View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 14, 433-444 (1966)

Nonlinear Second Order Boundary Value Problems:
Existence and Regions of Uniqueness*

PauL BaiLey, LAwReNCE F. SHAMPINE, AND PAuL WALTMAN!

Sandia Laboratory, Albuquerque, New Mexico
Submitted by Richard Bellman

It is well known that the nonlinear boundary value problem

Y@ 1@y, @) =0 (1)
Wa)=4 2
yb) =B )

has a unique solution y(¢) for every pair of real numbers 4, B if f(¢, v, »")
is continuous and satisfies a uniform Lipschitz condition, provided only
that b — a is small enough. For sufficient restrictions on the size of the
interval [a, ] for a variety of classes of functions f, see [1]-[8].

In [9] the best possible result along these lines was obtained for a class of
functions which, in addition to a Lipschitz condition, also satisfies a kind
of homogeneity condition f(z, 0, 0) = 0. (It has since been possible to remove
this condition.) That is, existence and uniqueness were established for the
problem on every interval [a, b] of length & — a << M, where M depends
only on the Lipschitz constants and is the best possible such ‘“‘constant,”
sometimes -+ oo (see also [10]).

For many practical applications, however, these results need to be modi-
fied so as to include some functions f(¢, v, ') which are not Lipschitzian
for all y, but only for y in some interval, and so as to permit at least some
kinds of singularities. For example, many applied boundary value problems
are on an interval [a4, 4+ o), with the boundary condition (3) being
¥(+ o0) = 0.

Our main result, Theorem 1, is stated in a form that permits a singularity
of some sort at the right hand end of the interval (but nowhere else). The
singularity could just as well be at the left end instead, of course, but only
one singularity is permitted and it must be at an end point.

* This work was supported by the United States Atomic Energy Commission.
Reproduction in whole or in part is permitted for any purpose of the U. S. Govern-
ment.
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Following the theorem we discuss two different examples i

L.
in order to give some idea of the theorem’s utility and to illustr

of applications we have in mind.

As in [9], [10], instead of the usual Lipschitz condition we assume a set of
one sided conditions which is no more restrictive but is much more useful,
as we have observed before. This time, however, the Lipschitz “constants”
are permitted to be functions of the independent variable ¢ in order to allow
for the singularity. Thus we require the function f(z, y, ¥') to be continuous
and satisfy

Git,y =%y =) <f(63,5) —ft, % %) S Gyt y — 2,y — &), (4)

w here

Ly(t)y + Kyt)y, =0, 3 >0

no_ Ly(t)y + Ky(t)y, y =0, 9 <0
Gty =\my + K@)y, y<0 ¥ <0
Ly(t)y" 4 Ki(t) y, y <0, ¥y =0

Ll(t)}" + Kl(t)y, y=0, ¥y =0

n_ M)y + Ky, 320, <0

Gih .y = Lt)y + Ky(t)y, y<0, ¥ <0
Li(t)y" + Kyt)y, ¥y <0, ¥y =0

and L(#), K(?), i = 1, 2 are continuous on [a, b). We shall also require the
‘“homogeneity” condition

F(£,0,0) =0. (5)

TuroreM 1. Let I={a,b), b = + oo i allowed, | = [m, M] denote
intervals of the real line R. For tel,y € |, v' € R let f(t, v, y") be continuous
and satisfy (4) and (5). If the two problems

ui"(t) + Gi{t, u(t), u/ (1)) =
uf@)=4"  u(¥)="~ (6)
have unique solutions on every subinterval [d@', b'] for arbitrary A’, B’, and if

for ' =a, b’ =b, A = A, B' = B the ranges are subsets of [, then the
problem

YO =f(tx(2),5®) =0 (1)
ya) =4 (2)
yb) =B 3)

has a unique solution, y(t), which remains in [, and it saiisfies

u(2) < 3(2) < uy(B).
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Note that the assumption of uniqueness for (6) implies, in particular,
that no nontrivial solution can have two zeros on [a, b]. If L(2), Ki(t) are
constants, the uniqueness of solutions of (6) is guaranteed whenever the
interval is small enough that no nontrivial solution has two zeros on [a, b].
(This has been shown in [9].)

For the proof of this theorem we need two lemmas, the first of which is
essentially the same as Lemma 2 of [9]. For completeness we include the
proof.

LemMa 1. Suppose f(t), g1(t), g:(t) are piecewise continuous functions on
[a, b) and u(t), v(2) are nonnegative functions satisfying

" g(t)u' (t)ifu'(t) >
u()+;g2(t)u(t)lfu(t)<():+f u(t) >

” aft)o'(t)ifo'(2) >
(1) + ggz(t) (0)if9'(t) < 0$ REARKIORS

on (a, b) with
ufty) = o(ty)

(k) = '(to)

for some ty € [a,b). Let I be a maximal interval containing t, which does not
contain a zero of u or v in its interior. Then

u(t) = v(2)
in 1.

Proor. Define 6(2), w(?) on the closure of I by

(1) = 5~ — tan"! %

w(t) == ';L — tan—1! ‘Z‘Z))’((tt))

at interior points and by continuity at end points. Then 6(2,) = w(t,). We
shall show that

0<u@® <o) for
< ST

for

v A

~
o

409/14/3-5
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Differentiating (), we have

u .., _
glglfu ’>0 TN

WA
1+ (5
() () ny |
— —ifu <0
o) — — u(t) ( u(t) ) 2
W(t)\: 1 \2 ’
1+<u(t)) H‘(T)
or
. 2 g sinfcos fifcos 0 = 0) -
b’ < cos? 0 + g2 sin 6 cos 8 if cos 8 < 0f +/sint,
and similarly
, 2 glsianOSwifCOSu)>O§ -
w > coste o+ §g2sianOSwifC()sw <0 +/sint o
Hence
(0 — ) <f —w)
where
gisin20ifcos 6 >0) (g sin2wif cos w 20§
_gesin20if cos § <O gosin 2w if cos w <0
v 20 — 2w
| sin? § — sin® w
=D ——f—

is clearly bounded and integrable. It follows that

4 (0 — wyexn (— [ 9)) <0,

)

and hence
(00— st esp ([ o)

is monotone decreasing. This means that for t < ¢,

00) — ae) ex (— [ 9) = 0) — alt) =0,

0

0(t) —w(t) =20  for t<ty.
Similarly

(t) — w(t) <0 for t=1,.
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Now suppose there were some point ¢, > ¢, for which u(z;) < o(¢,). Let
t, < t; be the last point to the right of f, for which u(z,) = (2,). Since
m > w(ty) = 6(1,) = 0, and since

tan w(?,) = :,((2))
tan 0(t,) = —;({:2—)) ,

we can conclude that either o(,), #'(¢,) are both of the same sign with

v'(2y) < #'(ty), or else that v'(¢,) << 0 and #'(2,) > 0. But in either case we

would have u(f) > o(¢) immediately to the right of #,, which is a contra-

diction of the assumptions regarding ¢, . It follows that u(f) > o(f) for t 2= ¢, .
Similarly u(z) > o(t) for t < ¢, .

Lemma 2. Let u(t), i =1 or 2, satisfy (6), (2), (3) and let y(t) satisfy
(1), (2). If y(t) < uy(t) (or y(t) = uy(t)) at some point t =ty €(a, b), and
y(t) € J for a <t < 1y, then the same inequality holds for all t €[t,,b], or
Y(t) leaves | at some point of [t,, b].

Proor. We shall treat only the case 4 > 0, B <0, since none of the
other cases is more complicated nor more difficult. Suppose that at z, € (a, b),
u,(t,) > ¥(t,). By definition, u,(a) = y(a). Let #, be the first point to the
left of #, for which #,(#;) = y(#,) and suppose first that #,(#,) > 0. Define
() as the solution to (6), 7 = 1, satisfying 4,(¢,) = y(t;), &'(¢;) = y'(t,).
Then by Lemma 1,

w(t) = (1)
for #; <t < the first zero to the right of #, (if any) of y(¢), or until y(?)

leaves J. Now

uy(t) = () = ¥(t)
and
u'(t) > ¥'(t) = @'(4)-
By the uniqueness of the solutions to the boundary value problem (6), (2),
(3) on all subintervals of [a, 5] it follows that

uy(2) = w(t) = ¥(2)

for ¢, < t < the first zero of y(¢), or until y(z) leaves J.

If y(¢) has no zero in (¢, , b), there is nothing more to prove. If y(¢) does
have a zero (it cannot have more than one), say at ?, , define #,(¢) as the solu-
tion to (6) which satisfies #,(2,) = 3(2,) =0, %'(t;) = ¥'(¢;). By Lemma 1

i(?) = ¥(1)
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for t; <t < t,. Likewise by Lemma 1 applied to — ¥(¢) and — #(¢), we
get — y(t) = — dy(¢) or
(t) = (t)

for t, <{# < b, or y leaves [ on this interval, Thus if 3(¢) does not leave ]
on [t , b], we have

W) < wy(?), LISt
¥ <t),  H<t<b
On (¢,12)
uy(ty) = ¥(t) < (%)
uy(t) 2= ¥(ty) = ty(ty)-
Thus there is a t, € (¢, , t,) for which

u(ts) = ().
By the uniqueness of solutions to (6), (2), (3) on subintervals of [a, 5],
(1) > in(t)
for t, < ¢t < b. In particular
uy(t) = (1) = H(t)
for t, < t, < t << b, or y(¢) leaves J. This completes the proof for the case

ul(tl) > 0
If uy(#) < 0, the proof is essentially the same and is therefore omitted.

ProoF oF THE THEOREM. We first prove that the boundary value pro-
blem (1), (2), (3) cannot have more than one solution. The argument is
essentially the same as that in [9]. Let y,(2), y,(2) be two distinct solutions,
if possible, and put 2(¢) = y,(¢) — y,(t). Without loss of generality we may
assume b is the first zero of 2(¢) to the right of @, and that 2'(e@) > 0. Then 2
satisfies

2'(F) + Gof2, 2(t), 2'(2)) =0
2a) =0 =z2()=0
and 2(#) > 0 for a <t < b. Let x(z) be the solution of
x'(t) + Goft, (1), (1)) = 0
x(a) =0 x'(a) = 2'(a).
By Lemma 1, x(#) has a zero on (g, &), since 2(¢) does. But this contradicts

the hypothesis that no nontrivial solution of (6) has two zeros on [a, b},
and the contradiction establishes the stated uniqueness.
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We call attention to the fact, which we shall use, that no two distinct
solutions of (1), (2) can meet again in [a, 5], in view of the uniqueness just
proved. We also observe at this time that solutions y(z) of (1) which remain
in J are continuous (for any fixed ¢ in (4, b)) with respect to initial conditions,
because of the fact that f(¢, v, y') satisfies a Lipschitz condition.

Our next step is to show that every solution y(¢) of (1) and (2) either can
be continued as far as ¢ = &, for every k < b, or else y(t) leaves J. (Local
existence of solutions is already assured.) For a <k < b, let

L=swp{L{)|:a<t<h,
K=sup{| K{t)|:a <<t <k} W=max{|m|,| M|}
'Then so long as y(¢) € J we have the uniform bound
|y'(t)| < |y'(a)| +2LW <+ KW(k — a).
For since, by (4),
— Ky —Ly'ify >0,y =0 Ky +Ly'ify 20,y' >0
— Ky +Ly'ify =20,y <0 Ky —Ly' ify >0,y <0

Ky +Ly'ify <0,y <0 — Ky —Ly'ify <0,y <O’
Ky —Ly'ify <0,y >0 — Ky +Ly'ify <0,y >0

<Y<

the result follows by integrating over [g, £]. It now follows ([11], p. 61, Pro-
blem 4) that either 3(#) can be continued as far as ¢ = k or else y(¢) leaves J.
Let u(t), i = 1 or 2, be the solutions to the problems

u'(t) + Gt ut), u/(2)) =0
ujfa) =4 u{b) = B.

We define a sequence of points #, and two sequences of functions y, .(2),
7 == 1 or 2, by induction as follows:

Define y, o() as the solutions to the initial value problems (1), (2) and
¥;.0(@) = u/(a). If both can be continued to ¢ = k for every & <C b, define
t, =3(a+b),ifb <+ o0, ort; =a-+1if b= + co. If not, then there
is a first point, ¢, , for which either y, o(¢,) = m or y, o(t,) = M. This defines
t; , and we note that y; o(#,) < #y(¢1), ¥s,0(f1) = 4,(t;) by Lemma 2 and the
fact that initially y, o(¢) lie outside the interval [u(?), u,(f)]. Hence by the
continuity of solutions y(¢} to (1) with respect to initial conditions, in par-
ticular the remarks on p. 23 of [11], there exist initial slopes for which the
corresponding solutions y; 4(£), ¥,.4(2) to (1), (2) with those slopes satisfy

Y1a(ty) = uy(t)
Yaa(ty) = uy(ty).
Assume the points 2, and functions y; ,(¢) have been defined for 1 < n << V.
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Either both ¥, \(¢) can be continued to ¢ = k for every k <C b, in which case
we define #y,, = 3 (ty +b) if b < + 00, or ty,, =ty +1if b=+ oo,
or else there is a first point, #y,.,, for which either y; y(ty.,) = m

or ¥y N(ty41) = M. Since y; y(tyi1) < ty(tys1) and ¥y y(Fni1) = ta(tnia), DY
Lemma 2 and an easy induction on N, it follows by continuity with respect

to initial conditions again that there exist (unique) solutions ¥y, y_() satis-

fying (1), (2), and ¥; ys1(tn 1) = udlty a)-
By Lemma 2 and uniqueness, the intervals [y ,(a), ¥3..(a)] form a nested

sequence of closed intervals, and consequently have a nonempty intersection.
Let

2 () i.n(@) 3]

Then the solution y(#) to the initial value problem (1), (2) and y'(a) = p
satisfies y(b) = B, as desired.

ExampLE 1. Our first example illustrates the importance of using the
restricted interval for the Lipschitz condition. We consider a problem of
Collatz [12], pp. 145-147,

¥'(t) — 354 =0
y0) =4 »(1)=1

(There are two distinct solutions, one of which is expressible in elementary
terms while the other involves elliptic functions. The former, namely

) =41 + 9,

clearly stays in the interval [1, 4], whereas the latter decreases from 4 to
below — 10 and then increases to 1.)
In this example our function f is just

f(y) = %y25

fO) —fx)=—30 +2)(@»—x.

Hence if | = [m, M] is an interval containing the subinterval [1, 4], and if
¥, x € ], then

—3M(y — %) <f(y) —f(*) < — 3m(y — x).
Thus the functions G, , G, of the theorem can be taken to be

N _|—3My if y=0
Gl(y:y)—‘__?)my if y<0

so that

w_ (—3my if y=0
Gz(y,y)—3_3My lf y<0 .



NONLINEAR BOUNDARY VALUE PROBLEMS 441

Since M >0 (actually M > 4), the only circumstance under which the
problems (6) could fail to have unique solutions is that some solution have
two zeros on [0, 1], i.e., if m < — #%/3. Or to put the matter the other way
around, the problems (6) have unique solutions on [0, 1] if m > — =#%[3.
And in this case, the solutions to (6) when 4’ =4 =4, B =B =1,
a =0, b = 1, are simply the solutions to the linear problems

w(t) — 3Muy(H) =0,  w(0) =4, wm()=1
w'(1) — 3mup(f) =0, u(0) =4, ufl)=1.

Hence

u(t) = 4 cosh VAW ¢ + (%f%ﬂl) sinh V30 ¢

uy(t) =4 cosh vV 3mt 4 (I;ﬁffh_____}_’ﬁ) sinh Vv 3m ¢,
sinh V/3m
and the ranges of #; and u, are subsets of J.
Thus the conditions of the theorem are seen to be satisfied. We conclude
there is exactly one solution y¥(#) which remains in J, and we have

uy(f) < 3(t) < (o)

The theorem also tells us that if there is any other solution to the problem (1),
(2), (3) it must leave J, which in this case amounts to saying it must drop
below — 7%/3. (There #s another solution, as we mentioned earlier, and it
drops below — 10 actually.)

By taking M = 4 we get the best lower bound #,(#), and taking its mini-
mum value for m gives us the best upper bound u,(?). These bounds furnish
quite good approximations to y.

ExampLe 2. For our second application we treat a problem on the
infinite interval to illustrate the theorem when a singularity is present. We
consider R. E. Kidder’s [13] similarity solution of the unsteady flow of gas
through a semi-infinite porous medium, initially filled with gas at a uniform
pressure P,. At time # = 0 the pressure at the outflow face is suddenly
reduced from P, to P, and thereafter maintained at this lower pressure. In
terms of a dimension free quantity w, defined by

we) = ot (1 — S8, ™

where

P2
a=1—g5, ®8)
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the problem takes the form (see the original paper of Kidder for the details
of the physical problem and the reduction of the equation
VH(P?) = A2 ‘;—P

to an ordinary differential equation)

w"(2) + .\-/?f;;u—('z—) w'(z) =0,

w(0) =1, w(-+ o) =0. )

From (7) and (8) it is clear we should expect w(z) to belong to the interval
J = [0, 1], in which case we would have

23

L&) =2 <=

<21 — )12 g = Ly(2).

Hence for comparison equations we take

e ifon@=0)
uy(2) + (2(1 — &) VP 2uy'(2) if (%) < 0) =0

v 2 — Py () i (#) >0y
“2("’)+(2zu2'(z) if uz’(z)<0) =0

Now neither of these equations has a nontrivial solution with two zeros on
[0, 4+ oo]. For example, by integration,

Ce? if u'(2)=0

ul’(z): De_(l__u)—llzz?. if u11(2)<0 ’

which clearly never vanishes (and hence u)(2) cannot have two zeros) on
(0, + o0) except in the trivial case C or D = 0. Thus we readily verify the
assumptions of the theorem, and find that

uy(z) =erfcz =1 — 2 J.z et dt
0

Vo
VA

are the solutions which satisfy the boundary conditions

w0 =1  uf+ 0)=0.

u,(z) = erfc {(1 — «)7/4 2} = erfc
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Hence there is exactly one solution w(2) of the problem which lies in [0, 1],
and this w(2) satisfies

erfc z\/ﬁg < w(z) < erfe 2.
P,

The difference between these bounds is

P, 2 (VRR_, 2 \/E e
erfc 2 — erfc 2 EM\/——#—L e dt<\/?z(1— Pl)e :

Comparison of these bounds on w(z) with the perturbation solution of (9)
in powers of « obtained by Kidder is interesting. He centers attention on
his zero order solution as a convenient and moderately accurate solution for
all o This solution is of added interest because it is the exact solution of a
certain linearization of the nonlinear partial differential equation. His nume-
rical results suggest that it is everywhere too large, which is what we have
just shown above, since his zero order solution 1s precisely our u,(2).

Our bounds function as a perturbation solution, since they collapse to
the correct one as «— 0. Their use for engineering purposes is facilitated
by the extreme ease of computation and the fact that it is easy to assess the
accuracy of the approximation.
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