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Abstract

We study the Scherk–Schwarz supersymmetry breaking in five-dimensional orbifold theories with five-dimension
which are not strictly localized on the boundaries (quasi-localized fields). We show that the Scherk–Schwarz (SS) me
besides the SS-parameterω, depends upon new parameters, e.g., supersymmetric five-dimensional odd mass terms, g
the level of localization on the boundaries of the five-dimensional fields and study in detail such a dependence. Ta
account radiative corrections, the potential along theω direction has a global minimum in the range 0<ω < 1/2.
 2003 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Gauge theories in more than four dimensions
interesting due to the appearance of new degree
freedom whose dynamics can spontaneously b
the symmetries of the theory. In particular, the d
namics of Wilson lines, which become physical d
grees of freedom on a multiply-connected manif
and parametrize degenerate vacua at the tree leve
lift the vacuum degeneracy after quantum correcti
are included. This is the so-called Hosotani mec
nism [1]. On the other hand, on multiply-connect
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manifolds, non-trivial boundary conditions impos
on fields can affect the symmetries of the theory. T
mechanism was proposed long ago by Scherk
Schwarz (SS) for supersymmetry breaking [2], wh
remains one of the open problems of the theories a
ing to solve the hierarchy problem by means of
persymmetry. In five-dimensional (5D) theories co
pactified on the orbifoldS1/Z2, the softness of the
SS-supersymmetry breaking was demonstrated by
plicit calculations [3] and interpreted as a spontane
symmetry breaking through a Wilson line in the sup
gravity completion of the theory [4,5]. This means th
the Hosotani mechanism to break local supersym
try and the SS-mechanism are equivalent [6]. In p
ticular such mechanisms to break supersymmetry a
from the vacuum expectation value (VEV) of an au
iliary field 〈V 1

5 + iV 2
5 〉 of the 5D off-shell supergrav
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theory as the auxiliary field of theN = 1 radion super-
multiplet

(1.1)R = (
h55 + iB5,ψ

2
5L,V

1
5 + iV 2

5

)
,

wherehMN is the 5D metric,BM the graviphoton, and
ψi
M the gravitino, where the indicesi = 1,2 transform

as a doublet of theSU(2)R symmetry. Making use o
SU(2)R we can orientate the VEV along, e.g.,V 2

5 , and
define the VEV

(1.2)
〈
V 2

5

〉 = ω

R

in terms of a parameterω (whereR is the radius
of S1). The tree-level potential in the background
(1.2) is flat, reflecting the no-scale structure of
SS-breaking. However, this degeneracy is spoiled
radiative effects. In particular for a system ofNV

vector multiplets andNh hyperscalars in the bulk, th
one-loop effective potential was computed in Ref.
to be

(1.3)Veff(ω)= 3(2+NV −Nh)

64π6R4

[
Li5

(
e2iπω) + h.c.

]
,

where the polylogarithm function is defined as

(1.4)Lin(x)=
∞∑
k=1

xk

kn
.

Notice that potential (1.3) has a minimum atω = 0
(ω = 1/2) forNh > 2+NV (Nh < 2+NV ) depending
on the propagating bulk matter, while it does n
depend on theN = 1 supersymmetric matter localize
at the orbifold fixed-pointsy = 0,πR.

The localization properties of KK-wave function
can be altered by adding a bulk mass term (po
bly with a non-trivial profile in the fifth dimension) t
achieve (quasi-)localization of bulk fields at the fixe
point branes [8]. In particular, we will be interest
in 5D hypermultiplets with odd-parity bulk masse
where such mass terms can also be thought as lo
ized Fayet–Iliopoulos (FI) terms corresponding to
U(1) gauge group under which hypermultiplets a
charged. These FI terms, even when absent at
level, are generated radiatively [9]. This issue was
alyzed in detail in [10] where it was shown that the 5
supergravity extension of a FI term could be made
a flat theory where the gravitino has zeroU(1) charge,
i.e., where the R-symmetry is not gauged. Moreo
-

an odd mass term can exist even in the absence
FI term for global supersymmetry. In the supergrav
extension it should follow from the graviphotonBM

gauging, the mass of each hypermultiplet being p
portional to its gravichargeQB . So, in the absence o
a FI term (in which case the gravitino is coupled
the graviphoton but not to theU(1) gauge boson) o
even if there is noU(1) factor, an odd supersymmetr
mass can be introduced for gravicharged hyperm
plets. This provides a very general mechanism for
calization of bulk hypermultiplets.

In this Letter we will study the Hosotani mec
anism in 5D theories compactified on the orbifo
S1/Z2 in the presence of quasi-localized fields wh
are not strictly localized at the boundaries. Note t
fields which are strictly localized to the boundary fix
points with delta functions are four-dimensional fie
and therefore do not couple directly to the Wilson lin
as such, they cannot affect the dynamics of the W
son line. However, if five-dimensional fields are l
calized on the boundaries by some mechanism,
by a five-dimensional mass term, they can still ha
an influence on the dynamics of the Wilson line.
particular, we expect that the selection (at the qu
tum level) of the vacuum of the underlying gau
theory depends on some new parameter(s) quan
ing the level of localization on the boundaries of t
five-dimensional fields. If this parameter is a fiv
dimensional mass termM and if, for |M| → ∞,
strict localization is attained, we expect the effect
the Wilson line dynamics to disappear in the lim
of very large |M|. Here we will restrict ourselve
to study the effects of quasi-localized fields on
SS-mechanism for supersymmetry breaking. In ge
ral, we expect the SS-supersymmetry breaking p
meter to depend upon the new parameter|M|. We will
leave the analysis of such effects on the spontan
symmetry breaking in five-dimensional gauge theo
for a future publication [11].

This Letter is organized as follows. In Section
we will give a short review of the SS- and Hosota
mechanisms in a 5D orbifold. In Section 3 we will ca
culate the Kaluza–Klein (KK) mass spectrum and c
responding wave functions for hypermultiplets w
arbitrary SS-supersymmetry breaking parameteω
and odd supersymmetric bulk massesM. Section 4 is
devoted to the actual computation of the effective
tential and the dynamical determination of the va



G. von Gersdorff et al. / Physics Letters B 580 (2004) 93–101 95

5.

e
ing
er

r-
the

by

t
me
al

s

lds

ge
at
ws

ent
ce

s.
k-
,
eak-
ice
or-

,
g

wo

a

is

ing
of the VEV of the SS-parameter is done in Section
Finally in Section 6 we draw our conclusions.

2. Scherk–Schwarz/Hosotani breaking on an
orbifold

In this section we will review and compare th
Scherk–Schwarz- and Hosotani-symmetry break
mechanisms in 5D orbifold models. We will consid
the spacetime manifoldM= R

4 × C, where the com-
pact componentC is a coset (singular) spaceR/G.
In our caseG is the semi-direct productG = Z �

Z2. Calling τ and ζ the generators ofZ and Z2,
respectively, they act as

(2.1)τ (y)= y + 2πR, ζ(y)= −y.

The action ofG has two fixed points 0 andπR and
the resulting space is an orbifold. A generic fieldφ is
defined onM by modding out the action ofG,

(2.2)φ
(
x, τ (y)

) = T φ(x, y),

(2.3)φ
(
x, ζ(y)

) =Zφ(x, y),

whereT andZ are global (local) symmetry transfo
mations represented by suitable matrices acting in
field space. Fromτ · ζ · τ (y)= ζ(y), we obtain the fol-
lowing consistency relationT ZT = Z. The element
ζ ′ = ζ τ of G generates a secondZ2 transformation
andG can be equivalently considered as generated
ζ and ζ ′. In general the action ofζ ′ in field space
Z′ =ZT does not commute withZ. The modding-ou
in Eqs. (2.2), (2.3) can be used to break softly so
(or all) of the symmetries involved in the non-trivi
boundary conditions.

As for matters fields,G acts also on the gauge field
VM , and ifg is a generic element ofG, we have

V a
M

(
x,g(y)

) = cMΛg
abV b

M(x, y) (no sum onM),

(2.4)cM =
{

1, M = µ,

∂yg(y), M = 5.

Requiring that the covariant derivative of matter fie
transforms consistently, e.g.,

φ
(
x,g(y)

) =Mgφ(x, y)

⇒ DMφ
(
x,g(y)

)
(2.5)

= cMMgDMφ(x, y) (no sum onM),
we get

(2.6)MgTaM
−1
g = T ′

a =Λg
abTb.

Thus, as a result,G acts on the Lie algebra of the gau
groupG as an automorphism. Finally, imposing th
a gauge transformation does not alter (2.4) it follo
that the associated gauge parametersξa satisfy the
relation

(2.7)ξa
(
x,g(y)

) =Λg
abξb(x, y).

Let us now focus on the caseG= SU(2) and matter
fields φ transforming as doublets. One can repres
theT andZ symmetry transformations in field spa
as

T = e2πiωσ2, Z =ZLor ⊗ σ3,

(2.8)ZLor =
{

1, 5D scalars,
iγ 5, 5D Dirac fermions,

where the matrixZLor acts on the Lorentz indexe
A non-trivial twist T triggers Scherk–Schwarz brea
ing. However, when theSU(2) symmetry is gauged
the SS-mechanism is equivalent to spontaneous br
ing by the Hosotani-mechanism. Making the cho
(2.8) for the matter fields, we have that the autom
phism in Eq. (2.6) is given by

(2.9)Λζ =

−1 0 0

0 −1 0

0 0 1


 .

Notice that whenω �= 0, SU(2) is completely broken
while the caseω = 0 corresponds to the breakin
patternSU(2) → U(1). The caseω = 1/2 is special:
[Z,Z′] = 0, Z = σ3, Z′ = εσ3, ε2 = 1, and the
KK-modes can be classified according to the t
independent parities.1

In the Hosotani basisϕ the gauge potential has
non-trivial VEV 〈VM〉 = −δ5

MωR−1σ2 and the twist
T is trivial. The SS basisφ and the Hosotani bas
ϕ are related by the followingnon-periodic gauge
transformation

(2.10)φ = eiωyσ2/Rϕ.

1 This case is often considered in the literature without referr
to SS-breaking.
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In the SS basis the fieldφ satisfies twisted boundar
conditions and the background gauge field is van
ing. Also note that a constant VEV forV 2

5 (x, y) is al-
lowed only ifV 2

5 (x, y) is even, and only the part of th
breaking corresponding to the twist can be viewed
spontaneous.

3. Kaluza–Klein mass spectrum

Let us now consider a supersymmetric hypermu
plet (ϕi,ψ) in five dimensions with a localizing odd
parity mass termM(y). Its Lagrangian is

L = |DMϕ|2 + iψ̄γMDMψ +M(y)ψ̄ψ

(3.1)−M2(y)|ϕ|2 + ∂5M(y)
(
ϕ†σ3ϕ

)
,

whereM(y) = η(y)M , and η(y) is the sign func-
tion on S1 with periodπR, which is responsible fo
the localization of the supersymmetric hypermultip
Working in the Hosotani basis, the “covariant der
ative” is given byDM = DM + iσ2R

−1ωδM5, where
DM is the normal covariant derivative with respect
the gauge group, andϕ = (ϕ1, ϕ2)T is a doublet upon
which theσi matrices are acting.

Settingϕ(x, y) → e−ipxϕ(y), the free part of the
equations of motion (EOM) become{
∂2

5 +m2 −M2 − ω2

R2 − 2M
[
δ(y)− δ(y − πR)

]
σ3

(3.2)+ 2i
ω

R
σ2∂5

}
ϕ = 0,

where we have used the on-shell conditionp2 = m2.
Integrating over a small interval aroundy = 0,πR we
obtain the following boundary conditions for the ev
componentϕ1:

∂5ϕ1
(
0+) =Mϕ1(0),

(3.3)∂5ϕ1
(
π−) =Mϕ1(π),

while those for the odd componentϕ2 are

(3.4)ϕ2(0)= ϕ2(π)= 0.

The solutions of (3.2) in the interval(0,πR) subject
to the previous boundary conditions are given by

(3.5)ϕ(y)= e−iσ2ωy/Rφ(y),
whereφ(y) is the SS-wave function given by

φ1 = c

(
cosΩy + M

Ω
sinΩy

)
,

(3.6)φ2 = −c tanωπ

(
cotΩπR + M

Ω

)
sinΩy,

wherec is a normalization constant andΩ2 = m2 −
M2. The 4D mass spectrum is given by

(3.7)sin2ωπ = M2 +Ω2

Ω2 sin2ΩπR,

with solutions providing the mass-eigenvalues a
mass-eigenfunctions that are given in (3.5) and (3
Even though we cannot solve analytically (3.7) to fi
the mass-eigenvaluesm, we can consider two inter
esting limits. ForΩ2 � M2 we have the approxi
mate solutionsΩn � (n + ω)/R. Most interestingly,
for m � |M| we get a very light state with mas
eigenvalue

(3.8)m2
0 �M2 sin2(πω)

sinh2(MπR)
.

The exact numerical solutions of Eq. (3.7) and
approximation from Eq. (3.8) are compared in Fig.

The wave function corresponding to the eigenva
(3.8) is given, forM > 0, by

ϕ0
1 = √

2|M|R cos

[
ω

(
y

R
− π

)]
eM(y−πR),

(3.9)ϕ0
2 = √

2|M|R sin

[
ω

(
y

R
− π

)]
eM(y−πR),

and forM < 0, by

ϕ0
1 = √

2|M|R cos

[
ωy

R

]
e−|M|y,

(3.10)ϕ0
2 = √

2|M|R sin

[
ωy

R

]
e−|M|y,

where we have taken the approximation|M|πR > 1
that is well justified from Fig. 1. The even-pari
ϕ0

1 state described by the wave function (3.9)
quasi-localized at the braney = πR, while the one
described by (3.10) is quasi-localized at the br
y = 0. Notice that these become strictly localized
the limit |M| → ∞.

The EOM of fermionsψ are easily obtained from
the Lagrangian (3.1). Decomposingψ into 4D chi-
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Fig. 1. The “lightest” state massm0 as a function ofMR for different values ofω: (a) 0.05; (b) 0.2; (c) 0.35 and (d) 0.5. Full line (red) is t
numerical result from (3.7) and dashed-line (black) the analytical approximation in (3.8).
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ralities, ψL,R and assigning an even (odd) par
to ψL (ψR) one can decompose the fields in pla
waves, ψL,R(x, y) = exp(−ip · x)ϕ1,2(y)ξ , where
p2 = m2 with m the mass-eigenvalues,ϕ1,2(y) the
mass-eigenfunctions, andξ is a constant two-compo
nent spinor. From here on one could perform a s
ilar analysis to the bosonic case, taking into acco
that fermions are not affected by the SS-breaking
shown in (3.1). However, this is not necessary si
we can use supersymmetry to write the final result
fact the mass-eigenvalues are given by (3.7) forω = 0,
i.e.,

(3.11)m2
n = n2

R2 +M2(1− δn0).

In particular the lightest eigenstate is massless,m0 =
0. The corresponding eigenfunctionsϕ0

1,2(y) can be
read off from Eqs. (3.9) and (3.10) withω = 0.
The even fermionsψ0

L are then quasi-localized at th
branesy = 0,πR depending on the sign of the bu
massM.
4. Effective potential

The first step in the dynamical determination ofω is
to compute the contribution of hypermultiplets to t
effective potentialVeff. We have

Veff = 2NH

2

∑
n

∫
d4p

(2π)4
ln

(
p2 +m2

n

)

= 2NH

∫
d4p

(2π)4
W(p),

(4.1)W(p) = 1

2

∑
n

ln
(
p2 +m2

n

)
,

where p is the 4d Euclidean momentum andNH

is the number of hypermultiplets with a comm
odd bulk massM. Although the mass relation (3.7
cannot be solved analytically, following the tec
niques of Refs. [12,13], we can perform the
finite sum to find W(p)—or rather its derivative
∂pW(p)—without requiring explicit analytical ex
pressions for the KK-masses. First, we convert the s



98 G. von Gersdorff et al. / Physics Letters B 580 (2004) 93–101

l
ng

al
.2)

r
ar

d
l

in-
nly

n

v-
tial

ion

the

od

ef-
-

su-
and
he
rm
rk–
eous
m-

f
on

ld
o-

by
ec-
h
eo-
nal
es-
ym-
ler
ace
over KK-mass-eigenvalues into a contour integraC
around the infinite set of solutions of Eq. (3.7) alo
the real axis:

∂W

∂p
= p

∑
n

1

p2 +m2
n

(4.2)= p

∫
C

dz

2πi

1

(p2 + z2)

d

dz
lnK(z),

whereK(z)= (
z2 −M2)sin2(ωπ)

(4.3)− z2 sin2
(
πR

√
z2 −M2

)
.

The contourC encircles all the eigenvalues on the re
axis, but avoids the poles of the integrand in Eq. (4
at z = ±ip. We can deformC into another contou
C′ around the imaginary axis, with a small circul
deformation close to the poles atz = ±ip. Since the
integrand is odd inp along the imaginary axis, we fin
that only the residues atz = ±ip contribute. The fina
result is

W(p,ω) = 1

2
ln

[(
p2 +M2)cos(2ωπ)−M2

− p2 cosh
(
2πR

√
p2 +M2

)]
(4.4)+ const.

Note that due to 5D supersymmetry and Lorentz
variance, we cannot write a local operator using o
V 2

5 , which implies that (at one loop)Veff must be finite.
Indeed the divergent part isω-independent, which ca
be shown by subtracting the fermionic partW(p,ω =
0):

Veff = 2NH

∫
d4p

(2π)4
[
W(p,ω)−W(p,ω = 0)

]

= 2NH

2

∫
d4p

(2π)4

(4.5)

× ln

[
1+ (p2 +M2)sin2(ωπ)

p2 sinh2(πR
√
p2 +M2 )

]
.

In the limit of vanishing bulk mass, Eq. (4.5) reco
ers the standard expression for the effective poten
involving polylogarithms in Eq. (1.3).

It is also convenient to find an analytical express
for Veff in Eq. (4.5) in the limit that 2|M|πR > 1. We
have

Veff � 2NH

2

∫
d4p

(2π)4
ln

[
1+ 4(p2 +M2)

p2
sin2(ωπ)

(4.6)× e
−2MπR

√
1+ p2

M2

]
,

which can be computed analytically by expanding
logarithm to give

(4.7)Veff � 2NH

32π6R4 sin2(ωπ) F (MπR),

where

(4.8)F(x)= e−2x[3+ 6x + 6x2 + 4x3].
We have checked numerically that (4.7) is a go
approximation of (4.5) when 2|M|πR > 1.

5. Dynamical determination of SS-parameter

Before analyzing the structure of the one-loop
fective potential given Eq. (4.5) we would like to com
ment on the interpretation of the Scherk–Schwarz
persymmetry breaking as a Hosotani mechanism
its relation to the one-loop effective potential of t
previous section. This interpretation was put on fi
grounds in Ref. [4] where it was shown that Sche
Schwarz supersymmetry breaking was a spontan
breaking of 5D supergravity when an auxiliary co
ponent of the radion superfield(V 2

5 ) acquires a VEV.
In fact the Scherk–Schwarz parameterω is nothing
else than the Wilson flux ofV 2

5 . In the absence o
any explicit source of supersymmetry breaking
the branes the tree-level potential along theV 2

5 di-
rection is flat and, consequently, this auxiliary fie
cannot be integrated out using its equation of m
tion at tree-level. Its VEV can only be deduced
extremizing the one-loop Coleman–Weinberg eff
tive potential (as we will do in this section) whic
means that the matching between the 5D and 4D th
ries should be done at one loop. The four-dimensio
effective theory is a complicated one since the pr
ence of the Casimir energy gives rise (upon supers
metrization) to modifications of the (no-scale) Käh
potential and to terms containing higher supersp
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derivatives that are not contained in the usual pa
metrization of 4D supergravity in terms of the Kä
ler and superpotential. Extremizing the effective p
tential for theV 2

5 field should be put on the same foo
ing as extremizing the tree-level potential for auxilia
F - or D-fields in global supersymmetry. In particul
we should stress that there is no violation of the n
renormalization theorems because the supersymm
pointω = 0 is not renormalized and the tree-level p
tential along theω-direction is flat which leads to th
undertermination of the supersymmetry breaking
rameter. Of course if there is a local source of sup
symmetry breaking attached on the branes, along
lines of Ref. [14], thenV 2

5 acquires a tree-level poten
tial and its VEV is determined by it [15]. In this cas
the theory exhibits a no-scale structure at tree le
which is anyway spoiled once the Casimir energy
taken into account.

The effective potential in (4.7) arising from bu
fields with an odd parity mass has a minimum atω = 0
and a maximum atω = 1/2. However, when this is
combined with the potential (1.3) generated by b
fields without bulk masses for the cases where it h
a minimum atω = 1/2 and a maximum atω = 0, the
resulting total potential can have a global minimum
intermediate values 0< ω < 1/2. In fact if we have
a situation where the number of hypermultiplets w
zero bulk massesNh is such thatNh < 2 + NV and
the potential (1.3) has a minimum atω = 1/2, then by
addingNH hypermultiplets with a common massM,
the critical value of the massM∗ for which ω = 1/2
becomes a maximum and the minimum is shifted
ω < 1/2 is provided by the solution of the followin
equation,

(5.1)9(2+NV −Nh)ζ(3)= 4NHF
(
M∗πR

)
,

which is valid for values|M|πR � 1 for which the
approximation leading to (4.7) holds. For instan
consider the case where all three generations of qu
and leptons live in the bulk with a common ma
M > 0. From Eq. (5.1) we find that the minimu
at ω = 1/2 is destabilized for values ofM∗R �
0.78.

This is shown in Fig. 2 where the effective potent
is plotted as a function ofω for several values ofM
and in Fig. 3 where the minimum ofω is plotted as a
function ofMR. Of course if there are several sets
hypermultiplets with different masses (localization
Fig. 2. Effective potential (in units of 10−4) with NV = 12,Nh = 0
andNH = 45 for values ofMR = 0.72 (full), 0.74 (dashed), 0.76
(dot-dashed) and 0.78 (dots).

Fig. 3. Plot ofω as a function ofMR for the particle content o
Fig. 2.

those with smaller masses (less localized) prov
the leading contribution to the effective potenti
For instance, in the example above, localized st
with massesMR � 1 would not alter the dynamica
minimization with respect toω.

To conclude this section a word of caution sho
be said about the physical meaning of the global m
mum found for the effective potential (4.5). Notice th
in this section we were assuming a fixed value of
radion fieldR0 = 〈R〉 and a zero VEV for all scala
fields. However, when the directions of the radion a
Higgs fields are turned on one should consider
minimization problem in the multidimensional confi
uration space and the structure found in Fig. 3 sho
have an influence either in the actual value of the
dion VEV and in the electroweak symmetry brea
ing.
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6. Conclusions

In this Letter we have shown that SS-mechan
for supersymmetry breaking in five-dimensional o
ifold theories is affected by the level of localiz
tion of five-dimensional fields on boundaries. Inde
the SS-supersymmetry breaking parameterω turns
out to be a function of the localizing mass te
M. The value of the VEV of the parameterω is
fixed by one-loop corrections and, in the absence
quasi-localized five-dimensional fields, is fixed to
either 0 or 1/2 depending on the number of bu
hypermultiplets and vector multiplets. However, w
quasi-localized fields, the effective potential along
ω-direction exhibits global minima at any intermed
ate value.

Our results can be generalized to the case in wh
the five-dimensional symmetry is a gauge symme
This is particularly interesting in theories where t
Standard Model symmetry can be radiatively brok
by the Hosotani mechanism and the Higgs boson m
is protected from bulk quadratic divergences by
higher-dimensional gauge theory without any need
supersymmetry [16]. We are presently investigat
how our results can be extended to such theorie
order to reproduce satisfactory Yukawa couplings
Higgs potentials.
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