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a b s t r a c t

Left-continuity of t-norms on the unit interval [0, 1] is equivalent to the property of sup-
preserving, but this equivalence does not hold for t-norms on the n-dimensional Euclidean
cube [0, 1]n for n ≥ 2. Based on the concept of direct poset we prove that a t-norm on
[0, 1]n is left-continuous if and only if it preserves direct sups.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

An increasing mapping f : [0, 1] −→ [0, 1] is left-continuous if and only if f is sup-preserving, i.e., f (sup Z) =
sup f (Z)(Z ⊆ [0, 1]) [1], especially, a t-norm T [2] on [0, 1] is left-continuous if and only if T preserves sups (or, T is
infinitely distributive, or, equivalently, T satisfies the residuation principle [1]). But this is no longer true for t-norms on the
n-dimensional Euclidean cube [0, 1]n as shown by the Counterexample 4.1 of the present paper. Then a natural question
arises: does there exist any interrelations between left-continuity and certain kind of sup-preserving property for t-norms
on [0, 1]n(n ≥ 2)? The aim of the present paper is to give a positive answer to this question for t-norms on [0, 1]n. We prove
that a t-norm T on [0, 1]n is left-continuous if and only if T preserves direct sups.

2. Preliminaries

Throughout this paper we assume that L is a complete lattice and 1, 0, are the largest element and the least element of L,
respectively.

Definition 2.1 ([3,2]). A triangular norm T (briefly t-norm) on L is a binary operator which is commutative, associative,
monotone and has the neutral element 1.
For the sake of convenience, we use a ⊗ b instead of T (a, b), then ⊗ is a t-norm on L if the following conditions are

satisfied:

(i) a⊗ b = b⊗ a;
(ii) (a⊗ b)⊗ c = a⊗ (b⊗ c);
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(iii) if b ≤ c , then a⊗ b ≤ a⊗ c;
(iv) a⊗ 1 = a,

where a, b, c ∈ L.

Definition 2.2. Let⊗ be a t-norm on L.
(i) If for every non-empty subset Z of L

a⊗ sup{z | z ∈ Z} = sup{a⊗ z | z ∈ Z}, a ∈ L, (1)

then we say⊗ is sup-preserving, or⊗ preserves sups.
(ii) Let D be a non-empty subset of L, if ∀a, b ∈ L there exists c ∈ L such that a ≤ c and b ≤ c , then D is said to be

a directed set. If (1) holds for directed set Z , then we say that ⊗ is direct-sup-preserving (briefly, dsup-preserving), or ⊗
preserves direct sups (briefly,⊗ preserves dsups).

Definition 2.3. Let⊗ be a t-norm on L and d be a metric on L. If ∀β ∈ L

lim
x→β,x≤β

(a⊗ x) = a⊗ β, a ∈ L. (2)

Then⊗ is called left-continuous.

3. Triangular norms on the n-dimensional Euclidean cube [0, 1]n

Definition 3.1. Let [0, 1]n be the n-dimensional Euclidean cube, define partial order ≤ on [0, 1]n pointwisely, i.e., ∀x, y ∈
[0, 1]n,

x ≤ y iff xi ≤ yi (i = 1, . . . , n), (3)

where x = (x1, . . . , xn), y = (y1, . . . , yn). Then ([0, 1]n,≤) is a complete lattice, and 1 = (1, . . . , 1), 0 = (0, . . . , 0) are the
greatest element and least element of [0, 1]n, respectively. Moreover, the metric d on [0, 1]n is defined as follows:

d(x, y) =
√
(x1 − y1)2 + · · · + (xn − yn)2, (4)

where x = (x1, . . . , xn), y = (y1, . . . , yn).

In the rest of the present paper, ∀a ∈ [0, 1]n, ai means the ith coordinate of a.
Note that suppose Z is a non-empty subset of the unit interval [0, 1] and sup Z = β , then ∀ε > 0 there exists zo ∈ Z

such that | β − zo |< ε. But this is not true for non-empty subset Z of [0, 1]n whenever n ≥ 2. In fact, suppose that n = 2,
Z = {a, b}, where a = (0, 1), b = (1, 0), then β = sup Z = (1, 1), but d(β, a) = 1 = d(β, b), hence there is no element
zo ∈ Z such that d(β, zo) < ε when ε < 1. However, the situation for directed subset is much better as shown by the
following Lemma 3.2. To prove it, we need a simple Lemma 3.1.

Lemma 3.1. Suppose that x, y, z ∈ [0, 1]n, then

x ≤ y ≤ z H⇒ d(y, z) ≤ d(x, z). (5)

Proof. It follows from (4) and x ≤ y ≤ z thatd(y, z) =
√
(z1 − y1)2 + · · · + (zn − yn)2 ≤

√
(z1 − x1)2 + · · · + (zn − xn)2 =

d(x, z). �

Lemma 3.2. Let D be a directed subset of [0, 1]n and β = supD, then ∀ε > 0 there exists x∗ ∈ D such that d(β, x∗) < ε.
Moreover, if y ∈ D and x∗ ≤ y, then d(β, y) < ε.

Proof. Suppose that D is a directed subset of [0, 1]n, β = supD and ε > 0. Since the order on [0, 1]n is pointwisely defined,
it follows that

sup{xi | x ∈ D} = βi, i = 1, . . . , n. (6)

Hence there exists x(i) ∈ D such that

0 ≤ βi − (x(i))i <
ε
√
n
, i = 1, . . . , n. (7)

Since D is a directed subset it follows that there exists x∗ ∈ D such that

x(i) ≤ x∗ ≤ β, i = 1, . . . , n. (8)

Therefore we have from (8) and (7) that

0 ≤ βi − x∗i <
ε
√
n
, i = 1, . . . , n.
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Hence

d(β, x∗) =
√
(β1 − x∗1)2 + · · · + (βn − x∗n)2 <

√
n
(
ε
√
n

)2
= ε.

Suppose y ∈ D and x∗ ≤ y, then it follows from Lemma 3.1 that d(β, y) ≤ d(β, x∗) < ε. �

4. A necessary and sufficient condition for t-norms on [0, 1]n being left-continuous

To prove the main result, we need one more lemma.

Lemma 4.1. Suppose that

(0, 1]n = {x ∈ [0, 1]n | 0� x},

where x� y is defined by xi < yi(i = 1, . . . , n). Let ⊗ be a dsup-preserving t-norm on [0, 1]n and be left-continuous on (0, 1]n,
then⊗ is left-continuous on [0, 1]n.

Proof. Weprove Lemma 4.1 by induction. If n = 1,⊗ is left-continuous on (0, 1], then it is left-continuous on [0, 1] because
x ≤ 0 if and only if x = 0 and⊗ is certainly left-continuous at 0.
Now assume that Lemma 4.1 is valid for n = k and⊗ is dsup-preserving on [0, 1]k+1 and is left-continuous on (0, 1]k+1.

For i = 1, 2, . . . , k+ 1, let

Ei = {x ∈ [0, 1]k+1|xi = 0},

and

E =
k+1⋃
i=1

Ei,

then each Ei is a lower set in Ik+1and E ∪ (0, 1]k+1 = Ik+1. It is clear that each Ei is a k-dimensional boundary side face of
[0, 1]k+1and thus Ei and [0, 1]k are isometric. Let β ∈ E, then there exists i ≤ k + 1 such that β ∈ Ei. Without any loss of
generality we can suppose that i = k + 1, i.e., β ∈ Ek+1. It is clear that for x ∈ [0, 1]k+1, x ≤ β imply that x ∈ Ek+1. Since
Ek+1 and [0, 1]k are isometric,⊗ is dsup-preserving and left-continuous on (0, 1]k ⊂ (0, 1]k+1, therefore it follows from the
induction hypothesis that ⊗ is left-continuous on Ek+1. Since E ∪ (0, 1]k+1 = [0, 1]k+1, ⊗ is left-continuous on [0, 1]k+1.
This proves Lemma 4.1. �

Theorem 4.1. Let ⊗ be a t-norm on [0, 1]n, then⊗ is left-continuous if and only if ⊗ preserves dsups.

Proof. Suppose that⊗ is left-continuous, D is a directed subset of [0, 1]n, β = supD and

sup{a⊗ x | x ∈ D} 6= a⊗ β. (9)

Let

α = sup{a⊗ x | x ∈ D}, (10)

then it follows from (9) and the monotonicity of⊗ and β = supD that α < a⊗ β . Hence

d(α, a⊗ β) = δ > 0. (11)

Suppose that x, y ∈ D, then there exists z ∈ D such that x ≤ z and y ≤ z, hence a ⊗ x ≤ a ⊗ z and a ⊗ y ≤ a ⊗ z, and
{a ⊗ z | x ∈ D} is a directed subset of [0, 1]n. Then it follows from (10) and Lemma 3.2 that there exists x∗ ∈ D such that
d(a⊗ x∗, α) < δ

2 . Since⊗ is left-continuous it follows that there is ε > 0 such that

d(β, x) < ε, x ≤ β H⇒ d(a⊗ x, a⊗ β) <
δ

2
. (12)

Let x be any element of D satisfying the above condition. Since D is directed there exists x̄ ∈ D such that x ≤ x̄, x∗ ≤ x̄.
Then it follows from (10) that a⊗ x∗ ≤ a⊗ x̄ ≤ α, hence it follows from Lemma 3.1 that

d(a⊗ x̄, α) ≤ d(a⊗ x∗, α) <
δ

2
.

Moreover, since x̄ ∈ D, β = supD, we have x̄ ≤ β, a⊗ x ≤ a⊗ x̄ ≤ a⊗ β and it follows from Lemma 3.1 and (12) that

d(a⊗ x̄, a⊗ β) ≤ d(a⊗ x, a⊗ β) <
δ

2
. (13)
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Then we have from (11) and (13) that

d(α, a⊗ β) ≤ d(α, a⊗ x̄)+ d(a⊗ x̄, a⊗ β) <
δ

2
+
δ

2
= δ.

This contradicts (11). Hence (9) does not hold and⊗ is dsup-preserving.
Conversely, suppose that ⊗ is dsup-preserving on [0, 1]n, we are to prove that ⊗ is left-continuous on [0, 1]n. By

Lemma 4.1, we only need to prove that⊗ is left-continuous on (0, 1]n.
Suppose that β ∈ (0, 1]n, let D = {x ∈ (0, 1]n | x� β}, then it is easy to verify that D is a directed subset of (0, 1]n and

β = supD. Since⊗ preserves dsups we have

a⊗ β = a⊗ supD = sup{a⊗ x | x ∈ D}. (14)

Note that {a ⊗ x | x ∈ D} is a directed subset of [0, 1]n, it follows from (14) and Lemma 3.2 that for any given positive
number ε there exists an x∗ ∈ D such that

d(a⊗ x∗, a⊗ β) < ε. (15)

Then ∀y ∈ D, x∗ ≤ y implies that a⊗ x∗ ≤ a⊗ y ≤ a⊗ β , hence by Lemma 3.1 and (15) we have

d(a⊗ y, a⊗ β) ≤ d(a⊗ x∗, a⊗ β) < ε.

This proves that

x∗ ≤ y� β H⇒ d(a⊗ y, a⊗ β) < ε. (16)

Since x∗ � β we have

min{β1 − x∗1, . . . , βn − x
∗

n} = δ > 0. (17)

Suppose that z ∈ (0, 1]n, define

↓ z = {x ∈ [0, 1]n | x ≤ z},⇓ z = {x ∈ [0, 1]n | x� z},

then it is clear that ⇓ z 6= ∅,⇓ z ⊆↓ z and ⇓ z is a dense subset of ↓ z with respect to the topology generated by the
Euclidean metric d on (0, 1]n. Now suppose that x ∈ (0, 1]n, x ≤ β and d(β, x) < δ, then

x ∈ B(β, δ) = {γ ∈ (0, 1]n | d(β, γ ) < δ}.

Since x is an interior point of B(β, δ) there exists η > 0 such that B(x, η) ⊆ B(β, δ). Since x ∈ (0, 1]n,⇓ x 6= ∅. Choose
y ∈⇓ x ∩ B(x, η), then y � x and it follows from x ≤ β that y � β . Moreover, it follows from y ∈ B(x, η) ⊆ B(β, δ) that
d(β, y) < δ, hence

βi − yi =
√
(βi − yi)2 ≤ d(β, y) < δ, i = 1, . . . , n. (18)

From (17) and (18) we have x∗ < y, and hence we have from (16) that d(a⊗ y, a⊗ β) < ε. Since y ≤ x ≤ β , it follows from
Lemma 3.1 that d(a ⊗ x, a ⊗ β) < ε. Now we have proved that if β ∈ (0, 1]n, then for any ε > 0, there exists δ > 0 such
that

x ∈ (0, 1]n, x ≤ β, d(β, x) ≤ δ H⇒ d(a⊗ x, a⊗ β) < ε.

Therefore⊗ is left-continuous on (0, 1]n. This completes the proof. �

The following example shows that left-continuity of t-norms on [0, 1]n does not imply the property of sup-preserving.

Counterexample 4.1. Define a binary relation⊗ on [0, 1]n as follows:

(x1, x2)⊗ (y1, y2) = ((x1 + x2 + y1 + y2 − x2y2 − 2) ∨ 0, x2y2). (19)

It is clear that⊗ is commutative and increasing, and has (1, 1) as its neutral element. Denote the right hand side of (19) by
(x∗1, x

∗

2), then

((x1, x2)⊗ (y1, y2))⊗ (z1, z2) = ((x∗1 + x
∗

2 + z1 + z2 − x
∗

2z2 − 2) ∨ 0, x
∗

2z2), (20)

where

x∗1 + x
∗

2 + z1 + z2 − x
∗

2z2 − 2 = (x1 + x2 + y1 + y2 − x2y2 − 2) ∨ 0+ z1 + z2 − x2y2z2 − 2, x
∗

2z2 = x2y2z2. (21)

We use (u1, u2) to denote the right hand side of (20), and let a = x1 + x2 + y1 + y2 − x2y2 − 2, then in case a ≥ 0 we have
from (21) that

(u1, u2) = ((x1 + x2 + y1 + y2 + z1 + z2 − x2y2z2 − 4) ∨ 0, x2y2z2). (22)



G. Wang, W. Wang / Applied Mathematics Letters 23 (2010) 479–483 483

If a < 0, then

(x1 + x2 + y1 + y2 − x2y2 − 2) ∨ 0+ z1 + z2 − x2y2z2 − 2 = z1 + z2(1− x2y2)− 2 ≤ 0,

and

x1 + x2 + y1 + y2 + z1 + z2 − x2y2z2 − 4 = (x1 + x2 + y1 + y2 − x2y2 − 2)+ z1 + z2 + x2y2 + 2− x2y2z2 − 4
< z1 + x2y2 + z2(1− x2y2)− 2 ≤ 0,

hence (22) still holds. Similarly, we have

(x1, x2)⊗ ((y1, y2)⊗ (z1, z2)) = (u1, u2),

therefore ⊗ is associative and hence a t-norm on [0, 1]2. It is clear that ⊗ is continuous. But ⊗ is not sup-preserving. The
verification of this fact is simpler than that given in [1]. In fact, let a = (0.5, 0.5), Z = {b, c}, where b = (1.0), c = (0, 1),
then sup Z = (1, 1), and Z is not a directed subset of [0, 1]2. Since

a⊗ sup Z = a⊗ (1, 1) = a = (0.5, 0.5),

and by (19),

a⊗ (0, 1) = (0.5, 0.5)⊗ (0, 1) = (0, 0.5),
a⊗ (1, 0) = (0.5, 0.5)⊗ (1, 0) = (0, 0),

hence

sup{a⊗ z | z ∈ Z} = (0, 0.5) ∨ (0, 0) = (0, 0.5).

Therefore (1) does not hold, i.e.,⊗ is not sup-preserving.

5. Conclusion

In the present paper we have proved that a t-norm on the n-dimensional Euclidean cube [0, 1]n is left-continuous if and
only if it is dsup-preserving. Moreover, we have constructed a simpler counterexample showing that continuity of t-norms
on [0, 1]2 does not guarantee the property of sup-preserving.
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