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1. INTRODUCTION 1. INTRODUCTION 

In Cl], D. Klarner defined the order n of a polyomino P as the minimum In Cl], D. Klarner defined the order n of a polyomino P as the minimum 
number of congruent copies of P which can be assembled (allowing number of congruent copies of P which can be assembled (allowing 
translation, rotation, and reflection) to form a rectangle. For those translation, rotation, and reflection) to form a rectangle. For those 

FIG. 

n=24 

1. Klamer’s four “sporadic” polyominoes, 
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of orders 10, 18, 24, and 28, respectively. 
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FIG. 2. A rectangle formed from eight congruent pieces. 

polyominoes which will not tile any rectangle, the order is undefined. A 
polyomino has order n = 1 if and only if it is itself a rectangle. Conditions 
for order 2 and for order 4 are decribed in [ 11, and there are infinitely 
many dissimilar examples for each of the orders 1, 2, and 4. One example 
each is given for orders 10, 18, 24, and 28 (see Fig. l), and these are “the 
only known examples” beyond order 4, according to [l]. 

In this paper, we show that there are infinitely many dissimilar 
polyomino examples for every order n which is a multiple of 4. 

FIG. 3. A polyomino of order 8. 
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2. THE BASIC CONSTRUCTION FOR ORDER 8 

In Fig. 2, we see a novel way in which a 4 x 6 rectangle can be dissected 
into eight congruent pieces. While the pieces in this dissection are not 
polyominoes (they are actually triabolues in the terminology of [2]), it 
requires a minimum of eight of them to form a rectangle, and this theme is 
easily transferred to polyominoes, as shown in Fig. 3. This is the smallest 
polyomino of order eight obtained in this manner, but it is easy to form 
larger ones. A general scheme for this is illustrated in Fig. 4. For any two 
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FIG. 4. Dissimilar polyominoes of order 8, and how to stack them 
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distinct values of the positive integer I, two dissimilar polyominoes of order 
8 are obtained. 

It is easy to show that none of these figures can have order less than 8. 
The proof begins by observing that only the “heel of the boot” can be in 
the corner of a rectangle which is tiled. Then the “toe” must be mated with 
the notch at the top-back of another boot. The quickest way to finish off 
the rectangle then requires eight copies of the figure. 

3. POLYOMINOES OF ORDER 4s 

In Fig. 5, we see a construction for a polyomino of order n = 4s for every 
s= 1,2, 3, . . . . Starting with a rectangle which is 2 x (4s - 2), we remove a 
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FIG. 5. Polyominoes of order n = 4s, for every positive integer s. 
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single square from one corner and attach it as a “toe” at the opposite 

corner. For s = 1, this changes 
n ,OELiT 

to give the familiar 

simplest example of order 4. For s = 2, it changes which is 

the polyomino of order 8 shown in Fig. 3; etc. The idea shown in Fig. 4 can 
be applied not only to order n = 8, but to any order IZ =4s to obtain 

I I 

FIG. 6. Variations on a theme: nine different 4&ominoes, each of order 8. (Example b is 
similar to the 12-omino of order 8 in Fig. 3.) 
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infinitely many dissimilar polyominoes of order y1 whenever n is a multiple 
of 4 (Fig. 5). The general construction involving both r and s begins with a 
rectangle which is (r + 1) x (2s - 1 )(r + I), and moves a single 1 x 1 square 
from the top-back of the “boot” to become a “toe” at the opposite corner. 
The proof that the resulting figure truly has order n = 4s is analogous to 
the proof for n = 8. 

Actually, there are many different shapes which can be removed from the 
top-back of the “boot” and then affixed to form the “toe.” Some of these 
are illustrated in Fig. 6, for the case s = 2, r = 3. The necessary and suf- 
ficient condition for the “toe” to work is that it be symmetric around an 
axis of slope - 1, and that it be removable from the top-back of the “boot” 
without disconnecting the figure. (Without the symmetry property, the 
underlying tiling idea shown in Fig. 2 will fail.) For the tiling concept to 
work, it is not necessary that the figure be a polyomino (cf. Fig. 2), nor 
even that all its edges be straight lines. For example, the “toe” could be a 
quadrant of a circle. 

4. UNSOLVED PROBLEMS 

We now have infinitely many examples of polyominoes of each order 
n = 4s for all s > 1. From the examples with IZ = 24 and n = 28 in Fig. I, we 
know that not all polyominoes of order n = 4s are based on the theme in 
Fig. 2, even ignoring the special case s = I, i.e., order n = 4, for which many 
kinds of examples exist (see [I]). Hence there is the unsolved problem: 

(1) Characterize all the polyominoes of order n for each n = 8, 12, 16, 
20, 24, 28, 32, . . . . 

There are infinitely many polyominoes of order 2 (see [ 1 ] ), and one 
example each known for orders’ 10 and 18 (see Fig. 1). Hence: 

(2) Is there a polyomino of order n for every euen value of n? 

We need only supply examples when n is twice an odd number, since the 
multiples of 4 are already taken care of. The sequence “2, 10, 18, . ..” 
suggests that examples with n - 2 (mod 8) may be easier to find than the 
more general case of y1= 2 (mod 4). 

(3) For n > I, is there any polyomino of odd order n? 

Small odd numbers (e.g., n = 3 and n = 5) seem particularly unlikely, but 
there is no obvious reason why there should be no polyominoes of order 15 
(say), or other larger and preferably composite odd number orders. 

Klarner [I] calls a polyomino P odd if it is possible to use an odd 
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number of copies of P to form a rectangle (not necessarily the minimum 

rectangle). He shows that [5, m, 77, and b are 

odd, being able to form rectangles made of 15, 21, 27, and 11 copies, 
respectively. He also shows that fifteen copies of any polyomino which is 

three quadrants of a rectangle cd can be used to pack a 

rectangle. Note that all of these odd polyominoes have order 2. Klarner 
states that it is not known whether or not the order-10 

pentomino & is odd; and that r> is the only 
I I / I 

(non-rectangular) polyomino known for which as few as eleven copies 
suffice to make a rectangle containing an odd number of copies. It would 
be reasonable to call the smallest odd number of copies of P whiGh can be 

FIG. 7. Examples of infinite half-strips, and rectangles with square holes, made from 

$5 and fi 
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assembled to form a rectangle the odd-order of P. Problem (3) can then be 
restated: “Is there any non-rectangular polyomino P whose order is equal 
to its odd-order?’ We can also list Klarner’s implied question: 

(4) Is there any non-rectangular polyomino with an odd-order less 
than ll? 

Finally, 

(5) Is there any (finite) order associated with the polyominoes 

r]-“1 and/or 111 ? 

Each of these will tile a semi-infinite strip, and each will fill a finite 
rectangle except for a small square hole somewhere inside it. (These four 
constructions are illustrated in Fig. 7.) 

It is known [3] that the general problem of whether a given, arbitrary 
polyomino can tile a rectangle is computationally undecidable. This implies 
that there is no computable function f(n) which bounds the area of the 
minimum rectangle that a given n-omino might tile, for otherwise we would 
have a decision procedure: “Try all arrangements of the given n-omino in 
all rectangles of area <f(n).” (While this is no doubt computationally 
“hard,” it is nonetheless much easier than “undecidable.“) This result for 
arbitrary n-ominoes tells us little or nothing about the specific hexomino 
and heptomino in problem (5). (Both parts of problem (5) have been 
answered in the affirmative by Karl A. Dahlke. See the following articles.) 

For tiling more general regions than rectangles with polynominoes, see 
[4], If sets of polyominoes are allowed as the tiles, see [S]. 
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