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Abstract

We describe some structural results for codes over the rings Zp and use them to examine lifts of
codes over these rings to Zpe and to codes over the p-adics. We determine the weight enumerator of
all lifts of the length 8 Hamming code and the length 12 ternary Golay code. We show that all weight
enumerators of the lifts of the length 24 Golay code can be determined after a finite computation.
© 2005 Elsevier B.V. All rights reserved.
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1. Codes over �pe

Numerous interesting results have been found for codes over the rings Zp. In [1], Calder-
bank and Sloane investigated codes over the p-adics and examined lifts of codes over Zp to
Zpe and to the p-adics. In this work we continue this investigation and examine the weight
enumerators and structures of these codes.

We begin with some definitions. Let p be a prime. A linear code C of length n over Zpe

is a submodule of Zn
pe . The (Hamming) weight wt(x) of a vector x = (xi) ∈ Zn

pe is the
number of nonzero entries of x and the support of x is the set supp(x) = {i|xi �= 0}. The
minimum distance d(C) of a code C is the smallest weight among nonzero codewords in
C. Let v1, . . . , vk ∈ V . The vectors v1, . . . , vk ∈ V are said to be modular independent if∑

aivi = 0 implies all ai are nonunits, i.e., p|ai for all i.
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A generator matrix for a code C over Zpe is permutation equivalent to a matrix of the
form which we refer to as the standard form:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik0 A01 A02 A03 . . . A0,e−1 A0e

0 pIk1
pA12 pA13 . . . pA1,e−1 pA1e

0 0 p2Ik2 p2A23 . . . p2A2,e−1 p2A2e

· · · · . . . · ·
0 0 0 0 . . . pe−1Ike−1 pe−1Ae−1,e

0 0 0 0 . . . 0 0Ike

· · · · . . . · ·
0 0 0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where the columns are grouped into square blocks of sizes k0, k1, . . . , ke−1, ke and the ki

are nonnegative integers adding to n.
Let C be a code. We say that the codewords v1, . . . , vk form a basis of C if they are

modular independent and generate C.
A matrix with a standard form in (1) is said to be of type

(1)k0(p)k1(p2)k2 · · · (pe−1)ke−10ke , (2)

omitting terms with zero exponents, if any. Often the 0ke is left off the type, but we retain it
since we use ke later. The number of nonzero rows is called the rank of M and denoted by
rank M . If the code is of type 1k for some k then we say that the code is a free code.

The type and the rank of a code C are defined to be the type and the rank of its generator
matrix. A code of length n with rank k is called an [n, k] code, or [n, k, d] code if we want
to specify its minimum distance d. If C has the type (1)k0(p)k1(p2)k2 · · · (pe−1)ke−1 over
Zpe , then

|C| = (pe)k0(pe−1)k1(pe−2)k2 · · · (p1)ke−1 . (3)

The dimension of the code C over Zpe is defined by dim C = logpe |C|. Note that dim C is
not necessarily an integer.

We say that a vector v ∈ C is said to be reduced if it contains an invertible element.

Definition 1.1. We define the inner product of x = (x1, . . . , xn) and y = (y1, . . . , yn)

in C by

x · y = x1y1 + · · · + xnyn (mod pe).

The dual code C⊥ of C is defined as

C⊥ = {x ∈ Zn
pe |x · y = 0 for all y ∈ C}.

C is self-dual if C = C⊥.

Now we shall consider codes over the infinite ring Zp∞ of p-adic integers. A linear code
C of length n over Zp∞ is a submodule of the free module Zn

p∞ . Note that Zp∞ is a principal
ideal domain. First we recall a theorem on the finitely generated modules over a principal
ideal domain.
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Theorem 1.2. Let R be a principal ideal domain, M be a free module of rank n over R and
C be a submodule of M. Then

(i) C is a free module of rank k�n and
(ii) there exists a basis y1, y2, . . . , yn of M so that d1y1, d2y2, . . . , dkyk is a basis of C,

where di are nonzero elements of R with the divisibility relations d1|d2| · · · |dk .

A code C of length n with rank k over Zp∞ is called a p-adic [n, k]-code. We call k the
dimension of C and denote by dim C = k. A k × n matrix whose rows form a basis of C is
called a generator matrix of C. As in the case of Zpe , G can be transformed into the standard
form

G =

⎡
⎢⎢⎢⎣

Ik0 A01 A02 A03 . . . A0,r−1 A0r

0 pIk1
pA12 pA13 . . . pA1,r−1 pA1r

0 0 p2Ik2 p2A23 . . . p2A2,r−1 p2A2r

· · · · . . . · ·
0 0 0 0 . . . pr−1Ikr−1 pr−1Ar−1,r

⎤
⎥⎥⎥⎦ , (4)

where the columns are grouped into blocks of sizes k0, k1, . . . , kr−1, kr = n − k, the ki are
nonnegative integers with

∑e
i=1 ki = n and kr−1 �= 0.

The innerproduct and the dual code are defined for p-adic codes as above except that the
computations are done over Zp∞ . As pointed out in [3], the dual of any p-adic [n, k] code
has type 1n−k , and hence (C⊥)⊥ �= C in general. If C⊥ = C, then C is called a self-dual
code.

The following theorem is proven for codes over the p-adics in [1] and for codes over
rings in [11].

Theorem 1.3. Let C be either a p-adic [n, k]-code or a code over Zpe of length n then

dim C + dim C⊥ = n.

In the next section we shall show how to determine weight enumerators and minimum
weights of liftings of codes. In preprint [5] similar results are obtained about the weight
enumerators of the liftings of codes over Zpe , specifically they determine symmetrized
weight enumerators for the lifted quadratic residue codes of length 24 modulo 2m and 3m

for any positive m. In [9] similar results on the minimum weights of lifts are obtained,
specifically they relate minimum weights and supports of minimum weight vectors for
codes over a finite chain ring and codes over its residue field. They show that the minimum
weight does not decrease for Hensel lifts of cyclic codes over the residue field.

2. Lifts of codes

Each element in the finite ring Zpe can be written uniquely as the finite sum

e−1∑
i=0

aip
i = a0 + a1p + a2p

2 + a3p
3 + · · · + ae−1p

e−1, (5)
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where 0�ai < p. Similarly any element in the ring Zp∞ can be written uniquely as the
infinite sum

∞∑
i=0

aip
i = a0 + a1p + a2p

2 + a3p
3 + · · · , (6)

where 0�ai < p. Define a map �e : Zp∞ → Zpe by

�e

( ∞∑
i=0

aip
i

)
=

e−1∑
i=0

aip
i . (7)

We use the same notation for the maps �e = �f
e : Zpf → Zpe defined by

�e

⎛
⎝f −1∑

i=0

aipi

⎞
⎠=

e−1∑
i=0

aip
i ,

where f �e. Clearly �e is a ring homomorphism.

Definition 2.1. Let 1�e1 �e2 be integers. An [n, k] code C1 over Zpe1 lifts to an [n, k]
code C2 over Zpe2 , denoted by C1 ≺ C2, if C2 has a generator matrix G2 such that �e1(G2)

is a generator matrix of C1.

The proof of the following is straightforward.

Lemma 2.2. Let M be a matrix over Zp∞ . If M ′ is a standard form of M, then �e(M
′) is

a standard form of �e(M).

Therefore, for a p-adic [n, k] code C of type 1k , Ce = �e(C) is an [n, k] code of type 1k

over Zpe . In this work we are generally concerned with codes over Zpe that are projections
of codes over the p-adics. As such, the codes we consider are free codes, that is codes of
type 1k .

Note that Ce ≺ Ce+1 for all e. Thus if a code C over Zp∞ of type 1k is given, then we
obtain a series

C1 ≺ C2 ≺ · · · ≺ Ce ≺ · · ·
of lifts of codes. Conversely, let C be an [n, k] code over Zp, and G = G1 be its generator
matrix. It is clear that we can define a series of generator matrices Ge ∈ Matk×n(Zpe ) such
that �e(Ge+1) = Ge. This defines a series of lifts Ce of C to Zpe for all finite e. Then this
series of lifts determines a unique p-adic code C such that Ce = Ce. Therefore, a p-adic
code of type 1k represents a series of lifts from a code over Zp. Even self-dual codes can be
lifted to self-dual codes. In fact, it is proven in [10] that any Type II binary self-dual code
can be lifted to a self-dual code, and it is proven in [3] that any nonbinary self-dual code
can be lifted to a self-dual code. For example, if G1 = (I |A1) is a generator matrix of C,
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then (I |Ae+1) is a generator matrix of Ce+1 � Ce, where

Ae+1 =
(

p + 3

2
I + p + 1

2
AeA

t
e

)
Ae.

For the rest of our paper, we consider only p-adic codes of type 1k .
Let C be a p-adic [n, k] code C of type 1k , and G, H be a generator matrix and a parity-

check matrix of C, respectively, such that GHT = 0. Let Ge = �e(G) and He = �e(H).
Then Ge, He are generator matrices and parity check matrices of Ce, respectively, such that
GeH

T
e = 0.

Lemma 2.3. Let f < e < ∞.

(i) pe−f Gf ≡ pe−f Ge (mod pe).
(ii) pe−f Hf ≡ pe−f He (mod pe).

Proof. Let xi be the row vectors of Gf and yi be the row vectors of Ge. Since Gf =�f (Ge),
we have xi ≡ yi (mod pf ). Thus pe−f xi ≡ pe−f yi (mod pe). This proves (i). The second
statement is proved similarly. �

Lemma 2.4. Let f < e < ∞.

(i) pe−fCf ⊂ Ce.
(ii) v = pf v0 ∈ Ce iff v0 ∈ Ce−f . Here, we are assuming that all components of v0 are

taken in Zpe−f .

(iii) ker �e
f = pfCe−f .

Proof. (i) If v ∈ Cf , then He(p
e−f v)T ≡ pe−f HevT ≡ pe−f Hf vT ≡ 0 (mod pe).

(ii) We have pf v0 ∈ Ce ⇐⇒ pf He(v0)
T ≡ 0 (mod pn) ⇐⇒ pf He−f vT

0 ≡
0 (mod pn) ⇐⇒ He−f vT

0 ≡ 0 (mod pe−f ) ⇐⇒ v0 ∈ Ce−f .
(iii) v ∈ ker �e

f if and only if v ∈ Ce and v = pf v0. Thus it follows from (ii). �

The third statement shows that the Hamming weight enumerator of the ker �e
f is equal

to the Hamming weight enumerator of Ce−f .
We now study weights of codewords in lifts of a code. Suppose f < e. By Lemma 2.4(i),

any weight of a codeword in Cf is a weight of a codeword in Ce. In other words, if v ∈ Cf ,
then there exists a w ∈ Ce such that wt(w) = wt(v). But the converse is not true in general,
as we can see in the next section. Neither is it true that a p-adic code C must have a
codeword of a given weight in Ce. In fact there are examples later in this paper of p-adic
codes whose minimum weight is larger than the minimum weight in Ce. However, we do
have the following theorem.

Theorem 2.5. For a p-adic code C

(i) the minimum distance d(Ce) of Ce is equal to d = d(C1) for all e < ∞.
(ii) the minimum distance d∞ = d(C) of C is at least d(C1).
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Proof. (i) Let v0 be a vector in C1 of weight d. By Lemma 2.4(iii), pe−1v0 is a codeword
of Ce of weight d. Thus d(Ce)�d for all e. We use induction on e and assume that d(Cj )=
d(C1) for all j �e. Suppose, on the contrary, that d(Ce+1) < d and let wt(v) < d for some
nonzero v ∈ Ce+1. Then wt(�e(v))�wt(v) < d. Since d(Ce)=d, we must have �e(v)=0
in Ce. This means that v = pev0. By Lemma 2.4(iii), we have that 0 �= v0 ∈ C1. Then
0 < w(v0) = w(v) < d, which is a contradiction.

(ii) Suppose there exists a nonzero codeword v ∈ C with wt(v) < d. For a sufficiently
large N, �N(v) �= 0. Then we would have 0 < w(�N(v))�w(v) < d, a contradiction. �

Now we discuss the number of codewords of minimum weight. First we need a few
lemmas.

Lemma 2.6. Let k and n be any positive integers and let M be a k×n matrix over Zpe whose
standard form has type (1)k0(p)k1(p2)k2 · · · (pe−1)ke−10ke . Then ker M ={x ∈ Zn

pe |MxT =
0} has cardinality

| ker M| = (1)k0(p)k1(p2)k2 · · · (pe−1)ke−1(pe)ke . (8)

Proof. Since the operations (R1), (R2), (R3) do not change the kernel and the operation
(C1) only changes the coordinate positions of the vectors in the kernel, we may assume that
M is in a standard form as in (4). We have that x = (x0, x1, . . . , xe) ∈ Zn

pe , where xi ∈ Z
ki

pe ,

is in ker M iff MxT = 0, i.e.

Ik0 xT
0 + A01xT

1 + · · · + A0,e−1xT
e−1 + A0exT

e ≡ 0 (mod pe) (9)

Ik1 xT
1 + · · · + A1,e−1xT

e−1 + A1exT
e ≡ 0 (mod pe−1) (10)

· · · (11)

Ike−2 xT
e−2 + Ae−2,e−1xT

e−1 + Ae−2,exT
e ≡ 0 (mod p2) (12)

Ike−1xT
e−1 + Ae−1,exT

e ≡ 0 (mod p). (13)

From these equations, we can see that xe ∈ Z
ke

pe can be set to be an arbitrary vector, and then

(13) determines xe−1 (mod p) in a unique way, and then (12) determines xe−2 (mod p2) in a
unique way, and so on. Therefore, | ker M|=(pe)ke×(pe−1)ke−1× · · · ×(p1)k1×(1)k0 . �

Note that | ker M| is the product of diagonal entries in the standard form, regarding 0’s,
if any, as pe.

If S ={i1, . . . , is} is a subset of {1, 2, . . . , n} and x is a vector of length n, then xS denotes
the vector of length s obtained from x by puncturing components outside S. For a given S
as above and a vector y = (y1, . . . , yk) of length s, yS ∈ Zn

pe denotes the vector obtained

by adjoining 0’s outside S, i.e., yS = (x1, x2, . . . , xn) where xi = 0 if i /∈ S, and xij = yj if
ij ∈ S.

Let H = (hi ) be the parity check matrix of an [n, k]-code C, where hi denotes the ith
column of H. Let HS = (hi )i∈S be the matrix whose columns are the ith columns of H for
i ∈ S. The following is clear from the definition of parity check matrix.
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Lemma 2.7. If x = (xj ) is a codeword of weight s, then HS(xS)T =∑
j∈Sxj hj = 0 where

S = supp(x) is the support of x. Conversely, if HSyT = 0, then yS is a codeword of weight
equal to wt(y).

Let C be a p-adic [n, k] code, H its parity check matrix and d be the minimum distance
of C1. For each subset S ⊂ {1, 2, . . . , n} of d elements, let H ′

S be the standard form of HS .
Since any d −1 columns of �1(H) are modular independent over Zp, any matrix consisting

of d −1 columns of H has the standard form
(

Id−1
0

)
by Lemma 2.2. Thus H ′

S will have type

1d−1(pj )1 for some j = −∞, 0, 1, . . . . Here we use the convention that p−∞ = 0. If Ce

is an MDR code, i.e., d = n − k + 1, then all types will be 1d−1, (see [4] for a description
of MDR codes). We may regard this type as the type 1d−1(0)1 for our purpose. Let �j be

the number of subsets S for which H ′
S has type 1d−1(pj )1.

Theorem 2.8. The number Ae
d of codewords of weight d in Ce is given as follows:

Ae
d =

⎛
⎝�−∞ +

∑
j �e

�j

⎞
⎠ (pe − 1) +

e−1∑
j=1

�j (p
j − 1). (14)

Proof. Let Cd be the set of all codewords of weight d in Ce, and

CS = {yS |0 �= y ∈ ker(He)S}
for the subsets S of d elements. Clearly (xS)S = x for any codeword x, where S = supp(x).
Thus Cd is a subset of

⋃
S CS . Since wt(yS) = wt(y) and d is the minimum distance of Ce,

we have wt(y)=wt(yS)=d whenever 0 �= y ∈ ker(He)S . Thus Cd =⋃S CS . Furthermore,
if wt(y1) = wt(y2) = d , then it is clear that yS1

1 = yS2
2 iff y1 = y2 and S1 = S2. Therefore⋃

S CS is a disjoint union and |CS | = | ker(He)S |.
If HS has type 1d−1(pj )1 with 1�j �e − 1 then | ker(He)S | = pj by Lemma 2.6. On

the other hand, if HS has type 1d−1(pj )1 with j = ∞ or j �e, then (He)S has type 1d−101

and | ker(He)S | = pe. The theorem is proved. �

Let N be the maximum of {j |�j �= 0}.

Corollary 2.9. For e > N , Ae
d = ape + b, where a, b are independent of e. In other words,

Ae
d is a linear polynomial in q = pe, independent of e.

Proof. Simply let a = �−∞ and b =∑N
j=1 �j (p

j − 1) − �−∞. �

It is easy to check that

Ae+1
d − Ae

d = (pe+1 − pe)

⎛
⎝�−∞ +

∑
j �e+1

�j

⎞
⎠ . (15)

From this equation, we obtain the following corollaries.



130 S.T. Dougherty et al. / Discrete Mathematics 305 (2005) 123–135

Corollary 2.10. If A1
d = A2

d , then Ae
d = A1

d for all e.

Proof. From (15), we have

0 = A2
d − A1

d = (p2 − p)

⎛
⎝�−∞ +

∑
j �2

�j

⎞
⎠ .

Thus �−∞ = 0 and �j = 0 for all j �2. Hence Eq. (14) reduces to Ae
d = �1(p − 1) = A1

d

for all e�2. �

Corollary 2.11. Suppose �−∞ = 0. Then Ae
d = AN

d for all e�N . In particular, every
codeword of weight d in Ce is of the form pe−N v0 for some codeword v0 of weight d in CN .

Theorem 2.12. �−∞ = 0 if and only if d∞ > d .

Proof. Recall that Zp∞ is an integral domain. Thus if |S| = d and HS has type (1)d−1pj

with j �0, then ker HS = {0}. The theorem follows from Lemma 2.7. �

We generalize our observation to larger weights. Let C be a p-adic [n, k] code and Ae
i be

the number of codewords of weight i in Ce. Then

WCe (x, y) =
n∑

i=0

Ae
i x

n−iyi

is the weight enumerator of Ce.

Theorem 2.13. There exist an integer N such that for every d �j < d∞, Ae
j = AN

j for all

e�N . In fact, every codeword of weight j in Ce is of the form 2e−N v0 for some codeword
v0 of weight j in CN .

Proof. Let H be the parity check matrix of C and let Kj be the set of integers m, including
−∞, such that pm appears in the type of HS for some subset S with |S| = j . Take N = 1 +
max

⋃d∞−1
j=d Kj . Also, let Be

j be the number of codewords in Ce of weight �j .
Suppose d �j < d∞ and e�N . Then −∞ /∈ Kj for any j and pm /≡ 0 (mod pe) for any

integer m ∈ Kj . Therefore, (He)S = (HN)S for all S. Thus | ker(He)S |, being a product of
diagonal entries of �e(H

′
S), is equal to | ker(HN)S |. On the other hand, if y ∈ ker(HN)S ,

then pe−N y ∈ ker(He)S . This implies that ker(He)S = 2e−N ker(HN)S . By Lemma 2.7

Be
j =

∣∣∣∣∣∣
⋃

|S|=j

{yS |y ∈ ker(He)S}
∣∣∣∣∣∣=

∣∣∣∣∣∣
⋃

|S|=j

{2e−N yS |y ∈ ker(HN)S}
∣∣∣∣∣∣= BN

j .

Therefore Ae
j = Be

j − Be
j−1 = BN

j − BN
j−1 = AN

j . �
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3. Examples

In this section, we show some examples and determine their weight enumerators. First
we recall the MacWilliams Identity for codes over Zq , where q = pe.

Theorem 3.1. Let C be a linear code over Zq . Then

WC⊥(x, y) = 1

|C|WC(x + (q − 1)y, x − y).

The following generalization of Gleason’s theorem is essentially proved in [8,10].

Theorem 3.2. Suppose C is a self-dual code over Zq of even length. Then WC(x, y) is a
polynomial in x2 + (q − 1)y2 and xy − y2.

Example 3.3 (The 2-adic Hamming code of length 8). As in [1], we have the 2-adic
factorization of

x7 − 1 = (x − 1)(x3 − ax2 + (a − 1)x − 1)(x3 − (a − 1)x − ax − 1),

where a = 0 + 2 + 4 + · · · is a 2-adic number satisfying a2 − a + 2 = 0. By appending
1 to the generator matrix of 2-adic cyclic [7, 4] code with the generator polynomial x3 +
ax2 + (a − 1)x − 1, we obtain a 2-adic self-dual [8, 4, 5] code H. In other words, H has
generator matrix

G =
⎛
⎜⎝

−1 a − 1 a 1 0 0 0 1
0 −1 a − 1 a 1 0 0 1
0 0 −1 a − 1 a 1 0 1
0 0 0 −1 a − 1 a 1 1

⎞
⎟⎠ .

Even thoughH has minimum distance 5,H1 and hence all finite liftsHe have minimum
distance 4. As before, let WHe (x, y) =∑n

i=0 Ae
i x

n−iyi denote the weight enumerator for
He. We already know that

WH1(x, y) = x8 + 14x4y4 + y8.

A calculation by a computer shows that

WH2(x, y) = x8 + 14x4y4 + 112x3y5 + 112xy7 + 17y8.

Thus Ae
4 = 14 for all e by Corollary 2.10. By Theorem 3.2,

WHe (x, y) =
4∑

j=0

ci(x
2 + (q − 1)y2)j (xy − y2)4−j .
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Now the identities Ae
0 =1, Ae

1 =Ae
2 =Ae

3 =0 and Ae
4 =14 completely determine We(x, y)=∑8

i=0 Ae
i x

8−iyi as follows with q = 2e.

Ae
5 = 56(−2 + q),

Ae
6 = 28(8 − 6q + q2),

Ae
7 = 8(−22 + 21q − 7q2 + q3),

Ae
8 = 49 − 56q + 28q2 − 8q3 + q4.

Example 3.4 (3-adic Golay code of length 12). The 3-adic Golay code T of length 12 is
obtained by adjoining 1 to the generator matrix

G =

⎡
⎢⎢⎢⎢⎢⎣

−1 a − 1 1 −1 a 1 0 0 0 0 0
0 −1 a − 1 1 −1 a 1 0 0 0 0
0 0 −1 a − 1 1 −1 a 1 0 0 0
0 0 0 −1 a − 1 1 −1 a 1 0 0
0 0 0 0 −1 a − 1 1 −1 a 1 0
0 0 0 0 0 −1 a − 1 1 −1 a 1

⎤
⎥⎥⎥⎥⎥⎦

of the 3-adic Golay code of length 11, where we take a ≡ 0 (mod 3) to be the 3-adic
solution of the equation a2 − a + 3 = 0. T is a 3-adic lift of the extended ternary [12, 6, 6]
Golay code. T has minimum distance 7, while all finite Te have minimum distance 6. It
is well-known that

WT1(x, y) = x12 + 264x6y6 + 440x3y9 + 24y12.

One can check that A2
6 = 264. Therefore, Ae

6 = 264 for all e as well. As before,

WTe (x, y) =
6∑

j=0

cj (x
2 + (q − 1)y2)j (xy − y2)6−j .

Again, Ae
0 = 1, Ae

1 = Ae
2 = Ae

3 = Ae
4 = A5

3 = 0 and Ae
6 = 264 determine Ae

i as follows, with
q = 3e.

Ae
7 = 792(−3 + q),

Ae
8 = 495(15 − 8q + q2),

Ae
9 = 220(−52 + 36q − 9q2 + q3),

Ae
10 = 66(144 − 120q + 45q2 − 10q3 + q4),

Ae
11 = 12(−342 + 330q − 165q2 + 55q3 − 11q4 + q5),

Ae
12 = 726 − 792q + 495q2 − 220q3 + 66q4 − 12q5 + q6.

This weight enumerator was first computed in [7].
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Example 3.5 (Yet another lift of the ternary Golay code). There exists a very simple 3-adic
self-dual lift P of the ternary Golay code [3]. The code P is defined by the generator matrix

G =

⎛
⎜⎜⎜⎜⎜⎝I6

∣∣∣∣∣∣∣∣∣∣∣

0 b b b b b

b 0 b −b −b b

b b 0 b −b −b

b −b b 0 b −b

b −b −b b 0 b

b b −b −b b 0

⎞
⎟⎟⎟⎟⎟⎠ , (16)

where b is a 3-adic number satisfying 5b2 +1=0 with �1(b)=2. P has minimum distance
6, in contrast to d(T) = 7. One can check that

�−∞ = 72, �1 = 60, �j = 0 for all j �2

by computing the determinants of all possible 6 × 6 submatrices of G. By Theorem 2.8,

Ae
6 = 72(q − 1) + 60(3 − 1) = 24(2 + 3q).

As before, we then get the weight enumerators of Pe as follows, with q = 3e.

Ae
6 = 24(2 + 3q),

Ae
7 = 360(−3 + q),

Ae
8 = 45(93 − 64q + 11q2),

Ae
9 = 20(−356 + 324q − 99q2 + 11q3),

Ae
10 = 6(1044 − 1140q + 495q2 − 110q3 + 11q4),

Ae
11 = 12(−234 + 294q − 165q2 + 55q3 − 11q4 + q5),

Ae
12 = 510 − 720q + 495q2 − 220q3 + 66q4 − 12q5 + q6.

Example 3.6 (2-adic Golay code of length 24). The binary Golay code is lifted to a 2-adic
code using the cyclic generator

�(x) = x11 + ax10 + (a − 3)x9 − 4x8 − (a + 3)x7 − (2a + 1)x6

− (2a − 3)x5 − (a − 4)x4 + 4x3 + (a + 2)x2 + (a − 1)x − 1,

where a is a 2-adic number satisfying a2 − a + 6 = 0 with �2(a) = 0. We extend this code
by appending 1 to the generators and obtain a self-dual 2-adic [24,12,13] code G [1]. Note
that all finite Ge are [24, 12, 8] codes. It is much harder to find the weight enumerators than
before, since all finite Ge have more unknowns in their weight enumerators. The weight
enumerator of the binary Golay codes is known to be

WG1(x, y) = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24.
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One can compute

WG2 = x24 + 759x16y8 + 12144x14y10 + 172592x12y12 + 61824x11y13

+ 765072x10y14 + 1133440x9y15 + 1239447x8y16 + 4080384x7y17

+ 1445136x6y18 + 4080384x5y19 + 1870176x4y20 + 1133440x3y21

+ 692208x2y22 + 61824xy23 + 28385y24

and find A2
8 = 759 = A1

8. Therefore, Ae
8 = 759 for all e. Note that A1

9 = A2
9 = 0.

Theorem 3.7. Ae
9 = 0 for all e.

Proof. If not, there exists an integer e�3 such that Ae+1
9 �= 0, Ae

9 = 0. Take a codeword
x ∈ Ge+1 of weight 9. If all components of x is even, then x = 2x0, which implies that
x0 ∈ Ge is a codeword of weight 9, a contradiction. Therefore some component of x is odd.
Then �j (x) �= 0. In particular, �2(x) is a codeword of G2 of weight 8. But since A2

8 = A1
8,

we know that all codewords in G2 of weight 8 have the form 2x0 for some x0 ∈ G1. This
leads to another contradiction. �

Now

WGe (x) =
12∑

j=0

cj (x
2 + (q − 1)y2)j (xy − y2)12−j .

Since we know Ae
0 to Ae

9 for each e, there are three unknown to be determined. But Theorem
2.13 tells us that Ae

10, A
e
11, A

e
12 remain constant for e�N , where N is given in the proof

of the theorem. A computer calculation shows that N = 7. This means that once we know
WGe (x, y) for e = 3, 4, 5, 6, 7, then we know all weight enumerators of lifts of the Golay
code. The Ae

j are then easily computed. They can be found at [2].
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