plan are applied to a phantom, and the film is exposed in three orientations. The dose distributions from the film measurements were compared with the planned dose distributions from the treatment planning system. This analysis was performed using the Gamma index method.

Results: The leaf position error was observed with respect to the gravity effect. The maximum leaf position error was 0.42 mm at a Source axis distance of 800 mm. All leaf position errors were within the tolerance level of leaf position accuracy recommend by vendors. In the evaluation of the dose distribution, all passing rates of the gamma index method were greater than 90% in criterion of 2%/2 mm and threshold of 30% of the maximum dose.

Conclusion: The leaf position accuracy of Cyberknife M6 can achieve clinically acceptable levels in every position that is affected by the gravity effect.

EP-1542

Comparison between Elekta Oncentra 4.3 and Monaco 5.0 3DCRT dose calculation algorithms
M.G. Brambilla1, C. Cadolli1, A.F. Monti1, C. Carbonini1, M.B. Ferrari1, D. Zanni1, G. Albertã1, A. Torresin1
1Ospedale Niguarda Ca’ Granda, Medical Physics, Milan, Italy
2Elekta S.p.A., Technical Support, Agrate Brianza, Italy

Purpose or Objective: Accurate dose tests have to be performed before using a TPS in clinical practice. Measured and calculated dose distributions must be compared in various irradiation conditions. This process needs a huge amount of time for both calculation and analysis. In this work, we evaluated the differences between 3DCRT calculated dose distributions in the migration between two TPSs produced by the same company.

Material and Methods: In our Hospital, the migration from Oncentra ver. 4.3 (Elekta, SW) to Monaco ver. 5.0 (Elekta, SW) was carried out. The 3DCRT dose calculation algorithm (CCC) is the same for the two systems. The kernels for 3 different photon energies produced by a Synergy (Elekta, UK) equipped with an 80 leaves MLC were processed and installed on the Monaco console by Elekta. Some parameters (beam source size and MLC interleaf leakage), were automatically created during the kernel generation. The same Onc entra parameters were previously optimized by the user during the commissioning. In this work, we verified whether significant differences exist in the implemented beam models in the two TPSs and in their use for dose calculations. The dose distributions calculated by the systems were analyzed in terms of depth doses, profiles at various depths and absolute dose. The results were compared to the corresponding measurements according to ESTRO booklet 7 criteria. For relative data, the reference analysis asks the gamma index confidence limit, that is the absolute value of gamma index average plus 1.5 times its standard deviation. The dose deviation and the distance to agreement values in global and local gamma test were changed according to ESTRO booklet 7 criteria. For OCTAVIUS 4D system, 3D dose distributions were from 1.8 to 2.2. Those IMRT plans were copied and applied to both OCTAVIUS 4D and a cylinder solid water phantom. The optimal DLG was determined independently using these two dosimetry system by comparing the agreement between calculated and measured dose distributions. A point dose was measured using ionization chamber (A1SL, Standard Imaging, USA) inserted into the solid water phantom and the 2D dose distribution was measured using radiographic film (EDR2, Kodak, USA) sandwiched in the phantom. The measured point doses were compared with the calculated ones and 2%/2mm criteria were selected for gamma analysis of film comparison. For OCTAVIUS 4D system, 3D dose distributions were measured and reference parameter was the gamma index confidence limit. The measured dose distributions were compared with calculated ones using 2%/2mm 3D gamma analysis criteria. The optimal DLG measured using OCTAVIUS 4D was compared with that determined using ionization chamber and film system.

Results: The point dose measurement and the gamma analysis of both film and OCTAVIUS 4D systems were listed in Table 1. The maximum gamma analysis passing rate in OCTAVIUS 4D measurement agreed with the results in EDR2 film analysis and both suggested that 2.0 is the optimal DLG value.

<table>
<thead>
<tr>
<th>DLG</th>
<th>Percent difference in point dose measurement using A1SL ionization chamber</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>1.72% 60.5% 89.5%</td>
</tr>
<tr>
<td>1.9</td>
<td>1.00% 63.1% 92.3%</td>
</tr>
<tr>
<td>2.0</td>
<td>0.60% 64.6% 93.2%</td>
</tr>
<tr>
<td>2.1</td>
<td>-0.10% 62.2% 93.0%</td>
</tr>
<tr>
<td>2.2</td>
<td>-0.54% 70.9% 99.8%</td>
</tr>
</tbody>
</table>

Table 1. The point dose measurement and the gamma analysis of both EDR2 film and OCTAVIUS 4D systems
Conclusion: In this study, the DLG determined using OCTAVIUS 4D system is in good agreement with ionization chamber and film measurement. OCTAVIUS 4D system may be an alternative of film dosimetry and provide an effective and efficient way to determine the MLC DLG value.

EP-1544
Dose conformation evaluation of volumetric modulated arc therapy for cranial radiosurgery

C. Ferrer1, C. Huertas1, A. Castaño2, A. Colmenar2, A. Mañas3, A. Serrada1
1H. U. La Paz, Radiofisica y Proteccion Radiologica, Madrid, Spain
2H. U. La Paz, Oncologia Radioterapica, Madrid, Spain

Purpose or Objective: To evaluate the quality and dose conformity of a volumetric modulated arc therapy (VMAT) cranial radiosurgery treatment plan using different parameters, as well as the accuracy of the dose calculation.

Material and Methods: Four patients were prescribed to 18Gy, planned with Elekta Monaco treatment planning system (v. 3.30.01), and optimized using biological and physical based cost functions for VMAT treatment on an Elekta Synergy linear accelerator equipped with a 160-leaf Agility MLC. 5 to 9 non coplanar arcs were used, for cranial lesions of different sizes (Target volume, 4 cc–8 cc). Treatment isocenter was placed at the target volume center. The evaluation was performed using the RTOG Conformation Index (CI), the target coverage (TC), the Paddick’s conformity index (CIp), the homogeneity index (HI), volume of healthy brain tissue receiving a dose of 10 Gy or more (V10), and the dose to organs at risk (OAR). The accuracy of the dose calculation was verified measuring the dose distribution with Gafchromic Film EBT3, inside the IBA Scanditronix I’mRT phantom, and read using FilmQA Pro software. Absolute dose measurements were made with a CC13 Scanditronix-Wellhofer ionization chamber located at the treatment isocenter. Also the 4D detector array ArcCHECK (Sun Nuclear Corporation) was used for 2 patients. Van Dyk’s criterion, dose percentage difference and distance to agreement (DTA) 3%-3mm, was employed.

Results: Median CI, CIp and HI for all patients were 0.93, 0.82 and 1.16 respectively, with median TC of 88%. V10 was kept below 10cc for all cases. OARs were spared within tolerances. Conformity and received doses to OAR depend on the type and location of the target, and in one case all indices were significantly lower in order to comply with the V10 tolerance. Best results were obtained with 5 - 6 non coplanar arcs arrangement. Dose distribution measured with Gafchromic Film EBT3 gave passing rates above 90% and absolute percent differences between measured and calculated dose with the ionization chamber were lower than 2% for all patients. ArcCHECK results showed a passing rate greater than 95% for the two patients.

Conclusion: With Monaco treatment planning system, in combination with a 160-leaf Agility MLC, it is possible to achieve highly conformal dose distributions for cranial radiosurgery VMAT plans, and target volumes larger than 4cc, with low doses to healthy tissue, even with highly irregular lesions. For the planning evaluation, the combination of TC with CI and CIp showed to be more helpful than the CI itself alone.

EP-1545
Dosimetric impact of target separation in cranio-caudal direction with TomoDirect Dynamic Jaw

C.W. Kong1, W.W. Lam1, W.K.R. Wong1, S.G. Lo1, T.L. Chiu1, S.K. Yu1
1Hong Kong Sanatorium & Hospital, Medical Physics & Research Department, Happy Valley, Hong Kong SAR China

Purpose or Objective: TomoDirect is a non-rotational treatment option for Tomotherapy in which the treatment field is delivered at different discrete gantry angles with MLC modulation and couch translational movement. With the introduction of Dynamic Jaw Technique (Available for jaw setting 5 cm and 2.5 cm) there is a potential improvement in the radiation dose fall-off at the cranio-caudal edges of a target, thus enhancing the effectiveness of dose reduction between the targets in the treatment with multiple metastases. In this study the effectiveness of dose reduction using Dynamic Jaw Technique was investigated for different target separations using different jaw settings, pitch factors and modulation factors.

Material and Methods: Two identical cylindrical targets of 6 cm length and 3 cm diameter aligning along superior-inferior (SI) direction with different separation ranging from 4.5 cm to 2 cm in 0.5 cm decrements were created on a water phantom image. TomoDirect planning was done on the planning CT images using Dynamic Jaw Technique with different jaw setting. Dose prescription was 2 Gy per fraction to 95% volume of both targets. Gyancy angles 0°, 120° and 240° were used. Different plans were created with the modulation factor varying from 1.5 to 3 in 0.5 increments and the pitch factor ranging from 0.1 (default value) to 0.05 of the jaw width in 0.01 decrements. Same test plans were created using Fixed Jaw Technique for jaw width 5 cm, 2.5 cm and 1 cm for comparison. All plans were delivered and EDR2 film was used to measure the dose distribution on the coronal plane to verify the planning calculation.

Results: Measured dose distributions were in good agreement with the planning calculation for all plans as the gamma passing rate were higher than 90% with 2% in dose difference and 2 mm in DTA. The impact of reducing pitch value and increasing modulation factor were marginal on the dose fall-off between the targets for all plans. From figure 1, dose reduction effect between targets was greatly enhanced with different separations when Dynamic Jaw Technique was applied for jaw setting 5 cm and 2.5 cm. For target separation as small as 3 cm such dose reduction effect using 2.5 cm Dynamic Jaw Technique was comparable to 1 cm Fixed Jaw Technique.

Conclusion: In Dynamic Jaw Technique, Jaw setting is the critical factor for dose reduction between the targets. For target separation not less than 3 cm Dynamic Jaw Technique with 2.5 cm should be used as the dose reduction effect is comparable with 1 cm Fixed Jaw Technique with shorter treatment time.

Figure 1. Isodose distribution on the region between targets with different separation using different technique in TomoDirect.