Left-continuity of t-norms on the n-dimensional Euclidean cube

Guojun Wang ${ }^{\text {a,b,* }}$, Wei Wang ${ }^{\text {c }}$
${ }^{\text {a }}$ Institute of Mathematics, Shaanxi Normal University, Xi'an 710062, China
${ }^{\text {b }}$ Shanghai Key Laboratory of Trustworthy Computing, Shanghai 200062, China
${ }^{\text {c }}$ Information and Education Technology Center, Xi'an University of Finance and Economics, Xi'an 710061, China

A R TICLE INFO

Article history:

Received 10 April 2009
Received in revised form 1 December 2009
Accepted 4 December 2009

Keywords:

t-norm
Euclidean cube
Left-continuity
Direct-sup-preserving

Abstract

Left-continuity of t-norms on the unit interval $[0,1]$ is equivalent to the property of suppreserving, but this equivalence does not hold for t-norms on the n-dimensional Euclidean cube $[0,1]^{n}$ for $n \geq 2$. Based on the concept of direct poset we prove that a t-norm on $[0,1]^{n}$ is left-continuous if and only if it preserves direct sups.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

An increasing mapping $f:[0,1] \longrightarrow[0,1]$ is left-continuous if and only if f is sup-preserving, i.e., $f(\sup Z)=$ $\sup f(Z)(Z \subseteq[0,1])$ [1], especially, a t-norm $T[2]$ on $[0,1]$ is left-continuous if and only if T preserves sups (or, T is infinitely distributive, or, equivalently, T satisfies the residuation principle [1]). But this is no longer true for t-norms on the n-dimensional Euclidean cube $[0,1]^{n}$ as shown by the Counterexample 4.1 of the present paper. Then a natural question arises: does there exist any interrelations between left-continuity and certain kind of sup-preserving property for t-norms on $[0,1]^{n}(n \geq 2)$? The aim of the present paper is to give a positive answer to this question for t-norms on $[0,1]^{n}$. We prove that a t-norm T on $[0,1]^{n}$ is left-continuous if and only if T preserves direct sups.

2. Preliminaries

Throughout this paper we assume that L is a complete lattice and 1,0 , are the largest element and the least element of L, respectively.

Definition 2.1 ([3,2]). A triangular norm T (briefly t-norm) on L is a binary operator which is commutative, associative, monotone and has the neutral element 1.

For the sake of convenience, we use $a \otimes b$ instead of $T(a, b)$, then \otimes is a t-norm on L if the following conditions are satisfied:
(i) $a \otimes b=b \otimes a$;
(ii) $(a \otimes b) \otimes c=a \otimes(b \otimes c)$;

[^0](iii) if $b \leq c$, then $a \otimes b \leq a \otimes c$;
(iv) $a \otimes 1=a$,
where $a, b, c \in L$.
Definition 2.2. Let \otimes be a t-norm on L.
(i) If for every non-empty subset Z of L
\[

$$
\begin{equation*}
a \otimes \sup \{z \mid z \in Z\}=\sup \{a \otimes z \mid z \in Z\}, \quad a \in L \tag{1}
\end{equation*}
$$

\]

then we say \otimes is sup-preserving, or \otimes preserves sups.
(ii) Let D be a non-empty subset of L, if $\forall a, b \in L$ there exists $c \in L$ such that $a \leq c$ and $b \leq c$, then D is said to be a directed set. If (1) holds for directed set Z, then we say that \otimes is direct-sup-preserving (briefly, dsup-preserving), or \otimes preserves direct sups (briefly, \otimes preserves dsups).

Definition 2.3. Let \otimes be a t-norm on L and d be a metric on L. If $\forall \beta \in L$

$$
\begin{equation*}
\lim _{x \rightarrow \beta, x \leq \beta}(a \otimes x)=a \otimes \beta, \quad a \in L . \tag{2}
\end{equation*}
$$

Then \otimes is called left-continuous.

3. Triangular norms on the \boldsymbol{n}-dimensional Euclidean cube $[\mathbf{0}, 1]^{\boldsymbol{n}}$

Definition 3.1. Let $[0,1]^{n}$ be the n-dimensional Euclidean cube, define partial order \leq on $[0,1]^{n}$ pointwisely, i.e., $\forall x, y \in$ $[0,1]^{n}$,

$$
\begin{equation*}
x \leq y \quad \text { iff } x_{i} \leq y_{i}(i=1, \ldots, n) \tag{3}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$. Then $\left([0,1]^{n}, \leq\right)$ is a complete lattice, and $1=(1, \ldots, 1), 0=(0, \ldots, 0)$ are the greatest element and least element of $[0,1]^{n}$, respectively. Moreover, the metric d on $[0,1]^{n}$ is defined as follows:

$$
\begin{equation*}
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}, \tag{4}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$.
In the rest of the present paper, $\forall a \in[0,1]^{n}, a_{i}$ means the i th coordinate of a.
Note that suppose Z is a non-empty subset of the unit interval $[0,1]$ and $\sup Z=\beta$, then $\forall \varepsilon>0$ there exists $z_{0} \in Z$ such that $\left|\beta-z_{0}\right|<\varepsilon$. But this is not true for non-empty subset Z of $[0,1]^{n}$ whenever $n \geq 2$. In fact, suppose that $n=2$, $Z=\{a, b\}$, where $a=(0,1), b=(1,0)$, then $\beta=\sup Z=(1,1)$, but $d(\beta, a)=1=d(\beta, b)$, hence there is no element $z_{0} \in Z$ such that $d\left(\beta, z_{0}\right)<\varepsilon$ when $\varepsilon<1$. However, the situation for directed subset is much better as shown by the following Lemma 3.2. To prove it, we need a simple Lemma 3.1.

Lemma 3.1. Suppose that $x, y, z \in[0,1]^{n}$, then

$$
\begin{equation*}
x \leq y \leq z \Longrightarrow d(y, z) \leq d(x, z) \tag{5}
\end{equation*}
$$

Proof. It follows from (4) and $x \leq y \leq z$ that $d(y, z)=\sqrt{\left(z_{1}-y_{1}\right)^{2}+\cdots+\left(z_{n}-y_{n}\right)^{2}} \leq \sqrt{\left(z_{1}-x_{1}\right)^{2}+\cdots+\left(z_{n}-x_{n}\right)^{2}}=$ $d(x, z)$.

Lemma 3.2. Let D be a directed subset of $[0,1]^{n}$ and $\beta=\sup D$, then $\forall \varepsilon>0$ there exists $x^{*} \in D$ such that $d\left(\beta, x^{*}\right)<\varepsilon$. Moreover, if $y \in D$ and $x^{*} \leq y$, then $d(\beta, y)<\varepsilon$.

Proof. Suppose that D is a directed subset of $[0,1]^{n}, \beta=\sup D$ and $\varepsilon>0$. Since the order on $[0,1]^{n}$ is pointwisely defined, it follows that

$$
\begin{equation*}
\sup \left\{x_{i} \mid x \in D\right\}=\beta_{i}, \quad i=1, \ldots, n \tag{6}
\end{equation*}
$$

Hence there exists $x(i) \in D$ such that

$$
\begin{equation*}
0 \leq \beta_{i}-(x(i))_{i}<\frac{\varepsilon}{\sqrt{n}}, \quad i=1, \ldots, n . \tag{7}
\end{equation*}
$$

Since D is a directed subset it follows that there exists $x^{*} \in D$ such that

$$
\begin{equation*}
x(i) \leq x^{*} \leq \beta, \quad i=1, \ldots, n \tag{8}
\end{equation*}
$$

Therefore we have from (8) and (7) that

$$
0 \leq \beta_{i}-x_{i}^{*}<\frac{\varepsilon}{\sqrt{n}}, \quad i=1, \ldots, n
$$

Hence

$$
d\left(\beta, x^{*}\right)=\sqrt{\left(\beta_{1}-x_{1}^{*}\right)^{2}+\cdots+\left(\beta_{n}-x_{n}^{*}\right)^{2}}<\sqrt{n\left(\frac{\varepsilon}{\sqrt{n}}\right)^{2}}=\varepsilon
$$

Suppose $y \in D$ and $x^{*} \leq y$, then it follows from Lemma 3.1 that $d(\beta, y) \leq d\left(\beta, x^{*}\right)<\varepsilon$.

4. A necessary and sufficient condition for \boldsymbol{t}-norms on $[0,1]^{\boldsymbol{n}}$ being left-continuous

To prove the main result, we need one more lemma.

Lemma 4.1. Suppose that

$$
(0,1]^{n}=\left\{x \in[0,1]^{n} \mid 0 \ll x\right\}
$$

where $x \ll y$ is defined by $x_{i}<y_{i}(i=1, \ldots, n)$. Let \otimes be a dsup-preserving t-norm on $[0,1]^{n}$ and be left-continuous on $(0,1]^{n}$, then \otimes is left-continuous on $[0,1]^{n}$.
Proof. We prove Lemma 4.1 by induction. If $n=1, \otimes$ is left-continuous on $(0,1]$, then it is left-continuous on [0,1] because $x \leq 0$ if and only if $x=0$ and \otimes is certainly left-continuous at 0 .

Now assume that Lemma 4.1 is valid for $n=k$ and \otimes is dsup-preserving on $[0,1]^{k+1}$ and is left-continuous on $(0,1]^{k+1}$. For $i=1,2, \ldots, k+1$, let

$$
E_{i}=\left\{x \in[0,1]^{k+1} \mid x_{i}=0\right\}
$$

and

$$
E=\bigcup_{i=1}^{k+1} E_{i}
$$

then each E_{i} is a lower set in I^{k+1} and $E \cup(0,1]^{k+1}=I^{k+1}$. It is clear that each E_{i} is a k-dimensional boundary side face of $[0,1]^{k+1}$ and thus E_{i} and $[0,1]^{k}$ are isometric. Let $\beta \in E$, then there exists $i \leq k+1$ such that $\beta \in E_{i}$. Without any loss of generality we can suppose that $i=k+1$, i.e., $\beta \in E_{k+1}$. It is clear that for $x \in[0,1]^{k+1}, x \leq \beta$ imply that $x \in E_{k+1}$. Since E_{k+1} and $[0,1]^{k}$ are isometric, \otimes is dsup-preserving and left-continuous on $(0,1]^{k} \subset(0,1]^{k+1}$, therefore it follows from the induction hypothesis that \otimes is left-continuous on E_{k+1}. Since $E \cup(0,1]^{k+1}=[0,1]^{k+1}, \otimes$ is left-continuous on $[0,1]^{k+1}$. This proves Lemma 4.1.

Theorem 4.1. Let \otimes be a t-norm on $[0,1]^{n}$, then \otimes is left-continuous if and only if \otimes preserves dsups.
Proof. Suppose that \otimes is left-continuous, D is a directed subset of $[0,1]^{n}, \beta=\sup D$ and

$$
\begin{equation*}
\sup \{a \otimes x \mid x \in D\} \neq a \otimes \beta \tag{9}
\end{equation*}
$$

Let

$$
\begin{equation*}
\alpha=\sup \{a \otimes x \mid x \in D\} \tag{10}
\end{equation*}
$$

then it follows from (9) and the monotonicity of \otimes and $\beta=\sup D$ that $\alpha<a \otimes \beta$. Hence

$$
\begin{equation*}
d(\alpha, a \otimes \beta)=\delta>0 \tag{11}
\end{equation*}
$$

Suppose that $x, y \in D$, then there exists $z \in D$ such that $x \leq z$ and $y \leq z$, hence $a \otimes x \leq a \otimes z$ and $a \otimes y \leq a \otimes z$, and $\{a \otimes z \mid x \in D\}$ is a directed subset of $[0,1]^{n}$. Then it follows from (10) and Lemma 3.2 that there exists $x^{*} \in D$ such that $d\left(a \otimes x^{*}, \alpha\right)<\frac{\delta}{2}$. Since \otimes is left-continuous it follows that there is $\varepsilon>0$ such that

$$
\begin{equation*}
d(\beta, x)<\varepsilon, x \leq \beta \Longrightarrow d(a \otimes x, a \otimes \beta)<\frac{\delta}{2} \tag{12}
\end{equation*}
$$

Let x be any element of D satisfying the above condition. Since D is directed there exists $\bar{x} \in D$ such that $x \leq \bar{x}, x^{*} \leq \bar{x}$. Then it follows from (10) that $a \otimes x^{*} \leq a \otimes \bar{x} \leq \alpha$, hence it follows from Lemma 3.1 that

$$
d(a \otimes \bar{x}, \alpha) \leq d\left(a \otimes x^{*}, \alpha\right)<\frac{\delta}{2}
$$

Moreover, since $\bar{x} \in D, \beta=\sup D$, we have $\bar{x} \leq \beta, a \otimes x \leq a \otimes \bar{x} \leq a \otimes \beta$ and it follows from Lemma 3.1 and (12) that

$$
\begin{equation*}
d(a \otimes \bar{x}, a \otimes \beta) \leq d(a \otimes x, a \otimes \beta)<\frac{\delta}{2} \tag{13}
\end{equation*}
$$

Then we have from (11) and (13) that

$$
d(\alpha, a \otimes \beta) \leq d(\alpha, a \otimes \bar{x})+d(a \otimes \bar{x}, a \otimes \beta)<\frac{\delta}{2}+\frac{\delta}{2}=\delta .
$$

This contradicts (11). Hence (9) does not hold and \otimes is dsup-preserving.
Conversely, suppose that \otimes is dsup-preserving on $[0,1]^{n}$, we are to prove that \otimes is left-continuous on $[0,1]^{n}$. By Lemma 4.1 , we only need to prove that \otimes is left-continuous on $(0,1]^{n}$.

Suppose that $\beta \in(0,1]^{n}$, let $D=\left\{x \in(0,1]^{n} \mid x \ll \beta\right\}$, then it is easy to verify that D is a directed subset of $(0,1]^{n}$ and $\beta=\sup D$. Since \otimes preserves dsups we have

$$
\begin{equation*}
a \otimes \beta=a \otimes \sup D=\sup \{a \otimes x \mid x \in D\} \tag{14}
\end{equation*}
$$

Note that $\{a \otimes x \mid x \in D\}$ is a directed subset of $[0,1]^{n}$, it follows from (14) and Lemma 3.2 that for any given positive number ε there exists an $x^{*} \in D$ such that

$$
\begin{equation*}
d\left(a \otimes x^{*}, a \otimes \beta\right)<\varepsilon \tag{15}
\end{equation*}
$$

Then $\forall y \in D, x^{*} \leq y$ implies that $a \otimes x^{*} \leq a \otimes y \leq a \otimes \beta$, hence by Lemma 3.1 and (15) we have

$$
d(a \otimes y, a \otimes \beta) \leq d\left(a \otimes x^{*}, a \otimes \beta\right)<\varepsilon
$$

This proves that

$$
\begin{equation*}
x^{*} \leq y \ll \beta \Longrightarrow d(a \otimes y, a \otimes \beta)<\varepsilon \tag{16}
\end{equation*}
$$

Since $x^{*} \ll \beta$ we have

$$
\begin{equation*}
\min \left\{\beta_{1}-x_{1}^{*}, \ldots, \beta_{n}-x_{n}^{*}\right\}=\delta>0 \tag{17}
\end{equation*}
$$

Suppose that $z \in(0,1]^{n}$, define

$$
\downarrow z=\left\{x \in[0,1]^{n} \mid x \leq z\right\}, \Downarrow z=\left\{x \in[0,1]^{n} \mid x \ll z\right\}
$$

then it is clear that $\Downarrow z \neq \emptyset, \Downarrow z \subseteq \downarrow z$ and $\Downarrow z$ is a dense subset of $\downarrow z$ with respect to the topology generated by the Euclidean metric d on $(0,1]^{n}$. Now suppose that $x \in(0,1]^{n}, x \leq \beta$ and $d(\beta, x)<\delta$, then

$$
x \in \mathbf{B}(\beta, \delta)=\left\{\gamma \in(0,1]^{n} \mid d(\beta, \gamma)<\delta\right\} .
$$

Since x is an interior point of $\mathbf{B}(\beta, \delta)$ there exists $\eta>0$ such that $\mathbf{B}(x, \eta) \subseteq \mathbf{B}(\beta, \delta)$. Since $x \in(0,1]^{n}, \Downarrow x \neq \emptyset$. Choose $y \in \Downarrow x \cap \mathbf{B}(x, \eta)$, then $y \ll x$ and it follows from $x \leq \beta$ that $y \ll \beta$. Moreover, it follows from $y \in \mathbf{B}(x, \eta) \subseteq \mathbf{B}(\beta, \delta)$ that $d(\beta, y)<\delta$, hence

$$
\begin{equation*}
\beta_{i}-y_{i}=\sqrt{\left(\beta_{i}-y_{i}\right)^{2}} \leq d(\beta, y)<\delta, \quad i=1, \ldots, n \tag{18}
\end{equation*}
$$

From (17) and (18) we have $x^{*}<y$, and hence we have from (16) that $d(a \otimes y, a \otimes \beta)<\varepsilon$. Since $y \leq x \leq \beta$, it follows from Lemma 3.1 that $d(a \otimes x, a \otimes \beta)<\varepsilon$. Now we have proved that if $\beta \in(0,1]^{n}$, then for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
x \in(0,1]^{n}, x \leq \beta, d(\beta, x) \leq \delta \Longrightarrow d(a \otimes x, a \otimes \beta)<\varepsilon
$$

Therefore \otimes is left-continuous on $(0,1]^{n}$. This completes the proof.
The following example shows that left-continuity of t-norms on $[0,1]^{n}$ does not imply the property of sup-preserving.
Counterexample 4.1. Define a binary relation \otimes on $[0,1]^{n}$ as follows:

$$
\begin{equation*}
\left(x_{1}, x_{2}\right) \otimes\left(y_{1}, y_{2}\right)=\left(\left(x_{1}+x_{2}+y_{1}+y_{2}-x_{2} y_{2}-2\right) \vee 0, x_{2} y_{2}\right) \tag{19}
\end{equation*}
$$

It is clear that \otimes is commutative and increasing, and has $(1,1)$ as its neutral element. Denote the right hand side of (19) by $\left(x_{1}^{*}, x_{2}^{*}\right)$, then

$$
\begin{equation*}
\left(\left(x_{1}, x_{2}\right) \otimes\left(y_{1}, y_{2}\right)\right) \otimes\left(z_{1}, z_{2}\right)=\left(\left(x_{1}^{*}+x_{2}^{*}+z_{1}+z_{2}-x_{2}^{*} z_{2}-2\right) \vee 0, x_{2}^{*} z_{2}\right) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{1}^{*}+x_{2}^{*}+z_{1}+z_{2}-x_{2}^{*} z_{2}-2=\left(x_{1}+x_{2}+y_{1}+y_{2}-x_{2} y_{2}-2\right) \vee 0+z_{1}+z_{2}-x_{2} y_{2} z_{2}-2, x_{2}^{*} z_{2}=x_{2} y_{2} z_{2} \tag{21}
\end{equation*}
$$

We use (u_{1}, u_{2}) to denote the right hand side of (20), and let $a=x_{1}+x_{2}+y_{1}+y_{2}-x_{2} y_{2}-2$, then in case $a \geq 0$ we have from (21) that

$$
\begin{equation*}
\left(u_{1}, u_{2}\right)=\left(\left(x_{1}+x_{2}+y_{1}+y_{2}+z_{1}+z_{2}-x_{2} y_{2} z_{2}-4\right) \vee 0, x_{2} y_{2} z_{2}\right) \tag{22}
\end{equation*}
$$

If $a<0$, then

$$
\left(x_{1}+x_{2}+y_{1}+y_{2}-x_{2} y_{2}-2\right) \vee 0+z_{1}+z_{2}-x_{2} y_{2} z_{2}-2=z_{1}+z_{2}\left(1-x_{2} y_{2}\right)-2 \leq 0
$$

and

$$
\begin{aligned}
x_{1}+x_{2}+y_{1}+y_{2}+z_{1}+z_{2}-x_{2} y_{2} z_{2}-4 & =\left(x_{1}+x_{2}+y_{1}+y_{2}-x_{2} y_{2}-2\right)+z_{1}+z_{2}+x_{2} y_{2}+2-x_{2} y_{2} z_{2}-4 \\
& <z_{1}+x_{2} y_{2}+z_{2}\left(1-x_{2} y_{2}\right)-2 \leq 0
\end{aligned}
$$

hence (22) still holds. Similarly, we have
$\left(x_{1}, x_{2}\right) \otimes\left(\left(y_{1}, y_{2}\right) \otimes\left(z_{1}, z_{2}\right)\right)=\left(u_{1}, u_{2}\right)$,
therefore \otimes is associative and hence a t-norm on $[0,1]^{2}$. It is clear that \otimes is continuous. But \otimes is not sup-preserving. The verification of this fact is simpler than that given in [1]. In fact, let $a=(0.5,0.5), Z=\{b, c\}$, where $b=(1.0), c=(0,1)$, then $\sup Z=(1,1)$, and Z is not a directed subset of $[0,1]^{2}$. Since
$a \otimes \sup Z=a \otimes(1,1)=a=(0.5,0.5)$,
and by (19),
$a \otimes(0,1)=(0.5,0.5) \otimes(0,1)=(0,0.5)$,
$a \otimes(1,0)=(0.5,0.5) \otimes(1,0)=(0,0)$,
hence
$\sup \{a \otimes z \mid z \in Z\}=(0,0.5) \vee(0,0)=(0,0.5)$.
Therefore (1) does not hold, i.e., \otimes is not sup-preserving.

5. Conclusion

In the present paper we have proved that a t-norm on the n-dimensional Euclidean cube $[0,1]^{n}$ is left-continuous if and only if it is dsup-preserving. Moreover, we have constructed a simpler counterexample showing that continuity of t-norms on $[0,1]^{2}$ does not guarantee the property of sup-preserving.

Acknowledgements

The authors wish to express their sincere thanks to the anonymous referees for their suggestions which improve the presentation of this paper.

References

[1] G.J. Wang, Introduction to Mathematical Logic and Resolution Principle, Science Press, Beijing, 2008.
[2] B. Schweizer, A. Sklar, Probability Metric Space, North-Holland, New york, 1983.
[3] E.P.K lement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrent, 2000.

[^0]: th Project supported by the NSF of China under the Grant 10771129 and the 211 Construction Found of Shaanxi Normal University.

 * Corresponding author at: Institute of Mathematics, Shaanxi Normal University, Xi’an 710062, China. Tel.: +86 2985308626.

 E-mail address: gjwang@snnu.edu.cn (G. Wang).

