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Role of branched-chain ketoacids in protein metabolism
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Ketoanalogues of three branched-chainamino acids (leucine,
isoleucine, and valine) are the principal constituents of ke-
toacid-amino acid mixtures currently under clinical trial in the
United States [1], Canada, and France [21 as dietary supple-
ments for patients with chronic renal failure. They have also
been studied as agents of possible therapeutic value in portal-
systemic encephalopathy [31, congenital hyperammonemia [4],
post-operative N wasting [5], muscular dystrophy [6], Mc-
Ardle's disease [7], and as feed additives for farm animals
[8-li].

In addition to their possible uses, these branched-chain
ketoacids (BCKA) play a role in normal amino acid metabolism,
owing to their rapid interconvertibility (by transamination) with
branched-chain amino acids (BCAA). Most of their potential
therapeutic uses stem from effects of these compounds on
protein turnover.

The purpose of this review is to summarize the current
knowledge concerning the role of endogenous BCKA in protein
metabolism and the effect of exogenous BCKA on N balance,
with particular reference to renal failure. Other aspects of
BCKA metabolism have been reviewed recently [12—151.

Effects of BCKA on growth and N balance

Measurement of nutritional efficiency of BCKA relative to
BCAA

Numerous early studies established that BCKA (and also
branched-chain hydroxyacids) can serve as dietary substitutes
for BCAA in supporting the growth of rats on diets lacking one
BCAA (reviewed by Close [16] and Baker [17]). Chawla,
Stackhouse, and Wadsworth [18] were the first to analyze the
efficiency of BCKA as substitutes for BCAA in quantitative
terms. They proposed that nutritional efficiency of a specific
BCKA be defined as the ratio of the dose of the corresponding
BCAA (on a purified diet) to the substituted BCKA dose
required to achieve the same rate of growth. They found that
this ratio was 0.20 to 0.27 for ketoisocaproate (KIC) as a
substitute for leucine, and was independent of dose. With
ketoisovalerate (KIV) and valine, however, the ratio varied
from 0.3 to 0.8, depending on the dose used [19]. This technique
for determining nutritional efficiency is quite cumbersome.

Kang and Walser [20] showed that an isotopic technique
yielded the same result. The principle of this technique is as
follows. Keto analogues may be transaminated to amino acids
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or may be oxidatively decarboxylated. The portion of an
administered ketoacid that undergoes transamination will have
the same fate in the body as the corresponding amino acid.
Since amino acids, but not ketoacids, can become incorporated
into protein, determination of the extent of incorporation of
label into whole body protein following administration of a
labelled amino acid can be used as a measure of the fate of the
amino acid. Simultaneous determination of the extent of incor-
poration of a different isotope into whole body protein, follow-
ing administration of a labelled ketoacid, would then give the
fraction transaminated. This fraction can be expressed as a
ratio, R, defined as the ratio of the fraction of label derived from
ketoacid that becomes incorporated into protein divided by the
fraction of labelled amino acid incorporated into protein.
Clearly this ratio will depend on relative rates of transport
across cell membranes, relative rates of transamination, rates of
loss of label by oxidative decarboxylation, and so forth. R
expresses the global result of all of these processes. It is
(precisely) the ratio of probability of a ketoacid molecule at the
site of administration becoming incorporated into protein to the
probability of an amino acid molecule at the same site becoming
incorporated into the same protein. We showed that R for
whole body protein averaged 0.39 in rats fed labelled KIC and
leucine in moderate dosage, and did not differ from nutritional
efficiency of KIC relative to leucine, assessed by the growth
rate technique of Chawla and associates [18, 19] (Fig. 1).

R is constant in whole body protein for one hour onwards for
at least a week after intragastric injection of labelled leucine and
labelled KIC, despite many differences in the metabolism of
these two compounds [21]. When the labelled compounds are
given intravenously, R values are much higher for both KIC
versus leucine and KIV versus valine, because oral administra-
tion leads to substantial first pass oxidation of BCKA but not
BCAA in splanchnic organs [22]. Hence the nutritional effi-
ciency of BCKA relative to BCAA is considerably greater when
given parenterally.

In normal human subjects, R for KIC versus leucine in
plasma albumin and fibrinogen is about 0.6 (similar to the value
seen in free leucine), but higher values are seen in red cell
globin and salivary mucin, suggesting that these proteins derive
a portion of their leucine from circulating KIC, transaminated
locally, rather than from circulating leucine [23]. Further evi-
dence on this point is discussed below.

Imura et al [24] developed a technique for estimating R based
on expired air. The principle of this technique is as follows. R,
defined above, is the ratio of the fraction, f, of the dose of
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Fig. 1. Growth of rats fed varying levels of KIC (0) as a substitute for
dietary leucine (•). Growth on a leucine-containing diet is indicated by
the solid circle. Equimolar substitution of KIC leads to reduced growth.
At a KIC excess of approximately 70% (arrow), growth is restored to
the rate seen on leucine. This value, 1/1.7 = 0.6, is the same as the "R"
value seen in whole body protein of these rats (see text). Drawn from
data in reference 20.

labelled ketoacid incorporated into whole body protein to the
fraction, F, of the dose of labelled amino acid incorporated into
whole body protein. Since only a trivial fraction of the admin-
istered compounds can remain as free amino acid or free
ketoacid several hours after the injection, the fraction of
labelled ketoacid oxidized is essentially 1-f and the fraction of
labelled amino acid oxidized is 1-F. Therefore (1-01(1-F) can be
estimated from expired air without analysis of the carcass, and
R (= f/F) can be calculated. Using [1 — '4Cileucine or [1 —
'4C]KIC (in different groups of rats) we found that the same
average value for R as found by counting whole body protein
could be derived from measurements of expired CO2 [241.

Application of this technique to man, in whom recovery of
labeled CO2 in expired air is variable and incomplete [25], poses
more problems than in the rat, in which recovery of labeled CO2
is 95% or greater [24, 26, 27]. Even if both '4C-labelled and
'C-labe1led compounds are used, two experiments in each
subject will be necessary to obtain a value for CO2 recovery
from labelled bicarbonate, from a labelled BCAA, and from the
corresponding labelled BCKA. Such studies have yet to be
reported.

When non-tracer doses of BCKA are employed in studies of
nutritional efficiency, as in the work of Chawla and associates
[18, 19], the results may be affected by the N-sparing actions of
these compounds. Thus nutritional efficiency of a given BCKA
in a given species, whether assessed by growth and N balance
or by relative rates of incorporation of labelled BCKA versus
labelled BCAA into protein, might increase as the dose of
BCKA is raised progressively from a tracer level into the
pharmacologic range. However, when oral doses of labelled
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Fig. 2. Nutritional efficiency of KIC relative to leucine, R, in whole
body protein as a function of log dose of KIC in several reports from
this laboratory. Encircled numbers are from intravenous isotope injec-
tions; others are from oral isotope injections. R is nearly independent of
dosage when given i.v., but decreases progressively with KIC dosage
by the oral route, owing to increasing first pass oxidation. References
are: 1,78; 2, 20; 3, 53; 4,76; 5,24; 6,22; 7, 110; 8,21.

BCKA and labelled BCAA are used, a progressively greater
fraction of the dose of BCKA is oxidized in the splanchnic bed
with increasing dosage [22, 24]. This has the effect to reduce
nutritional efficiency of BCKA relative to BCAA. This is
illustrated in Figure 2, which summarizes R values observed in
several of our studies. R decreases with oral KIC dose.

Non-isotopic studies should exhibit similar trends. Thus,
N-sparing by BCKA, when given orally, should be easier to
demonstrate at low dosage than at high dosage. On the other
hand, when BCKA are given intravenously, N-sparing should
not decrease with increasing dosage. As shown in Figure 2,
limited data obtained by the isotopic technique show a slight
increase in nutritional efficiency of KIC relative to leucine with
an increment in KIC dosage, given intravenously. This point
clearly deserves further investigation.

In growth experiments, ornithinine and histidine salts of KIC
were equally effective but the lysine salt was less effective in
replacing dietary leucine [28].

Utilization of diastereoisomers of KMV
S-KMV, the ketoanalogue of isoleucine, is more effective

than R-KMV, the ketoanalogue of alloisoleucine, in supporting
rat growth [28], but the latter compound can be utilized to some
extent in rats [29] but not in chicks [30, 311. In vivo racemiza-
tion about the f3-carbon atom occurs in dogs [32] and perhaps in
rats [331 and man [341, but not in isolated rat muscle [35, 36].
The ornithine and lysine salts of racemic KMV are as effective
as the sodium salt in supporting growth [28]. Large doses of
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racemic KMV may reduce plasma isoleucine levels [34]. At
commonly employed dosages of racemic KMV, plasma alloiso-
leucine gradually accumulates to levels higher than those of
isoleucine, and disappears with a half-life of 7 to 12 hours [37].

N-sparing effects of BCKA in normal animals and man

N-sparing by KIC-containing mixtures given intravenously in
man was first shown by Sapir et al [38]. In this study obese
subjects in the seventh week of a total fast were given intrave-
nously a complete mixture containing BCKA, the keto-ana-
logues of phenylalanine and methionine, and the other four
essential amino acids (lysine, threonine, tryptophan, and histi-
dine) as such. Urine urea fell 39% during a week of daily
infusions and remained below control values during the follow-
ing week. Later, the same effects (including "carryover") were
demonstrated early in total starvation by infusion of BCKA
alone [39]. Subsequently Mitch, Walser, and Sapir [40] obtained
the same result with KIC alone, and showed that leucine
infusions had no such effect. These findings were confirmed by
Cersosimo et a! [41].

As noted earlier, a number of studies have documented
growth rates of rats in which individual BCKA's have been
substituted for the corresponding BCAA's [16, 17]. Effects of
supplemental BCKA's, added to a complete diet, have been
reported more recently, but not in final form. Flakoll and
Nissen [42] fed rats KIC at three levels (0.0, 0.1, and 0.5% by
weight of sodium salt) in conjunction with two energy levels and
two protein levels (adequate and high). On the adequate protein
diet, growth improved slightly but significantly (up to 8%) with
increasing KIC dosage. Nissen and his associates [8, 9, 11, 43]
have reported that KIC addition to a complete diet increases
feed efficiency in lambs, milk production and milk fat content in
cows, and egg production in hens. Abras and Walser [44] fed
rats by continuous intragastric infusion with a mixture of
BCKA, amino acids, and other nutrients. By carcass analysis
we found that 65% of dietary N was retained for growth, a
percentage far higher than previously reported for any nutrient
regimen (on an ordinary diet, only 26% of dietary N is retained
for growth by young rats). These results indicate a pronounced
N-sparing effect of BCKA. KIC infusion reduced blood urea in
normal subjects [45]. However, forearm intraarterial infusion of
KIC failed to alter forearm release of lysine, tyrosine, or
phenylalanine [46]. Yagi and Walser (unpublished observations)
found that addition of KIC to a complete parenteral nutrient
solution infused intravenously in rats reduced urinary urea
excretion, and converted N balance from negative to positive.
This was associated with an increase in steady-state plasma
KIC concentration from 14.2 LM to 84.3 M. Hauschildt and
Brand [47] fed rats a diet in which all three BCKA's were
substituted (at threefold higher levels) for the three BCAA's
with a concomitant reduction in N intake. Growth was unal-
tered, compared to pair-fed controls receiving BCAA; urinary
and plasma urea were lower. Laouari et al [48] fed rats diets in
which KIC was substituted for leucine or KIV for valine at
molar ratios of 1 to 3.5. Twofold increments in dosage restored
weight gain, increase in length, and N retention as a fraction of
N intake. Similar findings with respect to KIC versus leucine
were reported by Kang and Walser (Fig. 1) [20].

Effect of protein intake on nutritional efficiency of BCKA
It is well established that the enzyme responsible for degrad-

ing BCKA, branched-chain ketoacid hydrogenase (BCKAD), is
activated by a high protein diet [47, 49]. Thus it is to be
expected that protein restriction would reduce the fractional
oxidation of BCKA and thereby improve their nutritional
efficiency. This was demonstrated by Chow and Walser [50],
who found no impairment of growth in rats consuming 6% or
10% amino acid diets when valine was replaced by KIV. In
contrast, when rats were fed a 15% amino acid diet, equimolar
substitution of KIV for valine led to reduced growth [51].
Epstein et al [52] observed only 13 to 32% decarboxylation of
ingested KIV in subjects on a low protein intake, in contrast
with 44 to 53% decarboxylation on a high protein diet. A more
complete analysis of the effect of dietary protein on nutritional
efficiency of KIC was reported by Kang, Tungsanga, and
Walser [53]. Our results, summarized in Figure 3, show parallel
variations in R values with protein intake in all organs studied,
as well as in the body as a whole.

N-sparing by BCKA in stress

Sapir et al [5] randomized patients undergoing major abdom-
inal surgery to receive daily intravenous infusions of glucose +
NaHCO3, leucine plus NaHCO3, or sodium KIC. No other
calories were given. N balance was less negative and 3-methy-
histidine excretion (an index of protein breakdown) was lower
in those receiving KIC. François, Rose and associates [54, 55]
infused patients undergoing elective gynecological surgery to
receive daily infusions of glucose (3 glkglday), glucose plus
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Fig. 3. Relationship between the nutritional efficiency of ketoleucine
relative to leucine, expressed as the ratio, R (see text), and protein
intake. Results in the protein of individual organs and in whole body
protein are shown. Reprinted by permission from Kang, Tungsanga and
Walser [53].
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leucine (90 mg/kg/day), or glucose plus sodium KIC (100 or 200
mg/kg/day). 3-methyihistidine excretion was lower in those
receiving KIC, but N excretion did not differ. Whether the
difference between these results and those of Sapir et a! [5] is
attributable to the concomitant infusion of significant quantities
of glucose remains to be established. In septic [56] or injured
[57] rats, two studies have reported no N-sparing by KIC.
However, no increase in plasma leucine or KIC was observed
in one of these studies [56]. This indicates that KIC decom-
posed before infusion, since at least ten studies have docu-
mented substantial increases in leucine and/or KIC in plasma
when KIC is infused. In the second study, neither leucine or
KIC was measured. Thus further study of this question is
indicated.

Effects of BCKA on growth and N balance in uremia
Richards et al [58] fed normal and uremic subjects diets

containing amino acids in place of protein. When valine was
absent, N balance was negative, but when KIV (2 g/day) was
added, it improved significantly. Similar results (in normal
subjects) were obtained by Rudman [59] and by Gallina et al
[60]. Walser et al [61] demonstrated maintenance of N balance
in uremic patients fed various mixtures of BCKA, other ana-
logues, and amino acids as supplements to a very low protein
diet, for 15 to 18 days. Because N balance was more positive
than with BCAA, the possibility of "altered metabolic path-
ways" was suggested. Rippich et al [62] also showed that N
balance became positive when a BCKA-containing mixture of
ketoacids and amino acids was added to an inadequately low
protein diet in uremic patients: a "carryover" effect on N
balance was again observed for two weeks after the analogues
were withdrawn. Bauerdick, Spellerberg, and Lamberts [63]
also showed that addition of either BCKA-containing supple-
ments or BCAA-containing supplements to a 25 g protein diet
caused improvement in N balance. Schmicker et a! [64] fol-
lowed 93 patients for an average of eight months on either
ketoacid or essential amino acid supplements to a low protein
diet. N balance, measured every three months, was usually less
negative in those on ketoacids than in those on amino acids.
Kampf, Fischer, and Kessel [65], in a crossover comparison of
BCAA supplementation versus BCKA supplementation, ob-
served better nutritional parameters on BCKA exclusively in
patients with severe renal insufficiency. Mariani et a! [66]
administered ketoacids and a low protein diet to uremic sub-
jects for 6 to 15 months. Albumin pools and levels of other
serum proteins were maintained; fractional catabolic rate of
albumin decreased. Lemke, Lindenau and Fröhling [671 treated
96 children with a low protein diet supplemented by either
amino acids or ketoacids. N balance was more positive with the
ketoacid supplement. Jureidini et al [68] found growth of
children with chronic renal failure receiving ketoacid supple-
ments to be faster than on conventional therapy. Heidland et al
[69] switched uremic patients from an amino acid supplement to
a ketoacid supplement after six months: blood urea fell, and
serum levels of transferrin and other proteins rose, as did blood
hemoglobin concentration. Eli et al [70] observed improvement
in N balance in patients with chronic renal failure when a
ketoacid supplement was added to a 31 g protein diet.

On the other hand, Burns et al [71] observed no difference in
N balance between a BCKA-containing supplement and a

BCAA-containing supplement in patients with chronic renal
failure who were consuming an average of 44 g/day of protein.
Hecking et al [72] administered 0.55 g protein per kg to uremic
patients. After three months, either ketoacids or placebo was
added. There was no evidence for protein deficiency before or
during the treatment periods; the ketoacids essentially had no
effect on protein metabolism. Lee and Jackson [73] found no
difference in N balance between ketoacid supplements as
compared with amino acid supplements to a 39 g protein diet. In
all three of these studies, the BCAA content of the diet was
probably sufficient to meet BCAA requirements. A greater
fraction of administered BCKA would be oxidized on such
diets, as noted earlier.

In uremic rats, Barsotti et a! [74] found that addition to a
standard 20% protein diet of a supplement containing predom-
inantly BCKA improved growth and serum protein levels; urea
N appearance fell. Friedrich et al [75] replaced part of the
casein in the diet of rats with chronic renal failure with either
BCKA-containing or branched-chain hydroxyacid-containing
supplements; growth was improved by both supplements com-
pared with controls. Laouari et al [48] varied KIC or KIV
dosage in uremic rats. They found that nutritional efficiency of
these analogues was the same as in non-uremic rats. However,
Tungsanga, Kang and Walser [76], using the isotopic technique
described earlier, found that the utilization of KIC for protein
synthesis in various organs and in the body as a whole was
greater in uremic rats than in control rats, despite equal protein
intakes.

Abras and Walser [134] found that rats reinfused intragastri-
cally with 90% of their urine output, receiving a nutrient
mixture containing BCKA by constant intragastric infusion,
grew as well as non-reinfused rats and utilized 67% of their
dietary N for growth. Abras and Walser [77] also employed
constant nasogastric infusion of a BCKA-containing nutrient
mixture in patients with severe renal failure. Three-fourths of
daily caloric intake was by this route. Total N intake averaged
only 3.3 g/day, but N balance was nevertheless positive (+ 1.22
g/day). As in rats, N conservation on this regimen was higher
than has been reported on any regimen (N requirement 2 g/day).

Utilization of BCKA for protein synthesis in liver disease
In rats with experimentally induced cirrhosis, portal-systemic

shunts, or acute liver failure, incorporation of labeled KIC
given orally into proteins is increased, in comparison with
normal rats, except in the liver itself [78]. In patients with
cirrhosis, similar results are seen [23].

Effects of BCKA on protein degradation in muscular
dystrophy

Oral administration of the three BCKA's as ornithine salts for
four days reduced urinary 3-methyhistidine excretion by a small
but highly significant amount in boys with muscular dystrophy
[6]. However, KIC supplementation failed to attenuate dener-
vation atrophy in rats [79].

Interorgan metabolism of BCKA

Gastrointestinal absorption
Abumrad et a! [80] reported that KIC instilled in the stomach

of the dog appears in the circulation in a few minutes, and our
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study [241 of labeled CO2 excretion following injection of
'4C-KIC or '4C-leucine also provided evidence for rapid ab-
sorption of KIC from the GI tract. Ketoacids are relatively
strong organic acids, with PKa'S in the range of 2 to 3 (unpub-
lished observations), but would nevertheless exist largely in the
undissociated form in the fasting stomach of normal individuals
and normal rats, and might be absorbed by non-ionic diffusion.

We found that when '4C-KIC and 3H-leucine were adminis-
tered together orally in rats, '4C incorporation into stomach
protein was many times greater than 3H incorporation [211. We
concluded that KIC was rapidly absorbed by the stomach
mucosa, transaminated to leucine, and utilized for synthesis of
stomach tissue protein more rapidly than was labelled leucine
administered as such.

BCKA's instilled into dog jejunum appear in mesenteric
venous blood chiefly as such and also as the corresponding
BCAA's [811; about 1/3 of KIC is apparently oxidized by the
jejunal wall. Rates of absorption of BCKA in rat jejunum and
ileum are somewhat slower than those of the corresponding
BCAA [82].

In man, BCKA given orally appear in the venous blood in a
few minutes, and peak levels following a single dose occur at 30
to 60 minutes [83, 84]. When equal doses of KIV or valine are
given, the peak increment in plasma concentration of KIV plus
valine is about twice as great when valine is given as when KIV
is given [85]. Similar comparative results are seen with the other
two BCKA's and BCAA's [83]. However, when all three
BCKA's are given together orally (as salts of basic amino acids
in doses of 4.7 to 6.0 nmol each), the area under the plasma
concentration curve for KIV is only about 1/4 as great as the
corresponding areas for KIC and KMV (Fig. 4) [84]. The
explanation of this observation may be that the muscle/plasma
ratio and hence the volume of distribution of KIV exceeds that
of KMV or KIC [86]. Another possible explanation of the lower
plasma curve for KIV is competition between the three
BCKA's for absorption. Weber, Deak and Lame [82] found that
KIV absorption from rat small intestine was depressed 57% by

the addition of KMV. If this is the explanation, larger doses of
KIV might be required when using BCKA as supplements to an
inadequately low protein diet. However, the possibility that
BCKA's may be less than completely absorbed from the gut
under any circumstances seems unlikely, except when small
intestinal function is seriously compromised.

Plasma protein binding of BCKA
Albumin binds BCKA, at a site that also binds free fatty acids

[81, 87]. Consequently, a major portion of circulating BCKA is
bound to plasma proteins, although less so in the rat [88]. In
normal human plasma, we have found fasting concentrations of
KIC, KMV, and KIV are 29 8 (SD) ILM, 18 4 (SD) jsM, and
12 3 (SD) ILM, respectively [89], but considerable variability
is apparent among different reports. The relative proportion
that each BCKA comprises of total BCKA concentration is less
variable: 49 3 (sD)%, 30 2 (sD)%, and 21 2 (sD)%,
respectively [891. In the rat, concentrations and proportions are
nearly the same [89; Matsuo, Yagi and Walser, unpublished
observations]. Erythrocyte levels are low [90].

Tissue BCKA levels

Measurement of BCKA in tissues has proven to be excep-
tionally difficult. Livesey and Lund [91] measured the total of
all three BCKA's in rat tissues enzymatically. They could not
detect BCKA in liver, kidney, or mammary gland; levels in
heart were very low; levels in muscle were similar to aortic
blood or plasma. Hutson and Harper [86] developed a gas
chromatographic procedure for analysis of individual BCKA's
in tissues. They found muscle levels 1/3 to 1/2 of plasma. In
heart and liver, far lower concentrations were found. However,
a subsequent summary chapter from the same laboratory [92]
states that "All three BCKA are present at about 5 nmol/g in
skeletal muscle but are undetectable in brain." We have found
levels in muscle half of those in plasma in rat and dog, lower
concentrations in liver, heart, and kidney, and even lower
levels in brain (Matsuo, Yagi and Walser, unpublished obser-
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Fig. 4. Response, in normal subjects, of
plasma branched-chain ketoacid (ECKA)
levels to oral ingestion of a mixture
containing KIC (—), KMV (---), and KIV
(— —). The vertical lines represent only I SEM

120 for clarity. Reprinted by permission from
Walser, Jarskog and Hill [84].
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Fig. 5. The '4C/3H ratio (R) of leucine incorporation into the protein of
various tissues, blood, and whole body, and the fraction (a) of
ext racellular leucine + KIC incorporated into individual protein that is
derived from extracellular leucine. Dotted line shows the mean Ricu 11
plasma. Significantly different from Ricu in plasma: * < **D <
0.01. All data are presented as the mean SE of seven to nine rats.
Reprinted by permission from Shiota, Yagi and Walser [110].

vations), using a new HPLC method with nearly complete
recovery of labelled BCKA. Brain uptake may nevertheless be
relatively high, as indicated below (Fig. 5); a high-affinity
transport mechanism is present in the blood-brain barrier [93].
BCKA are more effective than BCAA in elevating brain BCAA
levels, when given intravenously to rats with experimental liver
disease [94], but less effective in this respect when given orally
[95]. This is probably attributable to increasing first pass
oxidation (Fig. 2), even though they are still more effective than
oral BCAA in improving EEG, blood ammonia, and brain
tyrosine [951.

Interorganflux of BCKA
Harper and Zapalowski [96] suggested that in the rat, BCKA

may be released by skeletal muscle and oxidized by liver. This
pattern would be consistent with the distribution of BCAA
transaminase, which is predominantly in muscle and is low in
liver, in contrast with BCKAD, which is predominantly in liver

and is low in muscle [97]. This hypothesis was confirmed by
Livesey and Lund [98], who showed that hepatic venous blood
concentration of total BCKA in the rat was half of aortic or
portal venous concentration. Femoral vein concentration, on
the other hand, was 63% higher. No release or uptake could be
demonstrated across kidney or gut. However, we have demon-
strated gut uptake as well as muscle release of each of the three
BCKA; lung release is nil (Matsuo, Yagi, and Walser, unpub-
lished results). Livesey and Lund [98] estimated that muscle
release and hepatic uptake of BCKA were both about 1.4
mmollday in a 400 g rat. They inferred that the low tissue
concentration observed in liver reflected relative impermeabil-
ity of the hepatic cell membrane.

However, this inference seems inconsistent with earlier ex-
periments of the present author's performed in the same labo-
ratory [99], in which rapid transamination of each of the three
BCKA's, when added to the medium of isolated perfused liver,
was demonstrated. Another possible explanation is that liver
BCKA concentration is kept at a low level by BCKAD in this
organ, despite high permeability. In normal fed rats, BCKA
uptake by the liver from portal blood is about 60% of BCAA
uptake; KMV uptake is the least efficient [100; Matsuo, Yagi
and Walser, unpublished resultsi. Portal BCKA loads greatly
increase hepatic uptake [100]. Abumrad et al [80] gave oral
loads of KIC to dogs and observed that 35% was taken up by
the liver, where 2/3 was oxidized and 1/4 transaminated. The
gut and the kidneys also took up significant fractions of the
dose, leaving only 15% accessible to non-splanchnic extrarenal
organs. Nissen et al [101] showed in dogs that KIC is released
by the hindlimb and taken up by the liver, but according to their
results, KIC taken up by the liver is transaminated to leucine
instead of being oxidized. In ovine fetus [102] and in mature
ewes [103] hindlimb release of BCKA is substantially smaller
than hindlimb uptake of BCAA. In fasting man, by contrast
with rat or dog, significant release by peripheral tissues of KIC
and KIV is only marginally demonstrable and remains small
even after protein feeding or amino acid infusion [45, 46, 90,
104—106].

Precursor pools of BCAA and BCKA for protein synthesis
Most methods for measuring the rate of protein synthesis in

vivo depend on plasma sampling to quantitate the specific
activity (or atoms % excess) of a precursor amino acid during
constant infusion of its tracer. However, it has long been
recognized that the precursor pool of amino acid for protein
synthesis may have a specific activity different from that in
plasma. To avoid this problem, we have described a technique
for measuring whole body protein synthesis in rats that does not
require plasma sampling [27].

In the case of labelled leucine infusion, it has been suggested
that plasma KIC specific activity would be a better index of
intracellular leucine specific activity than would plasma leucine,
because KIC is formed intracellularly [107]. During infusion of
3H-labelled leucine and '4C-labelled KIC in dogs, the 3H/'4C
ratio in protein-bound leucine was reported to be close to the
"reciprocal pool" ratio in plasma, that is, [3H-KIC]/['4C-
leucine] [108, 1091. However, we have found this to be true in
some proteins in the dog, such as IgG and tissue proteins of
liver, heart, muscle and kidney, but not in others, such as brain
protein, red cell globin, albumin, and fibrin (Campollo, Matsuo,
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and Walser, unpublished observations). Even larger discrepan-
cies are seen in rats infused with the same isotopes [1101. We
interpret these data to show that (1) precursor pooi specific
activity cannot be reliably estimated by plasma sampling and (2)
extracellular KIC rather than extracellular leucine serves as the
source of leucine for synthesis of many proteins (12% of whole
body protein synthesis in the rat) (Fig. 5).

Mechanism of protein sparing by BCKA

As a N-free source of essential amino acids
It has long been evident that substitution of the minimum

daily requirements of essential amino acids by their ketoana-
logues could reduce minimal N requirements, provided that
nonessential N were not limiting. However, the amount of N so
spared cannot exceed the N required to convert these analogues
to amino acids. Since two of the essential amino acids (lysine
and threonine) cannot be replaced by ketoanalogues [16, 17],
and two others (histidine and tryptophan) are not readily
available as analogues, the amount of N so spared will not
exceed the N content of the minimum daily requirement of
BCAA plus phenylalanine plus methionine, namely, about 0.5
g. This minor degree of N-sparing is not, strictly speaking, a
form of protein sparing, because it does not involve any change
in protein synthesis or breakdown. From the earliest clinical
studies with mixture of analogues [61], it was recognized that
N-sparing was greater than could be accounted for in this way.

Suppression of glucocorticoid production
Nissen [9, 10] reported that addition of KIC to feed reduces

plasma cortisol levels in lambs. However, they observed no
such effect in cows [43]. In patients with chronic renal failure,
we found that urinary 17-hydroxycorticosteroid excretion (a
measure of 24-hour glucocorticoid production) was lower when
ketoacid supplements were administered than when essential
amino acid supplements were administered, in conjunction with
a low protein diet [ill]. This latter finding, in contrast to
Nissen's data in lambs [9, 10], could simply mean that ketoacids
stimulate glucocorticoid production less than amino acids, since
it has been established that glucocorticoid production varies
with dietary protein intake [112].

We have recently found even minor changes in mean 24-hour
glucocorticoid levels (in corticosterone-replaced adrenalecto-
mized rats) may induce profound changes in N balance, N
excretion, whole body protein synthesis, and whole body
protein breakdown (Quan and Walser, unpublished observa-
tions). Furthermore, spontaneous rates of growth of farm
animals are often negatively correlated with their spontaneous
plasma cortisol levels [113]. Hence, if BCKA cause only a small
reduction in daily glucocorticoid production, significant N-spar-
ing could result.

Stimulation of ketone body production

In post-operative patients exhibiting N-sparing induced by
daily KIC infusions, ketone bodies concentrations in plasma
were higher than in patients receiving leucine infusions [5].
Similar results are seen in fasting normal subjects given KIC
[40, 45], but not in those given BCKA [39] or a BCKA-
containing mixture [381. Metabolism of KIC and KMV leads to
ketone bodies, but KIC in particular stimulates ketone body

production in isolated perfused liver by more than a stoichio-
metrically equivalent amount [114]. Since there is some evi-
dence that ketone bodies may exert N-sparing effects [115],
they could be involved in N-sparing induced by BCKA.

Direct action to suppress protein breakdown or stimulate
protein synthesis

In isolated muscle [116, 117], heart [118], and liver [119], KIC
at high levels suppresses protein breakdown, although not in
muscle from septic rats [117]. According to one report [120],
BCKA stimulate albumin synthesis by perfused liver. Whether
these effects occur at KIC levels attainable in vivo is uncertain.
This effect is not reproduced in isolated muscle by KIV or
KMV or by isovalerate, the first metabolic breakdown product
of KIC [121].

Stimulation of insulin production and glucose utilization
KIC stimulates insulin production and inhibits glucagon

production by isolated perfused pancreas [122] and is respon-
sible for the stimulation induced by leucine [123]. However,
plasma insulin levels are little altered by BCKA administration
[38—40, 45]. Forearm glucose utilization is reduced by infusion
of KIC or KIC plus insulin, effects not reproduced by leucine
[124]. In uremic patients, BCKA-containing diets improve
glucose tolerance and insulin sensitivity [125—1271. Conceivably
improved protein balance could result.

Stimulation of hepatic glutamate output
Häussinger and Gerok [128] have demonstrated a marked

increase in glutamate output from isolated perfused liver on
adding KIC or KMV, but not KIV, and have suggested that this
could result in N-sparing by diverting ammonia from urea
synthesis to glutamate synthesis. The fate of the diverted
glutamate remains uncertain.

Induction and activation of BCAA transaminase and BCKA
dehydrogenase

BCKA, administered orally, induce these enzymes [129,
130]. KIC, but not KIV or KMV, stimulates BCAA transami-
nase in kidney and muscle in vitro [131, 132]. KIC activates
BCKA dehydrogenase [133]. Conceivably these effects could
play a role in N-sparing by KIC, but no detailed mechanism has
yet been elucidated.
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