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Abstract

We study the Scherk—Schwarz supersymmetry breaking in five-dimensional orbifold theories with five-dimensional fields
which are not strictly localized on the boundaries (quasi-localized fields). We show that the Scherk—Schwarz (SS) mechanism,
besides the SS-parameterdepends upon new parameters, e.g., supersymmetric five-dimensional odd mass terms, governing
the level of localization on the boundaries of the five-dimensional fields and study in detail such a dependence. Taking into
account radiative corrections, the potential alongdtdirection has a global minimum in the range:@ < 1/2.

0 2003 Elsevier B.VOpen access under CC BY license.

1. Introduction manifolds, non-trivial boundary conditions imposed
on fields can affect the symmetries of the theory. This
Gauge theories in more than four dimensions are mechanism was proposed long ago by Scherk and
interesting due to the appearance of new degrees ofSchwarz (SS) for supersymmetry breaking [2], which
freedom whose dynamics can spontaneously breakremains one of the open problems of the theories aim-
the symmetries of the theory. In particular, the dy- ing to solve the hierarchy problem by means of su-
namics of Wilson lines, which become physical de- persymmetry. In five-dimensional (5D) theories com-
grees of freedom on a multiply-connected manifold pactified on the orbifolds®/Z;, the softness of the
and parametrize degenerate vacua at the tree level, carbS-supersymmetry breaking was demonstrated by ex-
lift the vacuum degeneracy after quantum corrections plicit calculations [3] and interpreted as a spontaneous
are included. This is the so-called Hosotani mecha- symmetry breaking through a Wilson line in the super-
nism [1]. On the other hand, on multiply-connected gravity completion of the theory [4,5]. This means that
the Hosotani mechanism to break local supersymme-
—_— ) try and the SS-mechanism are equivalent [6]. In par-
_ E-mall addresses: gero@ifae.es (G. von Gersdorf), ticular such mechanisms to break supersymmetry arise
pilo@shpht.saclay.cea.fr (L. Pilo), quiros@ifae.es (M. Quiros), .
rayner@pd.infn.it (D.A.J. Rayner), antonio.riotto@pd.infn.it from the vacuum expectation value (VEV) of an aux-
(A. Riotto). iliary field <V51 + iV52) of the 5D off-shell supergrav-
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ity multiplet that appears in the low-energy effective an odd mass term can exist even in the absence of a
theory as the auxiliary field of th¥ = 1 radion super- FI term for global supersymmetry. In the supergravity

multiplet extension it should follow from the graviphotdsy,
gauging, the mass of each hypermultiplet being pro-
. 2 1, iy2
R = (hss+iBs, yr5;, Vg +iV§), (1.1) portional to its gravicharg@z. So, in the absence of

whereh  is the 5D metric By, the graviphoton, and & Fl term (in which case the gravitino is coupled to
i, the gravitino, where the indicés= 1, 2 transform  the graviphoton but not to th& (1) gauge boson) or
as a doublet of th&U(2) x symmetry. Making use of ~ €ven if there is nd/ (1) factor, an odd supersymmetric
SU(2)x we can orientate the VEV along, e.§2, and mass can be introduced for gravicharged hypermulti-

define the VEV plets. This provides a very general mechanism for lo-
w calization of bulk hypermultiplets.
(V&)= = (1.2) In this Letter we will study the Hosotani mech-

) ) ) anism in 5D theories compactified on the orbifold
In telrms of a parameten (where R is the radius 1,7, in the presence of quasi-localized fields which
of §7). The tree-level potential in the background of - 4ya not strictly localized at the boundaries. Note that
(1.2) is flat, reflecting the no-scale structure of the fie|gs which are strictly localized to the boundary fixed
SS-breaking. However, this degeneracy is spoiled by oints with delta functions are four-dimensional fields
radiative effects. In particular for a system ofy and therefore do not couple directly to the Wilson line:
vector multiplets anav,, hyperscalars in the bulk, the 4 such, they cannot affect the dynamics of the Wil-
one-loop effective potential was computed in Ref. [7] son jine. However, if five-dimensional fields are lo-
to be calized on the boundaries by some mechanism, e.g.,
324+ Ny — Np) . . . by a five-dimensional mass term, they can still have
Veit(w) = W[L'5(Ezmw) +hel (13) an influence on the dynamics of the )\/Nilson line. In

where the polylogarithm function is defined as particular, we expect that the selection (at the quan-
tum level) of the vacuum of the underlying gauge

) X xk theory depends on some new parameter(s) quantify-
Lin(x) = o (1.4) ing the level of localization on the boundaries of the
k=1 five-dimensional fields. If this parameter is a five-
Notice that potential (1.3) has a minimum at= 0 dimensional mass termM and if, for |M| — oo,

(w=1/2)for N, > 2+ Ny (Nj, < 2+ Ny) depending strict localization is attained, we expect the effect on
on the propagating bulk matter, while it does not the Wilson line dynamics to disappear in the limit
depend on th&y = 1 supersymmetric matter localized of very large |[M|. Here we will restrict ourselves
at the orbifold fixed-points =0, 7 R. to study the effects of quasi-localized fields on the
The localization properties of KK-wave functions SS-mechanism for supersymmetry breaking. In gene-
can be altered by adding a bulk mass term (possi- ral, we expect the SS-supersymmetry breaking para-
bly with a non-trivial profile in the fifth dimension)to  meter to depend upon the new paramgtéf. We will
achieve (quasi-)localization of bulk fields at the fixed- leave the analysis of such effects on the spontaneous
point branes [8]. In particular, we will be interested symmetry breaking in five-dimensional gauge theories
in 5D hypermultiplets with odd-parity bulk masses, for a future publication [11].
where such mass terms can also be thought as local- This Letter is organized as follows. In Section 2
ized Fayet—lliopoulos (FI) terms corresponding to a we will give a short review of the SS- and Hosotani-
U (1) gauge group under which hypermultiplets are mechanisms in a 5D orbifold. In Section 3 we will cal-
charged. These FI terms, even when absent at tree-culate the Kaluza—Klein (KK) mass spectrum and cor-
level, are generated radiatively [9]. This issue was an- responding wave functions for hypermultiplets with
alyzed in detail in [10] where it was shown that the 5D arbitrary SS-supersymmetry breaking parameter
supergravity extension of a FI term could be made for and odd supersymmetric bulk masgés Section 4 is
a flat theory where the gravitino has zérgl) charge, devoted to the actual computation of the effective po-
i.e., where the R-symmetry is not gauged. Moreover tential and the dynamical determination of the value
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of the VEV of the SS-parameter is done in Section 5.
Finally in Section 6 we draw our conclusions.

2. Scherk—Schwar z/Hosotani breaking on an
orbifold

In this section we will review and compare the
Scherk—Schwarz- and Hosotani-symmetry breaking
mechanisms in 5D orbifold models. We will consider
the spacetime manifoldt = R* x C, where the com-
pact component is a coset (singular) spade/g.

In our caseg is the semi-direct produdf = Z x
Zy. Calling T and ¢ the generators of. and Zo,
respectively, they act as

T(y)=y+27R, () =-y. (2.1)
The action ofG has two fixed points 0 angd R and
the resulting space is an orbifold. A generic figlds
defined onM by modding out the action @,
P(x,t(0)) =To(x, y), (2.2)
P(x. () =Z¢(x,y), (2.3)
whereT and Z are global (local) symmetry transfor-
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we get

M T M7 =T, = AT, (2.6)

Thus, as a resul§ acts on the Lie algebra of the gauge
group G as an automorphism. Finally, imposing that
a gauge transformation does not alter (2.4) it follows
that the associated gauge parametgrssatisfy the
relation

£9(x, 8(3)) = A"PE  (x, y).

Let us now focus on the case= SU(2) and matter
fields ¢ transforming as doublets. One can represent
the T andZ symmetry transformations in field space
as

2.7)

T — lenwaz,

1’
i)/5,

Z=Zor® o3,

5D scalars

5D Dirac fermions (2.8)

Zior= {
where the matrixZ_or acts on the Lorentz indexes.
A non-trivial twist T triggers Scherk—Schwarz break-
ing. However, when th&U(2) symmetry is gauged,
the SS-mechanism is equivalent to spontaneous break-

mations represented by suitable matrices acting in the INd by the Hosotani-mechanism. Making the choice

field space. From - ¢ - 7(y) = ¢(y), we obtain the fol-
lowing consistency relatiod ZT = Z. The element
¢’ = ¢t of G generates a secorith transformation

andg can be equivalently considered as generated by

¢ and¢’. In general the action of’ in field space
Z' = ZT does not commute witl. The modding-out
in Egs. (2.2), (2.3) can be used to break softly some
(or all) of the symmetries involved in the non-trivial
boundary conditions.

As for matters fieldsg acts also on the gauge fields
Vu, and if g is a generic element @f, we have

Vi (x,8(3)) =cm A Vip(x,y)  (no sum onM),

1, M=u,
cpM =
M=18,8(y), M=5.

Requiring that the covariant derivative of matter fields
transforms consistently, e.g.,
¢(X, g(y)) = Mg¢(xa J’)
=  Dyup(x.8(»)
ZCMMgDM¢(x7 Y)

(2.4)

(no sum o),
(2.5)

(2.8) for the matter fields, we have that the automor-
phismin Eq. (2.6) is given by

-1 0 0
(=l 0 -1 0 (2.9)
0 0 1

Notice that whenw # 0, U(2) is completely broken,
while the casew = 0 corresponds to the breaking
patternSUJ(2) — U(1). The casav = 1/2 is special:
[Z,Z1=0, Z =03, Z =¢€o3, €2 =1, and the
KK-modes can be classified according to the two
independent paritie’s.

In the Hosotani basig the gauge potential has a
non-trivial VEV (Vi) = —83,wR Y0, and the twist
T is trivial. The SS basig and the Hosotani basis
¢ are related by the followingnon-periodic gauge
transformation

¢ = ei“’3’"2/R90. (2.10)

1 This case is often considered in the literature without referring
to SS-breaking.
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In the SS basis the field satisfies twisted boundary

conditions and the background gauge field is vanish-

ing. Also note that a constant VEV fM52(x, y) is al-
lowed only if V5 (x, y) is even, and only the part of the

breaking corresponding to the twist can be viewed as by =

Spontaneous.

3. Kaluza—Klein mass spectrum

Let us now consider a supersymmetric hypermulti-
plet (¢', ¥) in five dimensions with a localizing odd-
parity mass ternd (y). Its Lagrangian is

L=|Dygl?+ivy" Dyy + M)y
— M2()|pl? + 3sM () (¢ To30), (3.1)

where M(y) = n(y)M, and n(y) is the sign func-
tion on S with periodz R, which is responsible for
the localization of the supersymmetric hypermultiplet.
Working in the Hosotani basis, the “covariant deriv-
ative” is given byDy; = Dy + ioaR™1wd s, where
Dy, is the normal covariant derivative with respect to
the gauge group, and= (¢!, 9?7 is a doublet upon
which theo; matrices are acting.

Setting(x, y) — e~P*¢(y), the free part of the
equations of motion (EOM) become

2

M2 =2 _2M[5(y) — 6(y — T R)]o3

+2i— 0285}(,0 0, 3.2
where we have used the on-shell conditjgh= 2
Integrating over a small interval around= 0, = R we
obtain the following boundary conditions for the even
componeniy:

3501(07) = M1(0),

dsp1(n ™) = Me(m), (3.3)
while those for the odd componept are

92(0) = () =0. (3.4)

The solutions of (3.2) in the intervaD, = R) subject
to the previous boundary conditions are given by

p(y) =e 12/ Rg (), (3.5
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whereg (y) is the SS-wave function given by
M .
¢1= c(COS.Qy + o Sln.Qy),

M\ .
= —ctanwn (cothR + 5) sing2y, (3.6)

wherec is a normalization constant and? = m? —
M?. The 4D mass spectrum is given by

M2+.Q

sif wm = si? 27 R, 3.7)

with solutions providing the mass-eigenvalues and
mass-eigenfunctions that are given in (3.5) and (3.6).
Even though we cannot solve analytically (3.7) to find
the mass-eigenvalues, we can consider two inter-
esting limits. For22 > M? we have the approxi-
mate solutions2, >~ (n + w)/R. Most interestingly,
for m <« |[M| we get a very light state with mass-
eigenvalue

2 o SIP(rw)
mo =M sinP(MzR)’

The exact numerical solutions of Eqg. (3.7) and the
approximation from Eq. (3.8) are compared in Fig. 1.

The wave function corresponding to the eigenvalue
(3.8) is given, forM > 0, by

o9 = \/2|M|Rcos|:w<% — n)]eM(y_”R),

(3.8)

¢‘2)=‘/2|M|Rsin|:w(%—n)]eM(y_”R), (3.9)
and forM < 0, by

o9 =/2] |Rcos[ } —IMly
¢8=,/2|M|Rsin[%}e'M“’, (3.10)

where we have taken the approximatidd|z R > 1
that is well justified from Fig. 1. The even-parity
go? state described by the wave function (3.9) is
quasi-localized at the brane= 7 R, while the one
described by (3.10) is quasi-localized at the brane
y = 0. Notice that these become strictly localized in
the limit |M| — oo.

The EOM of fermions) are easily obtained from
the Lagrangian (3.1). Decomposing into 4D chi-
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0.002 53
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mo4

Fig. 1. The “lightest” state massg as a function ofM/ R for different values of: (a) 0.05; (b) 0.2; (c) 0.35 and (d) 0.5. Full line (red) is the
numerical result from (3.7) and dashed-line (black) the analytical approximation in (3.8).

ralities, ¥, g and assigning an even (odd) parity 4. Effectivepotential

to ¥ (¥r) one can decompose the fields in plane

waves, ¥, r(x,y) = exp(—ip - x)¢1.2(y)§, where The first step in the dynamical determination.of

p? = m? with m the mass-eigenvaluegy »(y) the to compute the contribution of hypermultiplets to the
mass-eigenfunctions, argdis a constant two-compo-  effective potentialVes. We have

nent spinor. From here on one could perform a sim-

ilar analysis to the bosonic case, taking into account Ve ZNH Z/ In p +m )
that fermions are not affected by the SS-breaking, as (2m)%
shown in (3.1). However, this is not necessary since
we can use supersymmetry to write the final result. In =2Ny / _p4W(p)
fact the mass-eigenvalues are given by (3.7)fet 0, (27)
ie., 1 2 2
W(p)=§;|n(p +m3), (4.1)
2
n
m? = =t M?(1 - 8,0). (3.11) where p is the 4d Euclidean momentum andy
is the number of hypermultiplets with a common
In particular the lightest eigenstate is massless= odd bulk massM. Although the mass relation (3.7)

0. The corresponding elgenfuncuomgz(y) can be cannot be solved analytically, following the tech-
read off from Egs. (3.9) and (3.10) with = O. niques of Refs. [12,13], we can perform the in-
The even fermlons,{fL are then quasi-localized at the finite sum to find W(p)—or rather its derivative
branesy = 0, 7 R depending on the sign of the bulk 3, W(p)—without requiring explicit analytical ex-
massM. pressions for the KK-masses. First, we convertthe sum
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over KK-mass-eigenvalues into a contour integfal
around the infinite set of solutions of Eq. (3.7) along
the real axis:

oW 1
LA
ap Xn:p2+m5

dz 1 d
C
wherek (z) = (z% — M?) sinf(wn)
—zzsinz(nR ZZ—MZ). (4.3)

The contoulC encircles all the eigenvalues on the real

axis, but avoids the poles of the integrand in Eq. (4.2)

at z = +ip. We can deformC into another contour
C’ around the imaginary axis, with a small circular
deformation close to the poles at= +ip. Since the
integrand is odd ip along the imaginary axis, we find
that only the residues at= +ip contribute. The final
result is

W(p, ») = % |n[(p2 + M?) co2wm) — M?

—p? COSl’(Z]TR\/ P2+ M2>]

+ const (4.4)

Note that due to 5D supersymmetry and Lorentz in-
variance, we cannot write a local operator using only
V52, which implies that (at one loop)ks must be finite.
Indeed the divergent part is-independent, which can
be shown by subtracting the fermionic p&i(p, w =

0):

4

d
Veff=2NH/—p

oy [ i
2 2n)4
2 2 i
xln[1+ (p? + M?) sirf(wr) ]
p2sintf(x R/ p? + M?)
(4.5)

In the limit of vanishing bulk mass, Eq. (4.5) recov-
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have

4 2 M2
In [1+ (P —z
p

P
x e MTE “MZ] (4.6)

which can be computed analytically by expanding the
logarithm to give

) sinz(a)n)

2Ny .
Veit = F:R‘l sirf(wm) F(M7R), (4.7)
where
F(x)=e 2[3+46x + 6x2 + 4x3]. (4.8)

We have checked numerically that (4.7) is a good
approximation of (4.5) when|# |7 R > 1.

5. Dynamical deter mination of SS-parameter

Before analyzing the structure of the one-loop ef-
fective potential given Eq. (4.5) we would like to com-
ment on the interpretation of the Scherk—Schwarz su-
persymmetry breaking as a Hosotani mechanism and
its relation to the one-loop effective potential of the
previous section. This interpretation was put on firm
grounds in Ref. [4] where it was shown that Scherk—
Schwarz supersymmetry breaking was a spontaneous
breaking of 5D supergravity when an auxiliary com-
ponent of the radion superfie[d/52) acquires a VEV.

In fact the Scherk—Schwarz parametelis nothing
else than the Wilson flux 0V52. In the absence of
any explicit source of supersymmetry breaking on
the branes the tree-level potential along Wg% di-
rection is flat and, consequently, this auxiliary field
cannot be integrated out using its equation of mo-
tion at tree-level. Its VEV can only be deduced by
extremizing the one-loop Coleman-Weinberg effec-
tive potential (as we will do in this section) which
means that the matching between the 5D and 4D theo-
ries should be done at one loop. The four-dimensional

ers the standard expression for the effective potential effective theory is a complicated one since the pres-

involving polylogarithms in Eqg. (1.3).
Itis also convenient to find an analytical expression
for Vegr in EQ. (4.5) in the limit that M |7 R > 1. We

ence of the Casimir energy gives rise (upon supersym-
metrization) to modifications of the (no-scale) Kahler
potential and to terms containing higher superspace
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derivatives that are not contained in the usual para- Ver/f' |

metrization of 4D supergravity in terms of the Kah-
ler and superpotential. Extremizing the effective po-
tential for theV52 field should be put on the same foot-
ing as extremizing the tree-level potential for auxiliary
F- or D-fields in global supersymmetry. In particular
we should stress that there is no violation of the non-

renormalization theorems because the supersymmetric

pointw = 0 is not renormalized and the tree-level po-
tential along theo-direction is flat which leads to the
undertermination of the supersymmetry breaking pa-
rameter. Of course if there is a local source of super-

symmetry breaking attached on the branes, along the

lines of Ref. [14], therV52 acquires a tree-level poten-
tial and its VEV is determined by it [15]. In this case

the theory exhibits a no-scale structure at tree level

which is anyway spoiled once the Casimir energy is
taken into account.

The effective potential in (4.7) arising from bulk
fields with an odd parity mass has a minimunwat 0
and a maximum at» = 1/2. However, when this is
combined with the potential (1.3) generated by bulk
fields without bulk masses for the cases where it has
a minimum atw = 1/2 and a maximum ab = 0, the
resulting total potential can have a global minimum at
intermediate values & w < 1/2. In fact if we have
a situation where the number of hypermultiplets with
zero bulk masse®/,, is such thatv, <2+ Ny and
the potential (1.3) has a minimumat= 1/2, then by
addingNy hypermultiplets with a common magg,
the critical value of the mas&™* for which w = 1/2
becomes a maximum and the minimum is shifted to
w < 1/2 is provided by the solution of the following
equation,

92+ Ny — Np)¢(3) =4Ny F(M*R), (5.1)

which is valid for valuegM|z R = 1 for which the
approximation leading to (4.7) holds. For instance,
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15

13

12

Fig. 2. Effective potential (in units of I(“f‘) with Ny =12, N, =0
and Ny = 45 for values ofM R = 0.72 (full), 0.74 (dashed), 0.76
(dot-dashed) and 0.78 (dots).

0.5

0.3

0.2

Fig. 3. Plot ofw as a function ofM R for the particle content of
Fig. 2.

those with smaller masses (less localized) provide
the leading contribution to the effective potential.
For instance, in the example above, localized states
with massesV R >> 1 would not alter the dynamical
minimization with respect ta.

To conclude this section a word of caution should
be said about the physical meaning of the global mini-

consider the case where all three generations of quarksmum found for the effective potential (4.5). Notice that

and leptons live in the bulk with a common mass
M > 0. From Eq. (5.1) we find that the minimum
at w = 1/2 is destabilized for values oM*R >~
0.78.

This is shown in Fig. 2 where the effective potential
is plotted as a function ab for several values oM
and in Fig. 3 where the minimum of is plotted as a
function of M R. Of course if there are several sets of
hypermultiplets with different masses (localizations)

in this section we were assuming a fixed value of the
radion field Rg = (R) and a zero VEV for all scalar
fields. However, when the directions of the radion and
Higgs fields are turned on one should consider the
minimization problem in the multidimensional config-
uration space and the structure found in Fig. 3 should
have an influence either in the actual value of the ra-
dion VEV and in the electroweak symmetry break-

ing.



100

6. Conclusions

In this Letter we have shown that SS-mechanism
for supersymmetry breaking in five-dimensional orb-
ifold theories is affected by the level of localiza-
tion of five-dimensional fields on boundaries. Indeed,
the SS-supersymmetry breaking parameteturns
out to be a function of the localizing mass term
M. The value of the VEV of the parameter is
fixed by one-loop corrections and, in the absence of
quasi-localized five-dimensional fields, is fixed to be
either 0 or ¥2 depending on the number of bulk
hypermultiplets and vector multiplets. However, with
quasi-localized fields, the effective potential along the
w-direction exhibits global minima at any intermedi-
ate value.

Our results can be generalized to the case in which
the five-dimensional symmetry is a gauge symmetry.
This is particularly interesting in theories where the
Standard Model symmetry can be radiatively broken
by the Hosotani mechanism and the Higgs boson mass
is protected from bulk quadratic divergences by the
higher-dimensional gauge theory without any need for
supersymmetry [16]. We are presently investigating
how our results can be extended to such theories in
order to reproduce satisfactory Yukawa couplings and
Higgs potentials.
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