <m/2), there exists a 27 —1)-flat Z; in Y¥ such that
ZinV¥=0 (ie. Zi®VF=Y7F) and there exists a (7 —1)-spread {Zy;:j=
2,3,...,5"+2}in Z;.

Inthecasee, = (i.e.es=e;—es=m),letRf = YF ®Z,;forj=2,3,...,8"+2.
Then Rs are (m +)-flats (i.e. (m +e1—ez)-flats) in PG(3m +2, s) which satisfy
condition (IL.3)since R¥ o Y¥, VI ®Z13®Z,,=Y{ and VI BRE®R; = YT ®
Y;®YS

In the case 0<e, < (i.e. e1—e>> ), there exist an (ex— 1)-flat Z15(1) and a
(7-r—e2—1)-ﬂat Z12(2) in the (w—l)-ﬂat Z12 such that Z12(1)mZu(2)= @ (i.e.
Zo(N)®Z12(2)=Z1,). Let R¥=Yi®Z1,(1) and Rf =Y ®Z,,®Z1,(2) for j =
3,4,...,s"+2. Then R¥ and Rs are an (m +e,)-flat and (m + e, —e;)-flats in
PG (3m +2, s) which satisfy condition (I1.3).

(b) In the case e; =27 +1 (1 <7 =<(m—1)/2), there exist a (27 —1)-flat Z; and one
point P in the m-flat Y¥ such that Z;A V= and VI ®Z,®P=YT. Let
{Z4:7=2,3,...,s" +2} be a (w—1)-spread in Z, and let R¥=Y3®Z2(1) and
R¥=Y}®Z®Z:1,(2)®P for j=3,4,...,5"+2. Then VT, R and R]s are
desired flats. This completes the proof.

PrROOF OF LEMMA 4.3

(i) In the case e; =1, it follows that e;=0, w=0 and p=0or 1. Let V§ and P be
an (m — 1)-flat and one point in the m-flat Y¥ such that P¢ V¥ (i.e. VI ®P=Y7)
and let R = Y%,

In the case p=0, let T¥ =YX, ®P for j=1,2,...,s™"'—1 and let Vi, R,
and T; (1<j=<s™""—1) be the dual spaces of V¥, R¥ and T}, respectively. Then
V1, R; and T;s are desired flats.

Inthecasep=1,let Rf =Y @®Pand T¥ =Y} 3 ®Pforj=1,2,...,s™"' =2
and let V3, Ry, Rs and T; (1<j<s™""—2) be the dual spaces of V§, R%, R¥ and
T¥, respectively. Then Vi, Rz, R; and T;s are desired flats.

(ii) In the case 2<e;<m and Ose,<e;/2,let V¥ and YF (1=1,2,...,s™"" +1)
be an (m —eq)-flat and m-flats in PG(3m +2, s)such that V¥ <« Y§, Y¥ nY} =0
and dim(YF @Y} ® Y¥)=3m +2 for any distinct integers #, j and k. Then there
exists an (e;—1)-flat Z in Y¥ such that ZA Vi =0 (ie. ZOVI=Y7). Let
Tf=Z®YF 4 for [=1,2,...,s""'~1—p and let €*={Vi}+{R}:j=
2,3,...,p+2+{TF:1=1,2,...,s™"'~1—p}, where V¥ and Rfs are flats
defined in the proof of Lemma I1.2. Then it is easy to see that dim(U; @ U,® U,) =
3m +2 for any three flats U;, U, and Us in €*. Hence € is a desired set where
€ is a set of the dual spaces of all flats in €*.

APPENDIX III. THE PROOF OF LEMMA 4.4

LetViand Y} (j=1,2,...,s™" +1)be an (m —ey)-flat and m-flatsin PG(3m +2, 5),
respectively, which are given in the proof of Lemma II.1 and let V} be any (m —e,)-flat
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in Y3. Let Y; and V, (I=1,2) be the dual spaces of Y and V{ in PG(3m +2,s),
respectively. Since dim(Y; " Y;)=m (i #j) anddim(V; n Yz n Y, ) = ¢; — 1 for any distinct
integers [, B and v, there exist an (m —e;)-flat E; in Y~ Y; and an (m —e;)-flat F; in
Y, Y; such that

Ein(YinVonY)=C and Fn(VinYanY)=0O

for j=3,4,...,s™"'+1. Let K, =E;®F, for j=3,4,...,s""'+1. Then K, 3<a=<
s™1+1)isa 2m+1—e;—ey)-flat in Y, such that

VinVonKe=9, VinK;nKiy =3 and K,nK;nKy=O

for any distinct integers /, i, j and k since ViNnKy =Ei, Exn Vo=, VinK;<cYinY,
K<Y and Y. Y; n Y, = . This completes the proof.
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