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Abstract

We prove a Hitchin–Thorpe inequality for noncompact Einstein 4-manifolds with specified asymptotic
geometry at infinity. The asymptotic geometry at infinity is either a cusp bundle over a compact space (the
fibered cusps) or a fiber bundle over a cone with a compact fiber (the fibered boundary). Many noncompact
Einstein manifolds come with such a geometry at infinity.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Einstein manifolds are important both in mathematics and physics. They are good candidates
for canonical metrics on general Riemannian manifolds and they are the vacuum solutions of
Einstein’s field equation (with cosmological constant) in general relativity. As a result, they are
extensively studied (cf. [7,24]).

Besides space forms and irreducible symmetric spaces, a large class of compact Einstein man-
ifolds is given by the solution of Calabi conjecture. Namely, a compact Kähler manifold with a
non-positive first Chern class admits a Kähler–Einstein metric [5,36]. In the case of positive
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first Chern class, the work of [28,29] says that CP
2 # kCP

2 admits a Kähler–Einstein metric if
3 � k � 8. Other examples includes the so-called Page metric on CP

2 # CP
2 (only Einstein)

and certain principal torus bundles over Kähler–Einstein manifolds [34], see also the recent arti-
cles [2,9,10] for Sasakian Einstein metrics, compact homogeneous Einstein manifolds, and Dehn
surgery construction.

On the other hand, regarding the question of topological obstructions, the obvious ones will be
coming from that for the Ricci curvature. Thus, if the Einstein constant is positive, the manifold
must be compact and the fundamental group is finite. If the Einstein constant is zero, there are
also obstructions coming from Cheeger–Gromoll’s splitting theorem [12]. Further, for noncom-
pact manifolds, the volume growth is at least linear [35] (see also [13]).

In the case of compact Einstein 4-manifolds, there are more topological obstructions. Berger
[6] observed that a compact Einstein 4-manifold must have non-negative Euler number. More-
over, the Euler number is zero if and only if the manifold is flat. This implies that, for example,
T 4 # T 4 and S1 × S3 are not Einstein.

Berger’s observation is considerably strengthened in the Hitchin–Thorpe inequality [20], that
for any compact oriented Einstein 4-manifold M4

χ(M) � 3

2

∣∣τ(M)
∣∣, (1.1)

where χ(M) denotes the Euler number of M , τ(M) the signature. Furthermore, the equality
holds if and only if either M is flat or the universal cover M̃ is K3. The Hitchin–Thorpe inequality
implies in particular that CP

2 # kCP
2 cannot be Einstein for k � 9, complementing very well the

result of [28,29].
There are various extensions of the Hitchin–Thorpe inequality, see [19,22,23,27] among oth-

ers. The extensions can be summarized in the following generalized Hitchin–Thorpe inequality
due to Kotschick [23], namely, for any compact oriented Einstein 4-manifold M4

χ(M) � 3

2

∣∣τ(M)
∣∣ + 1

108π2

(
λ(M)

)4
, (1.2)

where λ(M) is the volume entropy. And equality occurs if and only if either M is flat, or the
universal cover M̃ is K3 or hyperbolic.

In the case of noncompact manifolds, there are results of Tian–Yau [30–32] for the existence
of Kähler–Einstein metrics on the complements of a normal crossing divisor. There are also
many examples from general relativity. These are all of finite topological type and moreover,
most of them come with a special structure at infinity: a fibration structure and an asymptotic
geometry adapted to the fibration. It should be pointed out however, that there exist Ricci flat
Kähler manifolds of infinite topological type [3].

In this note we prove a Hitchin–Thorpe inequality for noncompact Einstein 4-manifolds with
specified asymptotic geometry at infinity adapted to a fibration. Let (Mn,g) be a noncompact
complete Riemannian manifold with finite topological type and M̄ = M ∪ ∂M̄ its compactifi-
cation. The metric g is said to be asymptotic to a fibered cusp if there is a defining function
x ∈ C∞(M̄) of ∂M̄ and a fibration

F → ∂M̄
π−→ B (1.3)
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of closed manifolds such that

g ∼ dx2

x2
+ π∗gB + x2gF . (1.4)

Here gB is a metric on the base manifold B and gF is a family of metrics along the fibers. (The
precise meaning of asymptotic in (1.4) and (1.5) below will be discussed in Section 3.) The
coordinate change x = e−r transforms the metric into the more standard looking

g ∼ dr2 + π∗gB + e−2rgF .

Thus, the geometry at infinity is asymptotic to a fibration over the base B with fibers given
by cusps over the original fiber F , hence the name ‘fibered cusps.’ Clearly the volume is finite
(assuming the dimension of the fiber is positive) in this case, so if the metric is also Einstein, the
Einstein constant must be negative. Examples from [30] have fibered cusp geometry at infinity.

The other asymptotic geometry we will consider is the so-called fibered boundary metric:

g ∼ dx2

x4
+ π∗gB

x2
+ gF . (1.5)

Here one can use the coordinate change x = 1
r

in which the metric becomes

g ∼ dr2 + r2π∗gB + gF .

Hence the geometry at infinity is asymptotic to a fibration with the original fibers F , but now the
base is the infinite end of the cone over the original base B . In this case the volume is infinite
(assuming the dimension of the base is positive) and thus the Einstein constant could be zero
or negative. The examples from general relativity, like the Euclidean Schwarzschild metric on
R

2 × S2, the Taub-NUT metric on R
4, or the general Gibbons–Hawking multi-center metrics,

all have fibered boundary metric with base S2 and fiber S1. The examples from [31,32] have
fibration structure (S1 over a smooth divisor) but the metric is not precisely of the type we
consider here.

Theorem 1.1. Let (M4, g) be a noncompact complete Einstein manifold which is asymptotic to a
fibered cusp or a fibered boundary at infinity. In the fibered boundary case, we also assume that
dimF > 0 (that is, we exclude the case when F is a point; see below for a separate discussion).
Then

χ(M) � 3

2

∣∣∣∣τ(M) + 1

2
a-limη

∣∣∣∣,

where a-limη is the adiabatic limit of the eta invariant of ∂M̄ (for the signature operator).
Moreover, the equality holds iff (M,g) is a complete Calabi–Yau manifold.

Remark. One can also state an inequality with a volume entropy term. However, unlike the
compact case, it is unclear if the volume entropy here is a topological invariant.
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The adiabatic limit of the eta invariant of ∂M̄ (see, e.g., [15]) encodes geometric and topolog-
ical information of the boundary fibration (at infinity). In the case when the fibration is a circle
bundle over a surface, it is given in terms of the Euler number of the circle bundle. The case of
surface bundle over a circle is more complicated. For a torus bundle over a circle (solvmanifold)
the adiabatic limit is given by certain L-function [11].

Corollary 1.2. Let (M4, g) be a noncompact complete Einstein manifold which is asymptotic to
a fibered cusp/boundary at infinity, with the fibration given by a circle bundle over a surface.
Then

χ(M) � 3

2

∣∣∣∣τ(M) − 1

3
e + sign e

∣∣∣∣,
where e is the Euler number of the circle bundle. Moreover, the equality holds iff (M,g) is a
complete Calabi–Yau manifold.

In particular, if M4 is the Taub-NUT manifold, then M # (S1 × N), for any closed 3-mani-
fold N , does not admit Einstein metric with the same asymptotic geometry. Similarly, if M4 is the
Taub-NUT manifold or one of the Kähler–Einstein manifolds constructed in [30], the blowups
M # kCP

2 does not admit Einstein metric with the same asymptotic geometry for k sufficiently
large.

We now look at the case of fibered boundary metrics when the fiber is a single point. In this
case B = ∂M̄ and the geometry at infinity is asymptotically conical. That is

g ∼ dr2 + r2g∂M̄ ,

where r can be thought as the distance from a base point. Since r can only change by adding a
constant, g∂M̄ is uniquely determined.

Theorem 1.3. Let (M4, g) be a complete Einstein four manifold which is asymptotic to a cone
over (∂M̄, g∂M̄). Then

χ(M) � 1

2π2
vol(∂M̄) + 3

2

∣∣∣∣τ(M) + 1

2
η(∂M̄)

∣∣∣∣ + α(∂M̄),

where η(∂M̄) is the eta invariant of (∂M̄, g∂M̄) and α(∂M̄) a geometric invariant defined by

α(∂M̄) = 1

8π2

∫

∂M̄

εabcω
a ∧ [

Ωb
c − ωb ∧ ωc

] = 1

8π2

∫

∂M̄

εabcω
a ∧ Ωb

c − 3

4π2
vol(∂M̄)

with ωa denoting the dual 1-forms of an orthonormal basis for ∂M̄ and Ωb
c the 2-form compo-

nents of the curvature of ∂M̄ with respect to the orthonormal basis. Moreover, the equality holds
if and only if M is an asymptotically conical Calabi–Yau manifold.

Note that α(S3/Γ ) = 0. This generalizes the previous work for ALE spaces [26]. See also the
discussion below.
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One can roughly classify noncompact Einstein manifolds by their volume growth. There are
previous work concerning big volume growth. For asymptotic locally Euclidean (hence with
Euclidean volume growth) Ricci flat 4-manifolds with end S3/Γ , it is proved in [26] that

χ(M) � 1

|Γ | + 3

2

∣∣τ(M) + ηS

(
S3/Γ

)∣∣,

where ηS(S3/Γ ) is the eta invariant of S3/Γ . Note that this class corresponds to our situation of
fibered boundary case, with the trivial fiber F a single point and B = S3/Γ .

For negative Einstein constant there are works [1,21] on conformally compact Einstein
4-manifolds (hence with exponential volume growth). In this case, Anderson shows that

χ(M) − 3

4π2
V � 3

2

∣∣τ(M) − η
∣∣,

where V is the so-called renormalized volume (cf. [18]) and η denotes the eta invariant of the
conformal infinity.

Theorem 1.1 corresponds to the finite volume or sub-Euclidean volume growth, while Theo-
rem 1.3 corresponds to the Euclidean volume growth.

In the process of writing this paper we learned that in the finite volume case Yugang Zhang
[37] proved a similar result when the boundary admits an injective F -structure and the total
space has bounded covering geometry. While there are overlaps between the finite volume case
in Corollary 1.2 and his result, as any S1 bundles over a surface have an injective F -structure
iff the fundamental group of the total space is infinite, our result does cover the case of finite
fundamental group. Our result in the infinite volume case is completely different from the corre-
sponding case of [37].

The essential part of our proof is to extend the Gauss–Bonnet–Chern and Hirzebruch signa-
ture formulas to complete manifolds with fibered geometry at infinity. The index formulas we
prove (Theorems 3.5 and 4.3) hold in any dimension and should be of independent interest. Our
approach is based on application of Atiyah–Patodi–Singer index formula [4]. We use the as-
ymptotic structure to approximate M by compact manifolds with boundary. The boundary will
in general not be totally geodesic. Therefore, there are Chern–Simons correction terms coming
from the boundary, and analyzing these Chern–Simons correction terms consists of the main part
of the proof.

The paper is organized as follows. In Section 2 we review the Hitchin–Thorpe inequality for
closed manifolds and the Chern–Simons correction terms from the boundary. In Section 3, we
analyze the Chern–Simons correction term in the fibered cusp case, and fibered boundary case
and show that they limit to zero. We found out that the language of rescaled tangent bundle
introduced by Melrose [25] (see also [33]) is very useful in this analysis. We devote Section 4
to the analysis of the Chern–Simons term in the fibered boundary case without the dimensional
restriction. Section 5 reviews the results for adiabatic limit of the eta invariant.

2. Chern–Simons correction term to APS

The original Hitchin–Thorpe inequality is a beautiful application of the Gauss–Bonnet–Chern
formula and Hirzebruch’s signature formula, two special cases of the Atiyah–Singer index theo-
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rem. For a closed oriented manifold M of even dimension n, the Gauss–Bonnet–Chern formula
says that

χ(M) = (−1)n/2
∫
M

Pf

(
Ω

2π

)
,

where Ω is the curvature form of a Riemannian metric and Pf denotes the Pfaffian. For n = 4,
this gives the following explicit formula:

χ(M) = 1

32π2

∫
M

εabcdΩab ∧ Ωcd

= 1

8π2

∫
M

(
|W |2 − |Z|2 + 1

24
S2

)
dvol.

Here W is the Weyl curvature, Z the traceless Ricci, S the scalar curvature, and εabcd denotes the
totally anti-symmetric tensor with ε1234 = 1 (in other words, εabcd is the sign of the permutation
σ where σ(1) = a, . . . , σ (4) = d).

Similarly, the Hirzebruch signature formula gives

τ(M) =
∫
M

L

(
Ω

2π

)
,

where L denotes the L-polynomial. Again, in dimension 4, the formula simplifies to

τ(M) = − 1

24π2

∫
M

Tr(Ω ∧ Ω)

= 1

12π2

∫
M

(|W+|2 − |W−|2)dvol.

Since |W |2 = |W+|2 +|W−|2 and Z = 0 for Einstein manifolds, the Hitchin–Thorpe inequal-
ity follows. Furthermore, it follows that in the case of equality we must have S = 0, and either
W+ = 0 or W− = 0. That is, these must be Ricci flat manifolds with either vanishing self-dual
or anti-self-dual Weyl curvature. (They are shown by Hitchin [20] to be either flat or covered
by K3.)

Assume now that (M,g) is a complete noncompact manifold with fibered geometry at infinity
as defined in the previous section. We now look at the index formula for the Euler number and
signature of such manifolds. By their topological nature, we have

χ(M) = χ(Mε), τ (M) = τ(Mε), (2.1)

for ε > 0 sufficiently small, where Mε = {x � ε}. We are now in a position to apply the Atiyah–
Patodi–Singer index formula [4].
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If Nn is an even-dimensional compact oriented Riemannian manifold with boundary ∂N ,
whose metric is the product type near the boundary, then

χ(N) = (−1)n/2
∫
N

Pf

(
Ω

2π

)
,

and

τ(N) =
∫
N

L

(
Ω

2π

)
− 1

2
η(∂N),

with η(∂N) denoting the eta invariant of the signature operator A on the boundary with respect
to the induced metric. However, Mε does not have product metric near its boundary. Hence there
will be Chern–Simons terms coming out as well.

Let P be an invariant polynomial of a Lie group G, of degree k. By the Chern–Weil theory,
for any G-connection ω with curvature Ω ,

P(Ω)

defines a characteristic form. If ω′ is another G-connection whose curvature form is denoted
by Ω ′, then their corresponding characteristic forms differ by an exact form:

P(Ω ′) − P(Ω) = dQ, (2.2)

where

Q(ω′,ω) = k

1∫
0

P(ω′ − ω,Ωt , . . . ,Ωt ) dt. (2.3)

Here we have denoted by Ωt the curvature form of the connection ωt = tω′ + (1 − t)ω interpo-
lating between the two connections.

Now, suppose N is an compact oriented manifold with boundary whose metric g may not be
product near the boundary. Then, near the boundary ∂N ,

g = dr2 + h(r),

where r is the geodesic distance from the boundary and h(r) is the restriction of g on the constant
r hypersurface which is diffeomorphic to ∂N , for r sufficiently small. Let g0 be a metric on N

which is equal to g except near the boundary, and is a product sufficiently close to the boundary:

g0 = dr2 + h(0).

Denote by ω and ω0 the connection 1-forms of the Levi-Civita connections of g and g0, respec-
tively. Then, by (2.2),

∫
P(Ω) −

∫
P(Ω0) =

∫
Q(ω,ω0),
N N ∂N
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where

Q(ω,ω0) = k

1∫
0

P(θ,Ωt , . . . ,Ωt ) dt, (2.4)

and

θ = ω − ω0

is the second fundamental form at the boundary. This is the general form of the Chern–Simons
correction to the Atiyah–Patodi–Singer index formula for a non-product type metric. Namely,

χ(N) = (−1)n/2
∫
N

Pf

(
Ω

2π

)
−

∫
∂N

Q(ω,ω0),

and

τ(N) =
∫
N

L

(
Ω

2π

)
−

∫
∂N

Q(ω,ω0) − 1

2
η(∂N).

Here Q is associated to the Pfaffian and the L-polynomial, respectively. These formula are ob-
tained by applying the APS index theorem to g0 and then replacing the characteristic integral of
g0 by that of g.

In dimension 4, the Chern–Simons correction terms can be made more explicit [14,17]. When
P is the Pfaffian, one has

∫
∂N

Q(ω,ω0) = 1

32π2

∫
∂N

εabcd

(
2θa

b ∧ Ωc
d − 4

3
θa
b ∧ θc

e ∧ θe
d

)
. (2.5)

For P = 1
3p1, it is given by

− 1

24π2

∫
∂N

Tr(θ ∧ Ω) = − 1

12π2

∫
∂N

θ0
i ∧ Ωi

0. (2.6)

In the following section we study these Chern–Simons correction terms for manifolds with
fibered geometry at infinity.

3. Fibered geometry at infinity

Now let (Mn,g) be a noncompact complete Riemannian manifold with finite topological type
and M̄ = M ∪ ∂M̄ its compactification. Moreover, there is a fibration structure on the boundary
(at infinity)

F → ∂M̄
π−→ B
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with B , F closed manifolds, as in (1.3). Let x be a boundary defining function, i.e., x ∈ C∞(M̄),
x > 0 in M and x = 0 on ∂M̄ ; in addition dx is nowhere vanishing on ∂M̄ . Associated to
the compactification M̄ of the manifold M with fibered structure at infinity (and the defining
function), there is a Lie algebra of vector fields

φV(M̄) = {
vector field X on M̄ tangent to the fibers at the boundary, and X(x) = O

(
x2)}.

It defines a vector bundle φT M̄ , the rescaled tangent bundle, on M̄ via

φV(M̄) = Γ
(
φT M̄

)
.

If y, z are local coordinates for the base B and fiber F , respectively, a local frame near ∂M̄

for φT M̄ is then given by x2∂x , x∂y , ∂z. Thus, on M , where x > 0, φT M̄ is (non-canonically)
isomorphic to T M̄ (or T M). In turn, this induces a non-canonical identification

End
(
φT M̄

)∣∣
M

∼= End(T M)

where different identifications differ by the adjoint action, i.e., by conjugation. This implies that
invariant polynomials are canonically identified. For example, the trace functionals are canoni-
cally identified:

Tr : End(φT M̄)|M
∼=

R

Tr : End(T M) R.

(3.1)

A metric g1 is said to be a fibered boundary metric if there is a defining function x ∈ C∞(M̄)

of ∂M̄ such that

g1 = dx2

x4
+ π∗gB

x2
+ gF , (3.2)

where gB is a metric on the base manifold B and gF is a family of metrics along the fibers. Note
that g1 in fact defines a smooth metric on the rescaled tangent bundle φT M̄ .

Definition 3.1. A metric g is asymptotic to a fibered boundary metric if

g = g1 + a,

where g1 is a fibered boundary metric defined by (3.2) and a = xa1 where a1 is a smooth section
of S2(φT M̄) such that a1(x

2∂x, ·) ≡ 0. Here S2 denotes the space of symmetric two tensors.

Remark. The condition on the perturbation term in Definition 3.1 means that a contains no
terms in dx. Thus, the normal direction to ∂M̄ is still given by ∂x . This condition, however, can
be relaxed, see [33].
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A special example of asymptotically fibered boundary metric is a metric of the form

g = dx2

x4
+ π∗gB(x)

x2
+ gF (x),

where gB(x) is a family of metrics on the base manifold B depending smoothly on x and gF (x)

is a family of metrics along the fibers, also depending smoothly on x. Many examples appear in
this form. For example, the Euclidean Schwarzschild metric on R

2 × S2, the Taub-NUT metric
on R

4, or the general Gibbons–Hawking multi-center metrics are in this form with fiber S1.
The vector bundle φT M̄ captures geometric information about fibered boundary metric. The

following is proved in [33].

Proposition 3.2. The Levi-Civita connection for a metric asymptotic to the fibered boundary
metric is a true connection, i.e.,

∇φ :Γ
(
φT M̄

) → Γ
(
T ∗M̄ ⊗ φT M̄

)
.

Moreover,

Rφ ∈ Γ
(
Λ2T ∗M̄ ⊗ End

(
φT M̄

))
.

The asymptotic fibered cusp metric gd and asymptotic fibered boundary metric gφ are related
by a conformal rescaling:

gd = x2gφ,

and we will use this as the definition of asymptotic fibered cusp metric. Let dT M̄ = x−1 φT M̄ ,
i.e., a local frame near the boundary for dT M̄ will be x∂x , ∂y , x−1∂z. Then one also has canonical
identification of the invariant polynomials such as the trace functionals

Tr : End(dT M̄)

∼=

R

Tr : End(T M̄) R.

(3.3)

Furthermore, one has similarly [33],

Proposition 3.3. The Levi-Civita connection for a metric asymptotic to the fibered cusp metric is
a true connection, i.e.,

∇d :Γ
(
dT M̄

) → Γ
(
T ∗M̄ ⊗ dT M̄

)
.

Moreover,

Rd ∈ Γ
(
Λ2T ∗M̄ ⊗ End

(
dT M̄

))
.
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Important to our consideration is the following lemma from [33] regarding the second funda-
mental form of asymptotic fibered cusp metric.

Lemma 3.4. For any T ∈ Γ (bT M̄), and A ∈ Γ (dT M̄),

∇d
T

dx

x
(A)

∣∣∣∣
∂M̄

= 0.

We are now in a position to prove the following

Theorem 3.5. Let (M,g) be an even-dimensional complete manifold which is asymptotic to a
fibered cusp metric at infinity. Then

χ(M) = (−1)n/2
∫
M

Pf

(
Ω

2π

)
,

and

τ(M) =
∫
M

L

(
Ω

2π

)
− 1

2
a-limη,

where a-limη = limε→0 η(∂Mε) denotes the adiabatic limit of the eta invariant.

Proof. Since the proofs of both formula are similar, we do it for the signature formula here.
Applying the Atiyah–Patodi–Singer formula with the Chern–Simons correction term to Mε =
{x � ε} (and ε sufficiently small), we have

τ(Mε) =
∫
Mε

L

(
Ω

2π

)
−

∫
∂Mε

Q − 1

2
η(∂Mε),

where Q is the Chern–Simons terms involving the second fundamental form of ∂Mε . By Propo-
sition 3.3 and the discussion preceding it, we can take Ω ∈ Γ (Λ2T ∗M̄ ⊗ End(dT M̄)). It follows
that the first term on the right-hand side of the APS index formula has a finite limit as ε goes to
zero. The metric on ∂Mε is approaching

π∗gB + ε2gF = ε2(ε−2π∗gB + gF

)
.

By the scale invariance of the eta invariance,

lim
ε→0

η(∂Mε) = a-limη

is the adiabatic limit. On the other hand, the limit as ε goes to zero of the Chern–Simons term
is zero, since the limit of the second fundamental form is zero as follows from Lemma 3.4. Our
result follows. �
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For fibered boundary geometry at infinity, the analysis of the Chern–Simons term is more
complicated. We will restrict ourself to dimension 4 in this section and leave the general dis-
cussion to the next section. As we see from (2.5) and (2.6), this involves computing the second
fundamental form θ and the curvature form Ω . Taking a cue from our treatment in the fibered
cusp case, we express both θ , Ω as matrices with respect to an orthonormal basis, but with en-
tries differential forms that are smooth up to the boundary at infinity x = 0. First, assume that
g = g1 is a fibered boundary metric as defined by (3.2). Fix a local orthonormal frame ea, ei of
∂M̄ compactible with the submersion metric π∗(gB) + gF and let θa, θ i be the dual 1-forms,
where a ranges over the coordinates of B and i that of F . Then near infinity,

x2∂x, x ea, ei

form an orthonormal basis for the metric g. Computing with respect to this basis, we find at
x = 0

θ0
a = θa, θ0

i = 0.

Similarly, we find

Ωa
0 = f a

bc(x)θb ∧ θc + O
(
x2),

where f a
bc(x) = O(1) as x → 0. This shows that, for fibered boundary geometry at infinity where

the fibration has positive dimensional fiber, the Chern–Simons term (cf. (2.6)) for the signature
vanishes in dimension 4:

θ0
a ∧ Ωa

0 = O
(
x2).

For the Chern–Simons terms for the Euler number (2.5), one term involves only the second
fundamental form:

εabcdθa
b ∧ θc

e ∧ θe
d .

Since θa
b is zero unless one of the indices is 0, this term reduces to a multiple of

θ0
1 ∧ θ0

2 ∧ θ0
3

which vanishes by the explicit form of θa
b computed above (i.e. θ0

3 = 0 as 3 is the index for the
fiber coordinate here). The other term involved is (up to a constant multiple)

εabcdθa
b ∧ Ωc

d

which reduces to a multiple of

θ0
1 ∧ Ω2

3 − θ0
2 ∧ Ω1

3 .

Again, explicit computation gives

Ωa
i = f a

b (x)θb ∧ θ3 + f a
bc(x)θb ∧ θc + ga

b (x)θb ∧ dx + g(x)θ3 ∧ dx,
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where f a
b (x) = O(x). It follows then that

lim
ε→0

∫
∂Mε

θ0
1 ∧ Ω2

3 − θ0
2 ∧ Ω1

3 = 0.

Thus, we have proved the following theorem in the special case when g = g1 is a fibered
boundary metric.

Theorem 3.6. Let (M,g) be a complete manifold of dimension 4 which is asymptotic to a fibered
boundary metric at infinity and the fiber has positive dimension. Then

χ(M) = (−1)n/2
∫
M

Pf

(
Ω

2π

)
,

and

τ(M) =
∫
M

L

(
Ω

2π

)
− 1

2
a-limη.

In order to prove the theorem in general, we now consider the effect of the perturbation term.
This part of discussion is not restricted to dimension four. Thus let g = g1 + a and denote by ∇ ,
∇1, the Levi-Civita connection of g, g1, respectively.

Lemma 3.7. Let Q, Q1 denote the Chern–Simons correction terms with respect to the metrics g,
g1, respectively. Then, for perturbation a satisfying the condition in Definition 3.1, we have

lim
ε→0

∫
∂Mε

Q = lim
ε→0

∫
∂Mε

Q1.

Proof. Let S = ∇ − ∇1 be the difference tensor. An easy calculation using Koszul’s formula
yields

g
(
S(X)Y,Z

) + a
(∇1

XY,Z
) = 1

2

[
X

(
a(Y,Z)

) + Y
(
a(X,Z)

) − Z
(
a(X,Y )

)
− a

(
X, [Y,Z]) − a

(
Y, [X,Z]) + a

(
Z, [X,Y ])], (3.4)

for vector fields X, Y , Z.
By Proposition 3.2, S is a (regular) 1-form valued endomorphism of φT M̄ . Effectively, this

means that in (3.4) we let X be a usual vector field while letting Y,Z be smooth sections of
φT M̄ , i.e., rescaled vector fields. It follows from the assumption on the perturbation a that

S = xS1 + dx ⊗ S′,

where S1 is a 1-form valued endomorphism of φT M̄ , and S′ an endomorphism of φT M̄ . The
crucial point here is that the precise form of S′ is not important when we restrict to ∂Mε =
{x = ε}.
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Now the curvature of g is related to that of g1 via

Ω = Ω1 + [∇1, S
] + S2.

Hence,

Ω = Ω1 + xΩ ′ + dx ∧ Ω ′′,

where Ω ′ is a (regular) 2-form valued endomorphism of φT M̄ and Ω ′′ a (regular) 1-form valued
endomorphism of φT M̄ .

Similarly we find that the second fundamental forms of ∂Mε with respect to the metrics g and
g1, respectively, differ by a term vanishing to first order of ε:

θ = θ1 + εθ ′,

where θ ′ is a (regular) 1-form valued endomorphism of φT M̄ . Our lemma follows. �
4. Chern–Simons term for fibered boundary geometry

It turns out that Theorem 3.6 holds in any dimension. In order to see this, we now discuss
briefly some elementary geometry of a fibration following [8]. Thus let F → N

π−→ B be a
fibration of smooth manifolds. It gives rise to a subbundle of T N , the vertical bundle T VN ,
whose section consists of vector fields of N tangent to the fibers. This leads to the exact sequence
of vector bundles

0 → T VN → T N → π∗T B → 0.

A connection for the fibration is a splitting

T N = T HN ⊕ T VN, (4.1)

where T HN ∼= π∗T B is the horizontal bundle. For example, a Riemannian metric g on N deter-
mines such a splitting, where T HN is the orthogonal complement of T VN .

If ∇F is a family of connections on F parametrized by B , then it defines a connection (still
denoted by the same notation) on T VN by adding

∇F
XH Y = [

XH ,Y
]
,

where XH is a horizontal vector field and Y vertical vector field (a section T VN ). In particular, if
gF is a family of Riemannian metrics on F (parametrized by B), the corresponding Levi-Civita
connections define such a connection on the vertical bundle.

Together with a connection ∇B (determined by a metric gB , for example) on B , one can define
a connection ∇ on T N which is diagonal with respect to the splitting (4.1):

∇ = π∗∇B ⊕ ∇F . (4.2)

Now let gN = π∗gB + gF be a submersion metric on N . Then the above discussion gives a
diagonal connection ∇ on T N determined by the Levi-Civita connections of gB and gF . Let ∇L
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be the Levi-Civita connection of gN and S = ∇L − ∇ the difference tensor. Since Levi-Civita
connections are scale invariant, the diagonal connection ∇ stays the same under the adiabatic
limit gN

ε = ε−2π∗gB + gF .
Let ∇L,ε be the Levi-Civita connection of gN

ε and Sε = ∇L,ε − ∇ the corresponding differ-
ence tensor. Denote by P H , P V the projections associated with the splitting (4.1). The following
observation is from [8].

Lemma 4.1. For any vector field X on N , S(X) defines an odd endomorphism of T N with
respect to the splitting (4.1). That is,

S(X) :T HN → T VN, S(X) :T VN → T HN.

Moreover,

P H Sε = ε2P H S, P V Sε = P V S.

For later purpose and also for symmetry, we paraphrase it in terms of the rescaled splitting

εT N = εT HN ⊕ T VN, (4.3)

and think of the connection ∇L,ε as a connection ε∇L on εT N . (Effectively this is computing the
connection with respect to an orthonormal basis of the adiabatic metric gN

ε but with the crucial
difference that the directional vector field is the usual vector field.) Note that ∇ stays unchanged.
Then

ε∇L = ∇ + O(ε). (4.4)

We now consider a Riemannian manifold (M,g) which is asymptotic to a fibered boundary
metric at infinity. By Lemma 3.7, we can actually assume that g is a fibered boundary metric.
That is, we have a fibration F → ∂M̄

π−→ B and

g = dx2

x4
+ π∗gB

x2
+ gF .

Thus, near ∂M̄ , we have a direct sum decomposition

φT M = 〈
x2∂x

〉 ⊕ xT H(∂M̄) ⊕ T V(∂M̄). (4.5)

Let ∇M be the Levi-Civita connection of g. For each hypersurface x = ε, the metric

g0 = dx2

ε4
+ π∗gB

ε2
+ gF

is a product metric near x = ε and restricts to x = ε to the same metric as g. Let ∇0 be its
Levi-Civita connection. The difference

θ = ∇M − ∇0 ∈ Ω1(M,End(T M)
)
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is a matrix with 1-form entries and, when restricted to x = ε, has only normal components (i.e.
off-diagonal with respect to the decomposition into tangential and normal part) determined by
the second fundamental form of x = ε. As before, we reinterpret θ as a 1-form taking values in
End(φT M) and thus, θ is off-diagonal with respect to the decomposition (4.5). In fact, if we take
the orthonormal basis x2∂x, xei, fα where ei is (the lift of) an orthonormal basis of (B,gB) and
fα that of gF , then

θ0
i = −θi

0 = ωi,

and all other components of θ vanish. Here ωi are the (pullback of) dual 1-forms of ei . The
crucial observation is that θ is in block form with respect to the splitting (4.5) with nontrivial
entries only in the block from 〈x2∂x〉 ⊕ x T H(∂M̄) to itself. Moreover, the nontrivial entries are
(pullbacks) of forms on B .

Lemma 4.2. For a complete manifold (M,g) which is asymptotic to a fibered boundary metric
at infinity and the fiber has positive dimension, and for any invariant polynomial P , the Chern–
Simons term vanishes at infinity:

lim
ε→0

∫
∂Mε

Q = 0.

Here Q is defined in (2.4) and ∂Mε is the hypersurface x = ε.

Proof. By the discussion above, we have a similar block structure for Ωt with diagonal blocks
from 〈x2∂x〉 ⊕ xT H(∂M̄) to itself and from T V(∂M̄) to itself plus an error term of O(ε). More-
over, the diagonal block from 〈x2∂x〉⊕xT H(∂M̄) to itself involves only pullbacks of forms on B .
It follows from the explicit block structure of θ that

P(θ,Ωt , . . . ,Ωt ) = π∗(α) + O(ε),

where α is a differential form on B . Hence

lim
ε→0

∫
∂Mε

Q = k

1∫
0

∫

∂M̄

π∗(α) = 0. �

Thus, we have

Theorem 4.3. Let (M,g) be a complete manifold which is asymptotic to a fibered boundary
metric at infinity and the fiber has positive dimension. Then

χ(M) = (−1)n/2
∫

Pf

(
Ω

2π

)
,

M
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and

τ(M) =
∫
M

L

(
Ω

2π

)
− 1

2
a-limη.

5. The adiabatic limit of the eta invariant

There is extensive work on the adiabatic limit of the eta invariant (and other geometric invari-
ants) (cf. [8,15] among others). In general if M is a closed oriented manifold that has a fibration
structure

Y → M
π−→ B (5.1)

and gM a submersion metric,

gM = π∗gB + gY ,

then blowing up the metric in the horizontal direction by a factor ε−2 gives us a family of met-
rics gx ,

gε = ε−2π∗gB + gY .

Let Aε be the signature operator on M with respect to the adiabatic metric gε . A general formula
for limε→0 η(Aε) is given in [15], which, in fact, comes from a more general formula for Dirac
operators (cf. [15]). Namely,

lim
ε→0

η(Aε) = 2
∫
B

L
(

RB

2π

)
∧ η̃ + η(AB ⊗ kerAY ) + 2τ, (5.2)

where η̃ is the η̃-form of Bismut–Cheeger [8], RB is the curvature tensor of gB and AB denotes
the signature operator on B and AY the family of signature operators along Y . The integer τ is a
topological invariant computable from the Leray spectral sequence.

In the case of circle bundles, i.e., Y = S1, the terms on the right-hand side of (5.2) can be
explicitly computed. For example

η̃ = 2

(
1

2 tanh e
2

− 1

e

)
,

and

τ = sign(Be),

where Be is the quadratic form

Be :H 2k−2(B) ⊗ H 2k−2(B) → R,

Be(x ⊗ y) = 〈
xye, [B]〉.
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Here e is the Euler class of the circle bundle. This gives us the following result of [16].

Theorem 5.1. We have

1

2
lim
ε→0

η(Aε) =
〈
L(T B)

(
1

tanh e
− 1

e

)
, [B]

〉
− sign(Be). (5.3)

When dimB = 2, i.e., we have a circle bundle over a surface, the formula (5.3) gives

1

2
lim
ε→0

η(Aε) = 1

3
e − sign e. (5.4)

6. Proof of the theorems

We now proceed to prove Theorem 1.1. By Theorems 3.5, 3.6, formula (5.4), and the decom-
position of curvature in dimension 4, we have

χ(M) = 1

8π2

∫
M

(
|W |2 − |Z|2 + 1

24
S2

)
dvol,

and

τ(M) + 1

3
e − sign e = 1

12π2

∫
M

(|W+|2 − |W−|2)dvol.

The rest of the proof is the same as in the closed case.
Note that the equality holds exactly as in the closed case, namely, for Ricci flat manifolds with

either vanishing self-dual or anti-self-dual Weyl curvature. Thus M must be Kähler as follows
from the same argument of [20], and hence Calabi–Yau.

For Theorem 1.3, we can no longer apply Theorem 3.6. However, using Lemma 3.7, the
conformal invariant of the Pontryagin forms and the scale invariance of the eta invariant, one still
has

τ(M) + 1

2
η(∂M̄) = 1

12π2

∫
M

(|W+|2 − |W−|2)dvol.

On the other hand,

χ(M) + lim
ε→0

∫
∂Mε

Q = 1

8π2

∫
M

(
|W |2 − |Z|2 + 1

24
S2

)
dvol,

where Q is given by (2.5):

Q = εabcd

(
2θa

b ∧ Ωc
d − 4

θa
b ∧ θc

e ∧ θe
d

)
.

3
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Here we emphasize that Ωc
d denotes the two form components of the curvature of M . In this

case, using Lemma 3.7, an explicit computation shows that

lim
ε→0

∫
∂Mε

Q = 1

2π2
vol(∂M̄) + α(∂M̄).
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