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a b s t r a c t

The quality of vegetable oils is related to the presence of bioactive compounds, in which its contents may
vary according to the extraction process. This study aimed to evaluate a clean technology for sesame oil
extraction by enzymatic aqueous extraction, comparing to conventional extraction methods, such as
pressing and solvent, in relation to the composition of bioactive lipophilic compounds. Two enzymes
were used: Pectinex Ultra SPL and Alcalase 2.4L, and three factors were evaluated: concentration of
enzymes (mL 100 mL�1), sample/water ratio (g mL�1) and extraction time (hours) through a 23 factorial
design with center point in triplicate. The results showed variations in extraction yield and composition.
The sesame oil extracted using enzymes showed the highest antioxidant capacity in the DPPH and L-
ORAC (against peroxyl radical) assays, 128,54 and 349,98 mmol Trolox g�1 of oil, respectively, as well a
higher content of total phytosterols (249 mg 100 g�1 of oil), total polyunsaturated and omega-6 fatty
acids. No significant difference in g-tocopherol content was observed, by Tukey test (p < 0.05), among
the extraction methods. The enzymatic aqueous extraction improved the quality of sesame oil using a
green methodology, free of toxic solvents.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Sesame grains (Sesamum indicum L.) are grown worldwide. The
Asian continent is the main producer, accounting for 51.3% of pro-
duction in 2013, followed by Africa, 44.9%; America, 3.7%; and
Europe, 0.1% (Faostat, 2015). Among the different application areas
of this oilseed (use of grain and oil), could be highlighted the
gastronomy (Beltr~ao et al., 2013), biofuel production (Sarve,
Sonawane, & Varma, 2015), application in the pharmaceutical
field (Jeevana & Sreelakshmi, 2011), cosmetics production (Rocha-
Filho et al., 2014), and human nutrition (Finco, Garmus, Bezerra,
& C�ordova, 2011).

Many of the components found naturally in vegetable oils have
).
properties that are beneficial to health, such as fatty acids, phy-
tosterols, carotenoids, natural antioxidants and tocopherols
(Huang, Ou, & Prior, 2005). Studies have shown that intake of di-
etary sesame oil could effectively ameliorate the cerebral ischemia
(Ahmad et al., 2006) and has synergistic effect with anti-diabetic
medication, providing an effective improvement of hyperglycemia
(Sankar, Sambandam, Rao, & Ali, 2011). Moreover, the dietary
substitution of sesame oil has an additive effect in the reduction of
blood pressure and plays an important role in the modulation of
electrolytes and in the reduction of lipid peroxidation and elevation
of antioxidants (Sankar, Sambandam, Rao, & Pugalendi, 2004). The
chemical composition of the sesame oil, characterized by a low
level of saturated fatty acids and the presence of antioxidants have
been attributed to reduction of proliferation of certain cancers
(Kanu, Bahsoon, Kanu, & Kandeh, 2010; Miyahara, Hibasami,
Katsuzaki, Imai, & Komiya, 2001).

In general, the extraction method using solvents is one of the
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Table 1
Factors and levels for the 23 factorial design with center point.

Factors Symbol Unit Type Levels

�1 0 þ1

Enzymes X1 mL 100 mL�1 Numeric 6 8 10
Sample/water X2 g mL�1 Numeric 1/6 1/8 1/10
Time X3 h Numeric 4 6 8
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most widely used in industry due to high oil yield. However, many
highly toxic and flammable organic solvents comes from non-
renewable sources and after the process, it requires many steps of
treatment of its residues. Extraction by pressing, a conventional
method, does not use solvents, but this technique is combined with
other extractions that associate solvents to improve the extraction
yield.

Considering the global concern in relation to organic solvents
and the damage that can be caused to the environment, the
development of alternative methods of oil extraction and the
quality of the products need to be evaluated. The enzymatic
aqueous extraction is a clean technology which presents itself as a
promising alternative to technique using organic solvents for
extraction of vegetable oils, taking into account the principles of
green chemistry.

The enzymatic aqueous extraction employs enzymes that hy-
drolyze the cell wall and membranes of oleosomes (Botaneco,
2015), releasing the oil into the aqueous medium. Despite the fact
that the cost of the enzymes is still high, recently published studies
found that controlling of the some parameters could make the
extraction process feasible (Nascimento, Couri, Antoniassi, &
Freitas, 2008; Soto, Chamy, & Zú~niga, 2007; Zhang et al., 2012).

A large number of enzymes used in industries for different ap-
plications have been reportedly produced in solid state fermenta-
tion (SSF) at large-scale. These include alpha amylase,
glucoamylase, pectinase, protease, lipase, phytase and other en-
zymes. Many research studies have shown the enzymes production
through SSF using different low-cost agro-industrial residues as the
substrate, which is very attractive for bioprocessing, since it adds
value by decreasing the cost of enzyme production, reducing the
amount of solid waste and boosting the environmentally friendly
management of agricultural and domestic wastes (Bansal, Tewari,
Soni, & Soni, 2012; Delabona et al., 2013; Graminha et al., 2008;
Hansen, Lübeck, Frisvada, Lübeck, & Andersen, 2015; Kaushik,
Mishra, & Malik, 2014; Thomas, Larroche, & Pandey, 2013).

This study aimed to evaluate a clean technology for sesame oil
extraction by enzymatic aqueous extraction, comparing to con-
ventional extraction methods, such as pressing and solvent, in
relation to the composition of bioactive lipophilic compounds.

2. Materials and methods

2.1. Sample preparation

The sesame grains were purchased in local market in Maring�a-
PR, Brazil. The grains were ground in a Wiley mill to obtain a fine
flour that was then sieved, using the fraction that passed through a
16 mesh Tyler series sieve (WS Tyler, USA). Pectinex Ultra SPL
(pectinase e active pectolytic enzyme preparation produced by a
selected strain of Aspergillus aculeatus that contains mainly pec-
tintranseliminase, polygalacturonase, and pectinesterase and small
amounts of hemicellulases and cellulases. The pectinase hydrolyzes
pectin, which is a component of the cell wall) and Alcalase 2.4L
(endo-protease that hydrolyze most peptide bonds within a protein
molecule) enzymes were obtained from Sigma (USA).

2.2. Enzymatic aqueous extraction

The enzymatic aqueous extraction of sesame oil was conducted
from a 23 factorial design with center point in triplicate (Table 1)
using the Design Expert software, version 7.1.3. The extraction yield
responsewas evaluated by the influence of different concentrations
of Pectinex Ultra SPL and Alcalase 2.4L enzymes, sample/water ratio
and extraction time.

The extraction experiments were performed according to Santos
and Ferrari (2005) with adaptations. The samples were subjected to
heat treatment at 105 �C for 45 min. After, 5.0 g of sample was
weighed and mixed with distilled water at a ratio of 1/6, 1/8 or 1/
10 (g mL�1). The pH of the mixture was adjusted to 4.5 with
1.0 mol L�1 aqueous HCl solution and then added Pectinex Ultra SPL
enzyme in concentrations of 6, 8 and 10 mL 100 mL�1. Afterwards,
the mixture was maintained at 50 �C for 4, 6 and 8 h, with shaking
at 100 rpm in an incubator shaker (CT 712). In the second step, the
pH was adjusted to 7.0 through the addition of a 1.0 mol L�1

aqueous NaOH solution followed by the addition of the Alcalase
2.4 L enzyme in concentrations of 6, 8 and 10 mL 100 mL�1. Then,
the sample was incubated at 55 �C under the same conditions
mentioned in the first step. After, the mixture was heated at 60 �C
for 15 min and the extract was centrifuged for 15 min. The free oil
was collected with a micropipette and weighed to determine the
extraction yield.

2.3. Solvent extraction

The sample was submitted to a lipid extraction process with a
mixture chloroform-methanol-water (2:2:1.8 mL:mL:mL), respec-
tively, according to Bligh and Dyer (1959).

2.4. Extraction by pressing

For lipid extraction by pressing, 100.0 g of sample, previously
dried in a fan oven at 50 �C for about 14 h, was placed in a stainless
steel cylinder (PEM e PHP 30 tons) under a pressure of 10 tons for
5 h.

2.5. Fatty acid composition

Fatty acid methyl esters (FAME) were prepared by the methyl-
ation of lipids (Hartman& Lago,1973). The FAMEwere separated by
gas chromatography (Trace Ultra 3300 e Thermo Scientific)
equipped with a flame ionization detector (FID) and a cyanopropyl
capillary column (100m� 0.25 i.d., 0.25 mm film thickness, CP 7420
Varian). The injector, detector and gases conditions, and the main
operational parameters were performed according to Sargi et al.
(2013).

Quantification of fatty acids was performed using tricosanoic
acid methyl ester (Sigma, USA) as an internal standard (23:0)
(Joseph & Ackman, 1992). Theoretical FID (flame ionization detec-
tor) correction factor values (Visentainer, 2012) were used to obtain
concentration values.

2.6. Phytosterols and tocopherols

Phytosterols and tocopherols were simultaneously evaluated by
gas chromatography coupled tomass spectrometer (GCeMS) (Du&
Ahn, 2002). The extracted oils were previously derivatized
(Beveridge, Li, & Drover, 2002) and the analysis was performed in a
gas chromatograph (ThermoeFinnigan, Thermo Focus GC) equip-
ped with a capillary column DB-5 (5% phenyl, 95% methyl-
polysiloxane) fused silica, 30 m, 0.25 mm i.d and 0.25 mm thick film
stationary phase (J & W Scientific, Folson, CA) coupled to a mass



Table 2
Factorial design 23 with center point and enzymatic aqueous extraction yield of
sesame oil.

Coded variable Actual variable

Run X1 X2 X3 x1 x2 x3 Y (%)

1 �1 �1 �1 6 1/6 4 26.74
2 þ1 �1 �1 10 1/6 4 29.55
3 �1 þ1 �1 6 1/10 4 20.33
4 þ1 þ1 �1 10 1/10 4 21.96
5 �1 �1 þ1 6 1/6 8 35.42
6 þ1 �1 þ1 10 1/6 8 36.65
7 �1 þ1 þ1 6 1/10 8 27.34
8 þ1 þ1 þ1 10 1/10 8 27.61
9 0 0 0 8 1/8 6 28.98
10 0 0 0 8 1/8 6 29.12
11 0 0 0 8 1/8 6 30.04

X1, X2, and X3: enzymes concentration, sample/water ratio and extraction time,
respectively. x1, x2, and x3: enzymes concentration (mL 100 mL�1), sample/water
ratio (g mL�1) and extraction time (h), respectively. Y represents the enzymatic
aqueous extraction yield (%).
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spectrometer (Thermo-Finnigan, DSQ II) equipped with an electron
ionization (EI) source. The conditions for analysis by GCeMS were
previously described by Zanqui et al. (2015). The system of data
acquisition was performed by Xcalibur software accompanying
database of spectra contained in the NISTMS Search spectral library
version 2.0. Quantification was carried out in relation to the inter-
nal standard 5-a-cholestane (Sigma, Brazil) (Li, Beveridge, &
Drover, 2007).
2.7. Antioxidant capacity

2.7.1. DPPH radical assay
The DPPH radical scavenging activity assay was performed as

described by Masuda et al. (1999) and Brand-Williams, Cuvelier,
and Berset (1995) including modifications according to Ma et al.
(2011). The absorbance of the solutions was measured at 517 nm
using a UVeVis spectrophotometer (Thermo Scientific e Genesys
10S).
2.7.2. Lipophilic e oxygen radical absorbance capacity (L-ORAC)
The lipophilic antioxidant capacity was determined using the L-

ORAC assay (Prior et al., 2003), with randomly methylated b-
cyclodextrin (RMCD) as a solubility enhancer (Huang, Ou,
Hampsch-Woodill, Flanagan, & Deemer, 2002). The decay of the
fluorescence spectra was obtained with a spectrofluorimeter (Per-
kin Elmer Victor e X4) at an excitation wavelength of 485 nm and
an emission wavelength of 520 nm.

The results of both assays were expressed in Trolox equivalent
antioxidant capacity per gram of oil.
Table 3
Analysis of variance for the response enzymatic aqueous extraction yield of sesame oil.

Source Degrees of freedom Sum of squares

X1 1 4.41
X2 1 121.06
X3 1 101.10
Curvature 1 3.04
Residual 6 3.54
Lack of fit 4 2.88
Pure error 2 0.66
Total 10 233.15

X1 ¼ enzymes concentration; X2 ¼ sample/water ratio; X3 ¼ extraction time.
2.8. Statistical and principal components analysis (PCA)

Data were expressed as mean values ± standard deviations of
the analytical error propagation. The results were submitted to
variance analysis (ANOVA) and mean values were compared by
Tukey's test, using the Statistica software, version 8.0. The principal
component analysis was performed with the Statgraphics software,
version 16.1.03. Principal and interaction effects resulted of factorial
design were calculated and the variance analysis was used to
evaluate the effect of independent variables on the response using
the mathematical model expressed by Eq. (1):

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b12X1X2 þ b13X1X3 þ b23X2X3

þ b123X1X2X3 þ ε

(1)

where Y is the expected response; X1 ¼ enzymes concentration,
X2 ¼ sample/water ratio, X3 ¼ extraction time; and the other terms
refers to interactions effects.
3. Results and discussion

3.1. Total lipids (TL)

Table 2 shows the yields obtained for the enzymatic aqueous
extraction of sesame oil from the 23 factorial design with center
point in triplicate.

The highest yield obtained from the extraction of sesame oil
from the factorial design was 36.65% under the conditions of 10 mL
100 mL�1 pectinase and protease, a sample/water ratio of 1/
6 (g mL�1) and 8 h of extraction.
3.2. Analysis of variance (ANOVA)

Table 3 shows the ANOVA for the extraction yield of sesame oil.
The study of the effects showed that only the terms enzyme

concentration, sample/water ratio and extraction time were sig-
nificant, in which the most significant factors in the extraction
process were time and the sample/water ratio with a contribution
of 43.36 and 51.92%, respectively. The ANOVA indicated that the
model was significant and the effects can be noted in the response
surface models (Fig. 1). The interaction effects were not significant,
so these terms were removed from the model equation. The
mathematical equation and the regression coefficient obtained for
the enzymatic aqueous extraction of sesame oil are shown in Eq.
(2).

Y ¼ 28:20þ 0:74$X1 � 3:89$X2 þ 3:56$X3
R2 ¼ 0:985

(2)

where Y ¼ extraction yield; X1 ¼ enzymes concentration;
Mean square F value p-value

4.41 7.48 0.0340
121.06 205.24 <0.0001
101.10 171.41 <0.0001

3.04 5.15 0.0637
0.59 e e

0.72 2.17 0.3397
0.33 e e

e e e



Fig. 1. Response surface for the enzymatic aqueous extraction of sesame oil.

Table 4
Extraction yield of sesame oil obtained by different
methods.

Method Yield (%)

Solvents 59.97a ± 0.81
Pressing 42.00b ± 0.21
Enzymatic* 36.65c ± 0.18

*The maximum extraction yield obtained from the
factorial design. Mean ± standard deviation of triplicate
analyses. Different letters in the same column indicate
significant difference at 95% by the Tukey test (p < 0.05).

Table 5
Antioxidant capacity of sesame oil extracted by different methods.

Methods Assays (mmol Trolox g�1 of oil)

DPPH L-ORAC

Solvents 68.28c ± 1.79 204.04c ± 10.21
Pressing 88.85b ± 2.57 230.22b ± 2.97
Enzymatic 128.54a± 4.60 349.98a± 0.66

Mean ± standard deviation of triplicate analyses. Different letters in the same col-
umn indicate significant difference at 95% by the Tukey test (p < 0.05).
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X2 ¼ sample/water ratio; X3 ¼ extraction time.
3.3. Extraction by conventional methodologies

Table 4 shows the yield for the extraction of sesame oil by
conventional (solvent and pressing) and enzymatic extraction
techniques.

The enzymatic aqueous extraction showed the lowest yield
compared to conventional techniques, though its efficiency corre-
sponds to 87% in relation to pressing method. However the
response surface (Fig.1) indicates that changes in the levels of some
factors may still cause an increase in the extraction yield of sesame
oil using enzymes.
Table 6
Quantification of tocopherol and phytosterols in sesame oil extracted by different metho

Method g-Tocopherol (mg 100 g�1) Phytosterols (mg 100 g�1)

Campesterol St

Solvents 46.94a ± 0.94 45.29ab ± 1.45 1
Pressing 42.93a ± 5.51 37.93b ± 6.32 1
Enzymatic 44.60a ± 1.27 46.92a ± 4.18 1

Mean ± standard deviation of triplicate analyses. Different letters in the same column in
3.4. Antioxidant capacity

To evaluate the antioxidant capacity of the sesame oil extracted
either enzymatically or using conventional methods, two assays
were performed: DPPH radical scavenging activity and antioxidant
capacity by inhibiting oxidation induced by peroxyl radicals
through the transfer of hydrogen atoms using the L-ORAC assay.
Table 5 shows the results obtained from these tests.

The sesame oil obtained through enzymatic aqueous extraction
demonstrated superior antioxidant capacity compared to the oils
extracted using conventional methods in both assays, being 71.5%
and 88.3% higher against DPPH and peroxyl radicals, respectively,
compared to oil extracted by solvents. This indicates that the
enzymatic method was probably able to extract a higher amount of
bioactive compounds with antioxidant capacity.
3.5. Phytosterols and tocopherols

The g-tocopherol and the three major phytosterols (campes-
terol, stigmasterol and sitosterol) were identified in sesame oil.
Table 6 shows the quantification of these compounds present in the
oil sample.

The enzymatic aqueous extraction exhibited the oil with the
highest sitosterol and campesterol contents compared to conven-
tional methods. The stigmasterol and g-tocopherol contents
showed no significant differences among the oil extraction
methods.

According to the Codex Alimentarius (2013), the levels of cam-
pesterol, stigmasterol and sitosterol found in unrefined sesame oil
are usually from 10.1 to 20.0; 3.4 to 12.0 and 57.7 to 61.9 g,
respectively, relative to 100 g of total sterols. The contents obtained
in this study are compatible with those reported levels, while the
results obtained for sitosterol are above those reported, at 73.1 g,
74.1 g and 73.3 g for themethodologies using solvents, pressing and
enzymes, respectively, to 100 g of phytosterols. Antoniassi et al.
(2013) also obtained values above the levels from the Codex for
sitosterol in oil of sesame grains of different genotypes that were
grown in different locations. The sterol profile is used to set the
standard identity of vegetable oils and countries could claim the
amendment of the standard to Codex Alimentarius (2013), based on
results of local varieties (Antoniassi et al., 2013).

Considering the data obtained for total phytosterols, is possible
to observe that extraction using enzymes showed the highest sum
of these bioactive compounds which brings benefits to human
health (Awad, Chinnam, Fink, & Bradford, 2007; Awad, Fink,
Williams, & Kim, 2001; Awad & Fink, 2000; Alappat, Valerio, &
Awad, 2010; Cilla, Attanzio, Barber�a, Tesoriere, & Livrea, 2015;
Martins, Silva, Novaes, & Ito, 2004; Schr€oder & Vetter, 2012;
Woyengo, Ramprasath, & Jones, 2009).
3.6. Fatty acids

Table 7 shows the results of the fatty acid quantification from
the sesame oil obtained by solvent extraction, pressing and
ds.

Total phytosterols (mg 100 g�1)

igmasterol Sitosterol

8.49a ± 1.30 173.78ab ± 7.20 237.56ab ± 7.45
9.50a ± 0.77 164.61b ± 4.02 222.04b ± 7.16
9.61a ± 4.24 182.43a ± 9.36 248.96a ± 11.10

dicate significant difference at 95% by the Tukey test (p < 0.05).



Table 7
Fatty acid quantification of sesame oil.

Fatty acids Method (mg g�1 total lipids)

Solvents Pressing Enzymatic

14:0 0.171b ± 0.008 0.195a ± 0.008 0.169b ± 0.005
16:0 96.112a ± 1.430 94.131ab ± 0.289 93.786b ± 0.651
16:1n-7 1.534a ± 0.045 1.402b ± 0.017 1.510a ± 0.033
17:0 0.377a ± 0.019 0.439a ± 0.013 0.410a ± 0.017
18:0 53.191a ± 0.735 45.969b ± 0.457 51.972a ± 0.369
18:1n-9 366.047b ± 1.999 373.633a ± 2.218 362.202b ± 1.570
18:1n-7 5.491c ± 0.106 6.204a ± 0.086 5.844b ± 0.023
18:2n-6 428.127b ± 1.632 429.154b ± 1.203 433.397a ± 1.466
18:3n-3 2.725c ± 0.077 3.312a ± 0.035 2.884b ± 0.021
20:0 5.395a ± 0.127 4.740b ± 0.024 5.202a ± 0.182
20:1n-9 1.368b ± 0.007 1.430a ± 0.024 1.367b ± 0.013
20:4n-6 1.060a ± 0.004 0.859b ± 0.020 1.031a ± 0.041
24:0 0.645a ± 0.011 0.588b ± 0.041 0.504c ± 0.026
Summations and ratio (mg g�1 total lipids)
SFA 155.927a ± 1.614 146.062c ± 0.542 152.044b ± 0.760
MUFA 373.914b ± 2.001 382.197a ± 2.219 370.422b ± 1.570
PUFA 431.911b ± 1.634 433.325b ± 1.203 437.312a ± 1.467
n-6 429.186b ± 1.632 430.013b ± 1.203 434.428a ± 1.467
n-3 2.725c ± 0.077 3.312a ± 0.035 2.884b ± 0.021
PUFA/SFA 2.770c± 0.031 2.967a ± 0.014 2.876b ± 0.017

Mean ± standard deviation of triplicate analyses. Different letters in the same line
indicate significant difference at 95% by the Tukey test (p < 0.05). SFA: total satu-
rated fatty acids; MUFA: total monounsaturated fatty acids; PUFA: total poly-
unsaturated fatty acids; n-6: total omega-6 fatty acids; n-3: total of omega-3 fatty
acids.
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enzymatic aqueous extraction.
The fatty acids identified for the sesame oil, in which the major

acids were 16:0, 18:0, 18:1ne9 and 18:2ne6, are in accordance with
the profiles reported in previous studies (Aued-Pimentel, Takemoto,
Antoniassi,& Badolato, 2006; Botelho et al., 2014; Corso et al., 2010).
Fig. 2. Eigenvalue values (A) and principal component analysis
The enzymatic aqueous extraction showed the highest levels of
polyunsaturated fatty acids (PUFA) and omega-6 (n-6),
437.312 mg g�1 and 434.428 mg g�1, respectively, compared with
conventional extraction methods. The main fatty acid responsible
for these sums was linoleic acid (18:2ne6), considered as a strictly
essential fatty acid. The fatty acid quantification of sesame oil
extracted using solvents showed the highest sum of saturated fatty
acids (SFA) and one of the smallest sums of polyunsaturated fatty
acids (PUFA). Polyunsaturated fatty acids are considered healthier
compared to saturated (Lawrence, 2010), therefore in evaluating
these points and the PUFA/SFA ratio, the enzymatic aqueous
extraction proved to be a methodology able to extract oil with a
better quality compared to techniques using solvents.

3.7. Principal components analysis (PCA)

A PCA analysis was applied to confirm the effects of different
extraction techniques. Loadings were referred to as SFA, TPS (total
phytosterols), n-6, n-3 (omega-3), PUFA, MUFA (total mono-
unsaturated fatty acids), DPPH and L-ORAC assays and the scores
were the different extraction techniques (S: solvents, P: pressing
and E: enzymatic aqueous extraction). PCA plots for the data ob-
tained are shown in Fig. 2.

In Fig. 2A, the first principal component (PC1) had the highest
eigenvalue, 5.15, and accounted for 64.47% of the variability in the
data set. The second (PC2) had an eigenvalue of 2.84 and accounted
for 35.52% of the variance in the data. Following the Kaiser's rule, an
eigenvalue greater than 1.0 is considered a significant descriptor of
data variance. The remaining six generated PCs (PC3ePC8) yielded
progressively smaller eigenvalues (P < 1), so PC1 and PC2 better
describe the data.

In the PCA plot with two components, the data shows that the
techniques are significantly different, comparing the composition
biplot (B) of different techniques of sesame oil extraction.
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of the sesame oils (Fig. 2B). Enzymatic aqueous extraction
approximated the maximum values of ne6, L-ORAC, TPS, PUFA and
DPPH, showing a good correlationwith these analyses, compared to
the other extraction techniques. Pressing extraction, on the other
hand, approximated the maximum values of MUFA and ne3, and
solvent extraction showed the highest composition of SFA. So, PCA
confirmed that the quality of sesame oil can be improved by
applying enzymatic aqueous extraction.

4. Conclusions

Aimed at obtaining vegetable oil with higher quality using
methods without any toxic solvents during the process, the enzy-
matic aqueous extraction proved to be an alternative methodology
for sesame oil. This extraction revealed superior quality oil,
improving the antioxidant capacity, contents of total phytosterols,
total polyunsaturated fatty acids and omegae6, compared to oil
obtained using conventional methods.

The factorial design showed a significantmathematical model in
terms of the studied factors: enzymes concentration, sample/water
ratio and extraction time. The levels that showed the higher yield
(36.65%) were 10 mL 100 mL�1 of pectinase and protease enzymes,
a sample/water ratio 1/6 and 8 h of extraction for each step of the
analysis.

The conventional methods showed higher extraction yield,
however, considering that most of the methods for extraction of
vegetable oils utilize solvents, it is interesting to develop and
enhance new technologies that are able to extract oils that preserve
the bioactive compounds naturally present, reducing contamina-
tion by toxic solvents and minimizing the damages to the envi-
ronment. In light of these facts, the enzymatic aqueous extraction
process could be optimized in order to obtain products with high
quality and industrial application.
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