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Mutations of NPHS2, encoding podocin, are the main cause of

autosomal recessive steroid-resistant nephrotic syndrome (NS)

presenting in childhood. Adult-onset steroid-resistant NS has

been described in patients heterozygous for a pathogenic

NPHS2 mutation together with the p.R229Q variant. To

determine the frequency and the phenotype of patients

carrying the p.R229Q variant, we sequenced the complete

coding region of NPHS2 in 455 families (546 patients) non-

responsive to immunosuppressive therapy or without relapse

after transplantation. Among affected Europeans, the p.R229Q

allele was significantly more frequent compared to control

individuals. Thirty-six patients from 27 families (11 families

from Europe and 14 from South America) were compound

heterozygotes for the p.R229Q variant and one pathogenic

mutation. These patients had significantly later onset of NS

and end stage renal disease than patients with two

pathogenic mutations. Among 119 patients diagnosed with

NS presenting after 18 years of age, 18 patients were found to

have one pathogenic mutation and p.R229Q, but none had

two pathogenic mutations. Our study shows that compound

heterozygosity for p.R229Q is associated with adult-onset

steroid-resistant NS, mostly among patients of European and

South American origin. Screening for the p.R229Q variant is

recommended in these patients, along with further NPHS2

mutation analysis in those carrying the variant.
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Idiopathic focal segmental glomerulosclerosis (FSGS) repre-
sents a heterogeneous clinical entity in terms of response to
immunosuppressive therapy, progression to end-stage renal
disease (ESRD), and recurrence after kidney transplantation.
Approximately 10–20% of children and 40% of adults
presenting with idiopathic nephrotic syndrome (NS) do
not achieve sustained remission after steroid therapy; up to
60% of these cases reach ESRD within 10 years of disease
onset.1–4 Overall, recurrence of NS after transplantation is
observed in 30% of patients.5,6 A putative circulating factor
disrupting the glomerular filtration barrier has been
hypothesized as the etiology of cases with response to
steroids and other immunosuppressive therapy, as well of
those recurring after transplantation.7,8 In the last few years,
advances in molecular genetics of familial NS led to the
discovery of molecules essential for the maintenance of
podocyte slit diaphragm structure and function, including
nephrin (NPHS1),9 podocin (NPHS2),10 a-actinin-4
(ACTN4),11 CD2-associated protein (CD2AP),12,13 transient
receptor potential channel 6 (TRPC6), 14,15 and phospholi-
pase C epsilon (PLCE1).14,15 Podocin is a 383-amino-acid
lipid-raft-associated protein localized at the slit diaphragm,
where it is required for the structural organization and
regulation of filtration function. Interactions with nephrin,
NEPH1, CD2AP, and TRPC6 manage mechanosensation
signaling, podocyte survival, cell polarity, and cytoskeletal
organization.16–19

NPHS2 mutations were initially described in early-onset
steroid-resistant nephrotic syndrome (SRNS).10 Subsequent
studies further defined the phenotype associated with
mutations in this gene, revealing that patients usually develop
NS from birth to 6 years of age, present mostly with FSGS, do
not respond to immunosuppression, and reach ESRD before
the end of the first decade of life.20–23 However, cases with
late-onset disease have been described by Tsukaguchi et al.,24

who found mutations in one-third of families with
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autosomal-recessive late-onset FSGS. In six of these nine
families, affected individuals were compound heterozygous
for a particular variant, p.R229Q, and one pathogenic
mutation. The p.R229Q variant is the most frequently
reported non-synonymous NPHS2 variant in Caucasians.25

It is more common in Europeans, in whom the observed
frequency of heterozygotes ranges from 0.03 to 0.13.20,21,24–27

The pathogenic role of this variant has been suggested from
in vitro studies showing decreased nephrin binding to
podocin p.R229Q. Additional evidence arguing for a
pathogenic role of p.R229Q is the conservation of the
arginine 229 residue in podocin orthologs and the fact that
arginine to glutamine is a non-conservative amino-acid
change.

To evaluate the epidemiological relevance, clinical features,
and kidney disease progression in SRNS patients carrying the
p.R229Q variant, we screened for podocin mutations in a
worldwide cohort of patients with SRNS, focusing our
analyses on juvenile and adult forms of SRNS.

RESULTS
Demographic and clinical characteristics

We screened for NPHS2 mutations in a cohort of 546 patients
from 455 families with SRNS, in whom we previously
excluded those cases with a potential underlying immune
disorder defined by remission after immunosuppressive
therapy, late steroid resistance, or relapse after transplanta-
tion. Most of the families originated from Europe (55.2%),
although others from the Middle East (11.9%), North Africa

(11.4%), South America (Chile and Argentina; 10.3%), Asia,
the Caribbean and Polynesia (7.5%), and Sub-Saharan Africa
(3.3%) were included. Out of 546 patients, 286 corresponded
to sporadic cases, whereas 235 patients from 144 families
were classified as familial forms. No information was
available to classify 25 patients. Overall, the age at onset of
NS ranged from 0 to 73 years (median 6 years), ESRD was
reached by 272 patients (median 13 years), and 148 patients
were transplanted (Table 1).

In total, 119 (24.4%) patients developed NS after 18 years
of age. Within this group, 81 were sporadic cases, 36 (from 25
families) were familial forms, whereas no information was
available to classify the remaining two patients.

Pathogenic NPHS2 mutations and p.R229Q allele distribution
in SRNS patients

We identified 104 patients (from 65 families) carrying
pathogenic NPHS2 mutations in the homozygous or
compound heterozygous state. In addition, 63 cases from
54 unrelated families were heterozygous for the p.R229Q
variant, out of which 36 cases from 27 families carried the
p.R229Q variant associated with one pathogenic NPHS2
mutation. In the other 27 patients, p.R229Q was found in the
single heterozygous state. We also detected eight cases from
five families that were homozygous for p.R229Q (Figure 1).

To evaluate the putative pathogenic role of the p.R229Q
allele among SRNS patients, we performed the subsequent
analyses excluding those cases carrying two pathogenic
NPHS2 mutations as they had an obvious disease cause.

Table 1 | Clinical and histological features in patients with SRNS according to NPHS2 mutation status

(1) (2) (3) (4) (5) (6)
Clinical feature R229Q+1 mutation R229Q+R229Q 2 mutations 1 R229Q+1 wt 1 mutation+1 wt No mutations Total

Age at nephrotic syndrome onset
Cases with available information
(total)

33 (36) 8 (8) 92 (104) 26 (27) 5 (5) 323 (366) 487 (546)

Mean±s.d. (years) 17.3±10.5 6.3±3.8 3.0±3.6 17.7±16.1 12.3±17.8 12.1±12.3 11.0±12.1
Median (range) 19 (0–39) 6.8 (0.6–10.7) 1.1 (0–13.7) 14.8 (0.9–73.5) 6.5 (1.3–43.7) 7.9 (0–56) 6 (0–73.5)

Age at ESRD
Cases with available information
(total)a

14 (17) 5 (5) 51 (52) 9 (9) 1 (1) 173 (188) 253 (272)

Mean±s.d. (years) 26.4±10.1 10.8±4.4 8.6±5.2 26.1±18.9 — 18.8±14.4 17.2±13.8
Median (range) 27.9 (9.3–43.5) 11.2 (3.4–14.5) 8.0 (0–26) 25.4 (1.1–62) — 15.0 (0.3–57) 13 (0–62)

Histology (last kidney biopsy)
Number of cases with kidney
biopsy

33 7 75 26 5 296 442

Minimal change disease, n (%) 1 2 18 4 2 59 86 (20)
FSGS, n (%) 32 4 39 19 3 204 301 (68)
Diffuse mesangial proliferation,
n (%)

— 1 16 2 — 17 36 (8)

Other, n (%) — — 2 1 — 16 19 (4)

ESRD, end-stage renal disease; FSGS, focal segmental glomerulosclerosis; wt, wild-type.
Mutations comprise splice and truncating mutations as well as missense mutations that are known or predicted to be deleterious. Patients were grouped according to the
genotype as follows: (1) patients carrying one pathogenic mutation and the p.R229Q variant on the other allele (36 cases from 27 families); (2) patients homozygous for
p.R229Q (8 cases from 5 families); (3) patients with two pathogenic mutations (104 cases from 65 families); (4) patients carrying one wild-type allele and the p.R22Q variant (27
cases from 27 families); (5) patients carrying one pathogenic mutation and a wild-type allele (5 cases from 4 families); and (6) patients carrying two wild-type alleles (366 cases
from 327 families).
aNumber of individuals reaching ESRD.
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Allele frequency calculations were performed considering
only one affected case per family to avoid overestimations.
We performed a stratified analysis to compare the p.R229Q
allele frequency between SRNS patients and controls of
similar ethnic background (Table 2). The difference in the
p.R229Q allele distribution was highly significant among
Europeans (cases 0.089 vs controls 0.026; P¼ 1� 10�5).
Similarly, the p.R229Q allele was more frequent among South
American patients than among controls (0.17 vs 0.007;
P¼ 2� 10�6), whereas no difference was observed among
individuals from Middle East or North Africa. Comparisons
among other ethnic groups were not performed due to
sample-size limitations.

Unexpectedly, we observed a high frequency (31/
390¼ 8%) of patients carrying pathogenic mutations in the
heterozygous state (Table 3). Therefore, we evaluated the
association between a pathogenic mutation in one allele and
the p.R229Q variant in the other. The proportion of
individuals carrying a single pathogenic NPHS2 mutation
was significantly higher in those who additionally had one
p.R229Q allele than in those carrying a wild-type allele
(P¼ 3� 10�21). This finding strongly suggests that p.R229Q
in the compound heterozygous state with a NPHS2 mutation
has a pathogenic role in SRNS.

Among Europeans, the proportion of affected cases
carrying p.R229Q in the homozygous state did not differ
from controls (3/214 vs 0/308; P¼ 0.07). Moreover, four
individuals from two families from the Middle East or North
Africa were homozygous for the p.R229Q variant.

Patients carrying p.R229Q and one NPHS2 mutation present
frequently with juvenile and adult-onset SRNS

Thirty-six patients from 27 families were included in this
group (21 familial and 15 sporadic cases). Mutations, clinical
characteristics, and renal histopathology features are sum-
marized in Table 4. Segregation analysis performed in all
available family members showed that all patients were
compound heterozygotes for p.R229Q and the pathogenic
mutation. The pattern of inheritance was consistent with
an autosomal-recessive disease with complete penetrance.
Assessment of the clinical status of the parents and siblings of
each patient confirmed the absence of glomerular disease in
heterozygous carriers.

All except three cases in this group were compound
heterozygous for missense mutations; p.A284V was found in
15 families, 13 of them from South America (Chile and
Argentina) and 2 from Europe. We found three novel
mutations: c.643C4T (p.Q215X), c.929A4C (p.E310A),
and c.964C4G (p.R322G). Sequence alignment revealed that
glutamic acid and arginine at positions 310 and 322,
respectively, are highly conserved among podocin orthologs
(data not shown). Substitutions for alanine at position 310
and glutamine at position 322 were predicted to be

Patients included in the analysis
546 (455 families)

2 NPHS2 mutations
104 (65 families)

1 R229Q allele 1 R229Q allele 2 R229Q alleles

1 NPHS2 mutation
1 wild-type allele

5 (4 families)

2 wild-type alleles
366 (327 families)

1 wild-type alleles
27 (27 families)

1 NPHS2 mutation
36 (27 families)

8 (5 families)

Figure 1 | SRNS patient distribution according to genotype.
Flow diagram depicting patient classification according to
genotype.

Table 2 | Genotypes and p.R229Q allele distribution in SRNS and controls based on one affected case per family

SRNS Controls

Ethnic group GG GA AA Total MAF GG GA AA Total MAF

Europeansa 179 32 3 214 0.089 292 16 0 308 0.026
South Americansa,b 31 16 0 47 0.170 69 1 0 70 0.007
African-sub-Sahara and African-American 15 0 0 15 — — — — — —
Northern Africa and Middle-East 75 3 2 80 0.045 88 7 0 95 0.037
Others and of unknown originc 31 3 0 34 0.044 14 0 0 14 —

A, minor allele; MAF, minor allele frequency.
Frequencies were calculated using one affected case per family. In the group with SRNS we exclude patients carrying two pathogenic mutations (65 unrelated cases).
aDistribution among cases and controls reached statistical significance (Po0.01).
bAll South American cases and controls were of Spanish descent. Others: includes French-Caribbean, Polynesian, and Asian population.
cEthnic origin uncertain in two cases.

Table 3 | Association of pathogenic NPHS2 mutations with the
p.R229Q or the wild-type allele

Pathogenic mutations

R229Q 1 mutation No mutated allele Total

1 or 2 R229Q allelesa 27 32 59
No R229Q allele 4 327 331
Total 31 359 390

Patients carrying two pathogenic mutations were excluded from the analysis.
Calculations based on one affected case per family.
aIncludes five cases homozygous for p.R229Q. Among SRNS patients, the proportion
of subjects carrying one pathogenic mutation was much higher (P=3� 10�21) when
they also carried one R229Q allele (27/59=46%) than when they carried a wild-type
allele (4/331=1%).

Kidney International (2009) 75, 727–735 729

E Machuca et al.: SRNS associated with the R229Q variant o r i g i n a l a r t i c l e



Table 4 | Ethnic origin, phenotype, and kidney histology in patients carrying p.R229Q in the compound heterozygous state

ID Mutation
Ethnic
origin

Disease
onset

(years)
NS onset

(years)
Therapy/
effect

eGFR decline
(ml/min/year)

Age at
dialysis
(years)

eGFR last
visit

(years)
Histology

age (years)

1a p.[R229Q]+
[A284V]

Europe 7 Yes (16) CS-CyA- 32 20 — MCD (12)
FSGS (18)

2a p.[R229Q]+
[A284V]

Europe 0 Yes (0.13) CS-CyA±
(w/ACEI)

27.5 20 — IGL (0)
FSGS (13)

3a p.[R229Q]+
[A284V]

South
America

20 Yes (23) CS- 11 — 97 (25) FSGS (23)

3b p.[R229Q]+
[A284V]

South
America

19 Yes (21) CS- 1 — 98 (23) FSGS (21)

4a p.[R229Q]+
[A284V]

South
America

4 Yes (4) CS-CyA- Unknown — 59 (12) FSGS (5)

4b p.[R229Q]+
[A284V]

South
America

10 Yes (10) CS- 17.5 10 — FSGS (10)

5a p.[R229Q]+
[A284V]

South
America

7 Yes (7.5) CS-CyA-Chl- 23.3 17 — FSGS (8)

5b p.[R229Q]+
[A284V]

South
America

10 Yes (10) No treatment — — 480 (18) FSGS (10)

6a p.[R229Q]+
[A284V]

South
America

10 Yes (20) No treatment 8 30 — FSGS (22)

6b p.[R229Q]+
[A284V]

South
America

4 Yes (21) No treatment 3.25 33 — FSGS (21)

7a p.[R229Q]+
[A284V]

South
America

24 Yes (24) CS- Unknown — Unknown FSGS (24)

8a p.[R229Q]+
[A284V]

South
America

15 Yes (15) CS- Unknown — 65 (15.5) FSGS (15)

9a p.[R229Q]+
[A284V]

South
America

25 Yes (25) CS-CyA- 29.7 28 — FSGS (25)

10a p.[R229Q]+
[A284V]

South
America

15 Yes (15) CS-CyA- 32.4 — 21 (19.5) FSGS (15)

11a p.[R229Q]+
[A284V]

South
America

19 Yes (19) CS-CyA-MMF-EDX- 6.7 — 91 (27.5) FSGS (19)

12a p.[R229Q]+
[A284V]

South
America

15 Yes (15) CS-CyA-EDX- 40.6 18 — FSGS (15)

13a p.[R229Q]+
[A284V]

South
America

13 Yes (15) CS-CyA-MMF- 7.1 26 — FSGS (13)

14a p.[R229Q]+
[A284V]

South
America

16 Yes (16) CS-MMF- 36 — 70 (16) FSGS (16)

15a p.[R229Q]+
[A284V]

South
America

25 Yes (25) CS-CyA- 8.2 — 19 (33.5) FSGS (25)

15b p.[R229Q]+
[A284V]

South
America

28 Yes (28) CS-CyA- 0 — 116 (33) FSGS (28)

16a p.[R229Q]+
[R285fx302X]

Europe 20 Yes (20) No treatment 28 30 — FSGS (26)

17a p.[R229Q]+
[R285fx302X]

Europe 24 Yes (24) CS-EDX-CyA- 27 35 — FSGS (29)
FSGS (34)

18a p.[R229Q]+
[R291W]

North Africa 0.6 Yes (0.6) CS-Lev- 14 10 — Not done

18b p.[R229Q]+
[R291W]

North Africa 0.8 Yes (0.8) CS-Chl 16 15 — MCD (1)
FSGS (2)

19a p.[R229Q]+
[A288T]

Europe 15 Yes (24) CS-CyA-EDX- 7.5 — 50 (31) MCD (16)
MCD (24)

19b p.[R229Q]+
[A288T]

Europe 15 No No treatment — — 480 (36) Not done

20a p.[R229Q]+
[A288T]

Europe 12 Yes (19) CS-CyA±
(w/o ACEI)

19 — 480 (23) FSGS (19)

21a p.[R229Q]+
E310A]

Europe 18 Yes (33) No treatment — 34 Unknown FSGS 20)
FSGS (27)

22a p.[R229Q]+
[E310K]

Europe Childhood No No treatment Unknown — 60 (35) FSGS (34)

22b p.[R229Q]+
[E310K]

Europe Childhood Yes (34) No treatment Unknown — 40 (34) FSGS (34)

23a p.[R229Q]+
[R138Q]

Europe 8 Yes (39) CS-MMF-FK- 98 40 — MCD (39)
FSGS (39)

24a p.[R229Q]+
[A297V]

North Africa 34 Yes (35) No treatment 11.5 — 34 (36) UG (35)
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deleterious (PolyPhen), and these changes were not found in
106 controls. Other mutations found in association with
p.R229Q within this group have been described else-
where.10,24

Patients carrying p.R229Q and one NPHS2 mutation
developed NS significantly later than those carrying two
pathogenic mutations (median 19.0 vs 1.1 years; Po0.01).
No significant differences were found in the age at onset of
NS or ESRD when comparing patients carrying the p.A284V
mutation vs other mutations. Three cases with subnephrotic
proteinuria were included in this group; all were familial
cases with an affected sibling who had developed NS earlier.

In the subset of patients with adult-onset NS (n¼ 119), 18
cases from 15 families carried mutations, and all of them
were compound heterozygous for the p.R229Q variant and
one pathogenic mutation. Overall, the frequency of NPHS2
mutations in adults was 11% (9/81) in sporadic cases and
25% (6/36) in familial forms. The proportion of patients with
adult-onset SRNS carrying NPHS2 mutations was higher
among cases from South America (sporadic cases 4/23;
familial forms 3/7) and Europe (sporadic cases 5/43; familial
forms 2/11). Adult patients carrying NPHS2 mutations had
an earlier onset of NS compared with those without NPHS2
mutations (24.9±6 vs 30.0±11 years; P¼ 0.008); however,
no difference was observed in the age at onset of ESRD
(31.9±4 vs 35.1±12 years).

Overall, 27 out of 36 patients received immunosuppressive
therapy. The remainder were treated with antiproteinuric
drugs; however, steroids were not prescribed either because
they had familial SRNS or because they were diagnosed at
ESRD. A single patient (20a) experienced a sustained
reduction of proteinuria to subnephrotic levels after few
weeks of treatment with steroids and cyclosporin A.
Angiotensin-converting enzyme inhibitors showed inconsis-
tent effects in the majority of this group; however, in two
patients (3a and 3b), these agents dramatically decreased
proteinuria from 5 to 0.26 g/day and from 11.5 to 0.27 g/day,
respectively. The decline in estimated glomerular filtration
rate (eGFR) was variable between patients (from 1 to 98 ml/
min per 1.73 m2 per year): an accelerated rate was observed in
at least five cases; the most dramatic decrease was observed in

patient 23a who had an eGFR falling from 116 to 18 ml/min
within 1 year. Intrafamilial variation in disease progression
was also observed: siblings 15a and 15b had normal eGFR at
diagnosis; however, one of them slowly progressed toward
ESRD, whereas the other conserved a normal GFR after 8
years of follow-up. ESRD was reached in 17 patients at a
median age of 27.9 years (range 9.3–43.5), significantly later
than the group with two pathogenic mutations (median 8
years; Po0.001). Out of nine patients who were transplanted,
one developed nephrotic-range proteinuria shortly after
transplantation (23a); however, transplant biopsy showed
evidence of membranous nephropathy-like lesions, support-
ing the hypothesis of a de novo glomerulopathy as the most
probable cause of recurrence of proteinuria.

Disease in p.R229Q homozygotes is variable and shows
incomplete penetrance

Eight patients from five families were included in this group
(Table 5). Segregation analysis was consistent with an
autosomal-recessive disease, but with incomplete penetrance
(Figure 2a). The index case of family 29 (II.2) developed
SRNS and reached ESRD at 6 and 11 years of age,
respectively. Her sibling (II.3), also homozygous for the
p.R229Q variant, was asymptomatic at 9 years of age. Overall,
these patients presented with nephrotic-range proteinuria
between birth and 13 years of age. Kidney biopsy revealed
minimal change disease in five of seven patients in which this
procedure was performed. A follow-up biopsy was performed
in three patients and revealed FSGS in two of them. A
sustained reduction of proteinuria to subnephrotic levels was
obtained in three cases with steroids and cyclosporin A (28a,
29a, and 30a).

Variable degrees of disease severity were observed. In
family 31 (Figure 2b), one patient (31a: II.1) progressed to
ESRD at 14 years of age, whereas her haploidentical sibling
(31b: II.4) had normal GFR at 26 years of age. In this family,
one additional sibling (II.3) presented with mild proteinuria
and was found to be heterozygous for p.R229Q. In view of
the clinical observations in this family and to search for
mutations in other genes that might be the cause of SRNS, we
sequenced the entire coding region of NPHS1, PLCE1,

Table 4 | Continued

ID Mutation
Ethnic
origin

Disease
onset

(years)
NS onset

(years)
Therapy/
effect

eGFR decline
(ml/min/year)

Age at
dialysis
(years)

eGFR last
visit

(years)
Histology

age (years)

24b p.[R229Q]+
[A297V]

North Africa 14 No CS- Unknown — 74 (22) UG (22)

25a p.[R229Q]+
[R322G]

South America 34 Yes (34) CS- Unknown 38 — FSGS (34)

26a p.[R229Q]+
[E310K]

Europe Unknown Yes (0.2) CS-CyA- — — Normal (5) FSGS (0.5)

27a p.[R229Q]+
[Q215X]

Europe 0.8 Yes (0.8) CS-EDX- Unknown 43.5 — MCD (?)
FSGS (38)

ACEI, angiotensin-converting enzyme inhibitors; Chl, chlorambucil; CS, steroids; CyA, cyclosporin A; EDX, cyclophosphamide; eGFR, estimated glomerular filtration rate; FK,
FK506; IGL, ischemic glomerular lesions; Lev, levamisole; MMF, mycophenolate mofetil; NS, nephrotic syndrome; UG, unclassified glomerulopathy.
Therapy effect categories: (—) no response; (±) partial reduction of proteinuria. Histology (years): age at which kidney biopsy was performed.
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TRPC6, and CD2AP in one of the affected cases, but we did
not find additional mutations. In addition, linkage to the
NPHS1 and NPHS3 loci was excluded in families 29 and 32.

The phenotype of SRNS patients with heterozygous NPHS2
variants does not differ from that of those without NPHS2
mutations

The age at presentation of patients carrying a single
heterozygous NPHS2 mutation did not differ significantly
from that of those without pathogenic mutations (median
6.5 vs 7.9 years, respectively). Similarly, when comparing
heterozygotes for p.R229Q and one wild-type allele with
those without mutations, neither the age at onset of NS, nor
the age at ESRD differed significantly between groups,
although there was a trend toward later disease onset among
those carrying a single p.R229Q allele (Table 1). Further
statistical analyses were limited by the small sample size.

DISCUSSION

In this study, we examined the role of the podocin p.R229Q
variant in a large and ethnically diverse cohort of patients
with SRNS. To precisely define our study group, we excluded
cases with SRNS due to a potential underlying immune
disorder; thereby selecting those patients in whom a
presumed podocyte structural abnormality was the most
likely cause of the disease. We found epidemiological and
clinical evidence to affirm that the p.R229Q variant is
implicated in the pathogenesis of SRNS. The frequency of the
p.R229Q allele was significantly higher in SRNS patients than
in controls, particularly in European or South American
populations. More interestingly, the fact that patients
carrying one NPHS2 pathogenic mutation were more likely
to be compound heterozygous for p.R229Q than to carry a
wild-type allele supports the plausible pathogenic role of this
association in the development of SRNS. Indeed, single
heterozygous for p.R229Q or a pathogenic NPHS2 mutation
did not exhibit a phenotype different than that in those
patients carrying two wild-type alleles. This observation is
concordant with the abundant clinical evidence indicating
that SRNS due to podocin mutations follows an autosomal-
recessive pattern of inheritance.10,20,23,24,28–30 Moreover, in
Nphs2 mouse models, we have shown that animals develop
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I
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I

R229Q
1

R229Q
1

R229Q
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Figure 2 | The p.R229Q homozygotes may present with
incomplete penetrance and variable disease severity.
(a) Incomplete penetrance in cases carrying p.R229Q in the
homozygous state is depicted in family 29. Individual II.2,
homozygous for p.R229Q, presented with NS at 6 years of age and
reached ESRD 5 years after diagnosis. Individual II.3 had no renal
dysfunction at 9 years of age. (b) Intrafamilial variability and
evidence suggesting the involvement of an additional gene in the
phenotype of p.R229Q homozygotes is illustrated in family 31.
Individual II.1 presented with NS at 7 months of age and reached
ESRD at 14 years of age. Individual II.4 was diagnosed with NS at
10 years of age and 16 years later remained with a normal GFR. As
shown, both are homozygous for the p.R229Q variant.
Unexpectedly, individual II.3, who carries a single p.R229Q allele,
had sustained subnephrotic proteinuria with normal GFR. No
mutations in NPHS1, NPHS3, TRPC6, or CD2AP were found in this
family. ESRD, end-stage renal disease; GFR, glomerular filtration
rate; NS, nephrotic syndrome.

Table 5 | Ethnic origin, phenotype, and kidney histology in homozygous p.R229Q patients

ID Ethnic origin
Disease onset

(years)
NS onset

(years)
Therapy/

effect
eGFR decline

(ml/min per year)
Age at dialysis

(years)
eGFR last

visit (years)
Histology
age (years)

28a Europe 13 Yes (13) CS-CyA±MMF- 8.6 — 45 (17) MCD (13) FSGS (14)
29a North Africa 6 Yes (6) CS-CyA± 15 11 — MCD (6)
30a Europe 2.5 Yes (2.5) CS-CyA±Chl- Unknown 15 — MCD (4) FSGS (8)
31a Europe 1 Yes (1) CS- 50 14 — MCD (2)
31b Europe 2 Yes (2) CS- — — 480 (26) MCD (2) MCD (10)
32a Middle-East 6.6 Yes (6.8) CS-CyA-EDX- Unknown 10.8 — FSGS (7.6)
32b Middle-East Unknown Yes (unknown) No treatment Unknown 14 — Not done
32c Middle-East 6 Yes (7) CyA- Unknown — 460 (15.5) FSGS (6.8)

Chl, chlorambucil; CS, steroids; CyA, cyclosporin A; eGFR, estimated glomerular filtration rate; MMF, mycophenolate mofetil; NS, nephrotic syndrome.
Therapy effect categories: (�) no response; (±) partial remission. Histology (years): age at which kidney biopsy was performed.
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NS only if they are homozygous for a null allele 31,32 or for a
point missense mutant allele,33 but that heterozygotes have
no renal phenotype.

The p.R229Q variant was found in the compound
heterozygous state in 36 cases in whom the onset of NS
and ESRD was significantly later than in those with two
pathogenic mutations. A mutation (p.A284V) already
described in late-onset FSGS predominated in the group of
patients heterozygous for p.R229Q (mostly from Chile and
Argentina).21,24,29 In silico analysis of this substitution
suggests that it is likely pathogenic. Another line of evidence
pointing to the importance of alanine at position 284 is its
conservation within podocin orthologs. Finally, we did not
find it in 308 European and 70 South American controls. The
high frequency of p.A284V associated with the p.R229Q
variant in a South American population and with adult-onset
SRNS should lead to genotyping for these changes in larger
cohorts to confirm our findings.

Confirmation of the role of NPHS2 mutations in adult-
onset disease has been limited essentially because only few
cases have been identified.24,34–37 We show here that patients
presenting with SRNS after 18 years of age can have NPHS2
mutations, as in our cohort, 11% of the sporadic cases and
25% of the familial forms carried one disease-causing
mutation in the compound heterozygous state with the
p.R229Q variant. Our conclusions support the results initially
obtained by Tsukaguchi et al.24 who reported that the
frequency of NPHS2 mutations in late-onset familial SRNS
reached 23.3%. Results from three large cohorts published
subsequently are discordant with our findings. Caridi et al.28

did not find NPHS2 mutations among 64 adults with SRNS.
More recently, He et al.34 screened 87 cases with adult-onset
idiopathic FSGS. In the steroid-resistant subgroup, the mean
age of onset was 38 years. Mutations were found in only one
patient (p.R229Qþ p.Q285fsX302) who presented with NS at
38 years of age and unexpectedly had a complete sustained
remission after steroids (2 years follow-up). Intriguingly, this
is the first patient with NPHS2 mutations known to achieve a
full remission after steroids. Earlier screening in patients with
steroid-dependent, frequent-relapsing, late steroid-resistant,
and steroid-sensitive NS has failed to identify individuals
carrying mutations.38,39 In addition, we have not detected
NPHS2 mutations in 120 cases with either response to
immunosuppressive therapy or post-transplant recurrence
(unpublished data). Finally, McKenzie et al.37 examined 265
patients with late-onset FSGS including those with under-
lying immune disorders; however, no NPHS2 mutations were
found. To interpret these results in view of our own, it is
crucial to consider that our cohort is highly selective, as we
excluded cases with a presumed immune etiology. In the
McKenzie cohort, over 60% of the patients were African-
Americans, who carry the p.R229Q allele in a very low
frequency.25 Moreover, SRNS patients carrying NPHS2
mutations have not been found in this ethnic group.25,37,40

Certainly, these issues should be considered when making
decisions regarding mutational screening.

Our findings raise important issues regarding genetic
counseling in families with NPHS2 mutations, as compound
heterozygotes with the p.R229Q variant on one allele and a
pathogenic NPHS2 mutation on the other develop progres-
sive glomerular disease.20,24–26 Information on the frequency
and potential role of p.R229Q should be given to affected
families. Screening for p.R229Q should be proposed to
spouses of either patients bearing p.R229Q associated with a
pathogenic NPHS2 mutation or spouses of known hetero-
zygous carriers of NPHS2 mutations.

The role of p.R229Q homozygosity in SRNS is less well
defined. In Europeans, we found a slight increase in the
proportion of homozygous SRNS patients than controls (3/
214 vs 0/308 unrelated individuals). An analysis of four
previous reports performing NPHS2 mutational screening in
Caucasians (mostly from Europe and North America)
comprising a total of 819 unrelated SRNS patients and
4695 controls revealed that the proportion of homozygous
individuals was remarkably higher among affected cases than
among controls (7/819 vs 4/4695; P¼ 0.0003).23,27,37,41 This
observation suggests that p.R229Q homozygosity may
increase the risk for SRNS, although the magnitude of this
effect remains unknown. The minor allele frequency of
p.R229Q in our cohort of European controls was 0.026,
meaning that one would expect to find one homozygote per
1000 individuals. Therefore, the expected frequency of
homozygotes is much higher than the frequency of SRNS
in the Caucasian population. More likely, p.R229Q in the
homozygous state may act as a disease modifier, predisposing
individuals to develop NS following an initial renal insult.
Mutations in other genes important for the glomerular
filtration barrier are probably responsible for the phenotype
in these patients. The finding of microalbuminuria in one
heterozygous individual, the partial response to immuno-
suppressive therapy observed in some homozygous cases, and
the finding of an asymptomatic p.R229Q homozygous sibling
strengthen the hypothesis of p.R229Q homozygosity as a
disease modifier in these families. In conclusion, NPHS2
mutations were not uncommon in our cohort of patients
with juvenile and adult forms of SRNS. Most of the cases
were Europeans or South Americans of Spanish descent and
carried the p.R229Q variant in association with a pathogenic
mutation. First-step screening for p.R229Q should be
proposed in Caucasian adolescents and young adults with
SRNS in whom there is no evidence of response to
immunosuppressive therapy or relapse after transplantation,
especially if they are from these particular ethnic populations.
Only in those cases carrying p.R229Q would further analysis
to identify a mutation of NPHS2 on the second allele be
warranted. This screening has three clinical goals: (1) to avoid
unnecessary immunosuppressive treatment; (2) to promote
living related donor kidney transplantation, because the risk
of recurrence of FSGS in the graft is much lower in NPHS2
disease than in primary FSGS, and (3) to provide accurate
genetic counseling to the patients and their families.20,21 The
significance of p.R229Q homozygosity remains to be
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clarified, and although it does not appear pathogenic on its
own, it may serve as a disease modifier in NS.

MATERIALS AND METHODS
Patients
From a worldwide cohort of 747 patients with autosomal-recessive and
sporadic SRNS referred for NPHS2 genotyping, we selected 546
patients belonging to 455 unrelated families for genetic analysis. We
excluded cases achieving remission after immunosuppressive therapy
(n¼ 50), as well as those with secondary steroid resistance (n¼ 27) or
with post-transplant recurrence (n¼ 70), as we considered that an
underlying immune disorder was the most likely cause of the disease
in these cases. Individuals with extrarenal manifestations (n¼ 15),
isolated subnephrotic proteinuria (n¼ 20), or insufficient clinical
information (n¼ 19) were also excluded. Patients originating from a
consanguineous marriage and/or those with an additional affected
sibling were considered as familial cases. To calculate frequencies of
mutations we used the number of families; when evaluating
phenotypes, we considered individual data. We reviewed medical
information to obtain the age of first urinary abnormality, onset of
NS, course of glomerular disease, and renal histopathological findings.
Recurrence after kidney transplantation was assessed as well. eGFR was
calculated by using the abbreviated modified of diet in renal disease
(MDRD) formula in adults and Schwartz formula in children.42,43

Diagnosis of NS and the assessment of treatment response were
performed at each referring center by nephrologists in accordance with
criteria published earlier.2,44 Out of the 546 patients in our cohort, 303
were studied earlier with respect to genetic heterogeneity and post-
transplant recurrence in cases with NPHS2 mutations.20

Genotyping and mutation analysis
Genomic DNA was isolated from peripheral blood by standard
methods after obtaining informed consent from affected individuals
or their parents. The complete coding sequence and exon–intron
boundaries of the NPHS2 gene were amplified by PCR;10

subsequently, both strands were sequenced using a BigDye
terminator cycle sequencing kit and analyzed with an ABI Prism
3730xl DNA analyzer (Applied Biosystems, Foster City, CA, USA).
Segregation of mutations with disease was assessed by direct
sequencing from all available family members. Linkage to the
NPHS2 locus was assessed using microsatellite markers D1S3760,
D1S215, D1S3759, and D1S2751. In individuals homozygous for
p.R229Q, sequencing of NPHS1, TRPC6, CD2AP, and PLCE1 was
performed whenever linkage was confirmed. Unpublished missense
mutations were screened in at least 100 unrelated controls either by
direct sequencing or by single-base extension using SNaPshot
Multiplex kit (Applied Biosystems). In silico analyses of missense
mutations found in compound heterozygous state with p.R229Q
were performed using the PolyPhen software.45,46

Renal histology
Biopsy specimens for light microscopy and immunofluorescence
were analyzed following standard techniques. Kidney biopsy report
was required for all the cases derived from a referring center.

Statistical analysis
All values are expressed as means±s.d. or median and range.
Comparisons between two continuous variables were made using
the Mann–Whitney U-test. For categorical variables, testing for
difference in proportions was performed using the w2 or the Fisher’s

exact test when indicated. All tests were two sided. P-values o0.01
were considered significant. Statistical analyses were performed
using Minitab 13.0 software (Minitab, State College, PA, USA).
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