Note

On the fixed edge of planar graphs with minimum degree five

Baogang Xu, Hongbing Fan*

Mathematics Department, Shandong University, Jinan, 250100, People's Republic of China

Received 28 January 1993; revised 8 October 1993

Abstract

An edge e of a finite and simple graph G is called a fixed edge of G if $G - e + e' \cong G$ implies $e' = e$. In this paper, we show that planar graphs with minimum degree 5 contain fixed edges, from which we prove that a class of planar graphs with minimum degree one is edge reconstructible.

We consider simple and finite graphs $G = (V(G), E(G))$. Undefined concepts and notations are all from [2]. An edge $e \in E(G)$ is called a fixed edge of G if $G - e + e' \cong G$ implies $e' = e$. A graph H is an edge-reconstruction of graph G if there exists a bijection: $\phi : E(G) \rightarrow E(H)$ such that $G - e \cong H - \phi(e)$ for all $e \in E(G)$; G is edge reconstructible if every edge-reconstruction of G is isomorphic to G. The edge form of the reconstruction conjecture [3] claims that every graph with at least four edges is edge-reconstructible. The edge e is a forced edge of G if $G - e + e'$ is an edge-reconstruction of G implies $e' = e$. Obviously, G is edge-reconstructible if it has a forced edge, and a forced edge is also a fixed edge. Thus we may study the edge-reconstruction of some graphs by showing that a fixed edge is a forced edge. In fact, if a subgraph B of G has following properties: for each edge $e \in E(B)$, $G - e + e'$ being an edge-reconstruction of G implies that the ends of e' belong to $V(B)$ and $B - e + e' \cong B$, then a fixed edge of B is a forced edge of G. A similar problem was first investigated by Sheehan [5, 6], in which, the graphs with no fixed edge was said to be 1-free. In [7], we conjectured that almost all graphs contain a fixed edge. In this paper, we show that each planar graph of minimum degree 5 contains a fixed edge and, by using this result, we prove an edge-reconstruction theorem.

Let H be a graph. Specifying a vertex, say v, of H as root, we obtain a rooted graph, denoted by $H \{v\}$. Two rooted graphs $H \{v\}, H' \{v'\}$ are isomorphic if there exists an

* Corresponding author.
isomorphism \(\psi \) from \(H \) to \(H' \) such that \(\psi(v) = v' \). An edge \(e \in E(H) \) is a fixed edge of \(H \setminus v \) if \(H - e + e' \{v\} \cong H \setminus v \) implies \(e' = e \). It is easy to verify that each rooted tree contains a fixed edge.

Let \(G \) be a 2-connected planar graph, and let \(G_1 \) be a plane representation of \(G \). Let \(f \) be a face of \(G_1 \); then the boundary \(b(f) \) of \(f \) is a cycle of \(G \). If \(b(f) \) has \(k \) edges, then \(f \) is called a \(k \)-face of \(G_1 \). A vertex of degree \(k \) is called a \(k \)-vertex.

Theorem A (Lauri [4]). Let \(G \) be a planar graph with connectivity \(\kappa(G) \geq 2 \) and minimum degree \(\delta(G) = 5 \). Then either \(G \) has two adjacent 5-vertices, or there exists a 5-vertex \(v \in V(G) \) such that \(v \) is only incident to 3-faces in any plane representation of \(G \).

Theorem 1. Every planar graph of minimum degree 5 contains a fixed edge.

Proof. Let \(G \) be a planar graph, \(\delta(G) = 5 \). If \(G \) contains two adjacent 5-vertices then the edge joining them is a fixed edge. We suppose that no two 5-vertices of \(G \) are adjacent and that \(G \) is connected. We consider two cases:

*Case 1: \(\kappa(G) \geq 2 \).

By Theorem A, there exists a 5-vertex \(v \in V(G) \) such that \(v \) is only incident to 3-faces in any plane representation of \(G \). Let \(N(v) = \{v_0, v_1, v_2, v_3, v_4\} \), and let the face boundaries incident to \(v \) in a plane representation be \(vv_i v_{i+1} \), \(i = 0, 1, 2, 3, 4 \) (mod 4). Then \(vv_i v_{i+1} \), \(i = 0, 1, 2, 3, 4 \), are the face boundaries in any planar representation of \(G \), therefore \(vv_i v_{i+1} \), \(i = 1, 2, 3 \), are the face boundaries in any plane representation of \(G - v_0 \).

Let \(e' \) satisfy that \(G - v_0 + e' \cong G \). Then \(e' \) must be incident to \(v \). If the cycle \(C = vv_4 v_0 v_1 \) is the boundary of a face in every representation of \(G - v_0 \), then \(e' = v_0 v_1 \), and \(v_0 v_1 \) is a fixed edge of \(G \). Otherwise, there exists a representation \(G' \) of \(G - v_0 \), in which \(C \) is not a boundary of any face. Then there exist at least two non-skew bridges, say \(B_1, B_2 \) on \(C \) in \(G' \). Clearly, \(A(C, B_j) = V(C) \cap V(B_j) \neq \{v_4, v_0\} \) or \(\{v_0, v_1\} \), and \(A(C, B_j) \neq \{v, v_4, v_0, v_1\}, j = 1, 2 \). Without loss of generality, assume \(\{v, v_1, v_4\} \subset A(C, B_1) \). Then \(\{v_2, v_3\} \subset V(B_1) \) and \(A(C, B_2) \subset \{v_4, v_0, v_1\} \) and \(\{v_4, v_1\} \subset A(C, B_2) \). Therefore there exists a path \(P_{G - v_0}(v_1, v_4) \) joining \(v_1, v_4 \) in \(B_2 \) which does not pass through \(v_0 \) and \(v_1 \). Using the same method, we can show that, if \(v_0 \) is not a fixed edge, then there must be a path \(P_{G - v_1}(v_0, v_2) \) which does not pass through \(v \) and \(v_1 \). Since \(G \) is a planar graph, \(P_{G - v_0}(v_1, v_4) \) and \(P_{G - v_1}(v_0, v_2) \) must have a common vertex. This implies that \(v_0 \in V(B_1) \). Hence \(A(C, B_1) = \{v, v_4, v_0, v_1\} \), a contradiction. Therefore one of \(v_0 \) and \(v_1 \) must be a fixed edge.

*Case 2: \(\kappa(G) = 1 \).

Let \(B \) be an end-block of \(G \) with a minimum number of edges, where the minimality is taken over all end-blocks of \(G \), and let \(v \) be the cut vertex contained in \(B \). (An end-block of \(G \) is a block containing only one cut vertex.) Then for any \(u \in V(B) \setminus \{v\} \),
Let G be a connected graph with $\delta(G) = 1$ and containing a cycle. Then G has an edge-disjoint decomposition (called its tree decomposition) \cite{1}:

$$G = G^* \cup T_1 \cup T_2 \cup \cdots \cup T_k,$$

where G^* is a maximal subgraph of G with minimum degree \(\geq 2 \), and T_i are disjoint rooted trees each rooted in distinct vertices $x_i \in V(G^*)$ and having no other vertices in $V(G^*)$; G^* is termed the trunk of G and $T_1 \cup T_2 \cup \cdots \cup T_k$ its tree-growth. We use $m(G, T_i \{x_i\})$ to denote the number of rooted trees which are isomorphic to $T_i \{x_i\}$ in the tree-growth of G. The following lemmas are clearly true.

Lemma 2. Let $\delta(G) = 1$ and H an edge reconstruction of G. Then the trunk of H is isomorphic to the trunk of G.

Lemma 3. Let $\delta(G) = 1$, let $T_i \{x_i\}$ be a rooted tree in the tree-growth of G, and let H be an edge-reconstruction of G. Then $m(G, T_i \{x_i\}) = m(H, T_i \{x_i\})$.

Lemma 4. If $\delta(G) = 1$, $\delta(G^*) \geq 3$ and G^* has a fixed edge, then G is edge reconstructible.

As a corollary of Theorem 1 and Lemmas 2 and 4, we have following edge reconstruction theorem for a class of planar graphs.
Theorem 5. Let G be a planar graph with $\delta(G) = 1$ and $\delta(G^*) = 5$. Then G is edge reconstructible.

Acknowledgements

The authors express their thanks to referees for helpful suggestions.

References