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It is well known that the nonlinear boundary value problem 

r”(t) +.m r(t), Y’W = 0 (1) 

Y(4 = A (2) 

Y(b) = B (3) 

has a unique solution y(t) for every pair of real numbers A, B if f(t, y, y’) 
is continuous and satisfies a uniform Lipschitz condition, provided only 
that b - a is small enough. For sufficient restrictions on the size of the 
interval [a, 61 for a variety of classes of functions f, see [l]-[8]. 

In [9] the best possible result along these lines was obtained for a class of 
functions which, in addition to a Lipschitz condition, also satisfies a kind 
of homogeneity conditionf(t, 0,O) = 0. (It h as since been possible to remove 
this condition.) That is, existence and uniqueness were established for the 
problem on every interval [a, b] of length b - a < M, where M depends 
only on the Lipschitz constants and is the best possible such “constant,” 
sometimes + co (see also [lo]). 

For many practical applications, however, these results need to be modi- 
fied SO as to include some functions f(t, y, y’) which are not Lipschitzian 
for ally, but only for y in some interval, and so as to permit at least some 
kinds of singularities. For example, many applied boundary value problems 
are on an interval [a, + co), with the boundary condition (3) being 
y(+ a> = 0. 

Our main result, Theorem 1, is stated in a form that permits a singularity 
of some sort at the right hand end of the interval (but nowhere else). The 
singularity could just as well be at the left end instead, of course, but only 
one singularity is permitted and it must be at an end point. 
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Reproduction in whole or in part is permitted for any purpose of the U. S. Govern- 
ment. 
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Following the theorem we discuss two different examples in some detail 
in order to give some idea of the theorem’s utility and to illustrate the kinds 
of applications we have in mind. 

As in [9], [IO], instead of the usual Lipschitz condition we assume a set of 
one sided conditions which is no more restrictive but is much more useful, 
as we have observed before. This time, however, the Lipschitz “constants” 
are permitted to be functions of the independent variable t in order to allow 
for the singularity. Thus we require the functionf(t, y, y’) to be continuous 
and satisfy 

G,(t, y - x, y’ - x’> <f(t, Y, Y’) -f(t, x, x’) < G,(t, Y - X,Y’ - x’), (4) 

where 

W)y’ + &(t)y, y 2 0, y’ 20 

G&> Y, Y’> = 

1 

W)Y + &WY, Y 2 0, Y’ a 
W>Y’ + Jw)Y, Y do, y’ < 0 
WJY’ + JwY7 Y do, y’ 3 0 

1 

Wb’ -I- JwY7 Y 2 0, Y’ 3 0 

G&, y, Y’) = 
W)Y’ + W)Y, Y 20, y’ < 0 

M)Y + JWY~ Y GOO, Y’<O 
W)Y’ + KNY, Y do, y’ 2 0 

and &(t), K,(i), i = 1, 2 are continuous on [a, b). We shall also require the 
“homogeneity” condition 

f(t, 0,O) = 0. (9 

THEOREM 1. Let I = [a, b), b = + 00 is a&wed, J = [m, n/r] denote 
inter&s of the real line R. For t E I, y E J, y’ E R let f (t, y, y’) be continuous 
and satisfy (4) and (5). i” the two problems 

z+“(t) + G&, q(t), ui’(t)) = 0 

~+(a’) = A’ ui(b’) = B’ (6) 

have unique solutions on evuy subinterval [a’, b’] for arbitrary A’, B’, and ;f 
for a’ = a, b’ = b, A’ = A, B’ = B the ranges are subsets of J, then the 
problem 

y”(t) =f(c r(t), Y’(9) = 0 (1) 

Y(4 = A (2) 

Y(b) = B (3) 

has a unique solution, y(t), which remains in J, and it satisjes 
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Note that the assumption of uniqueness for (6) implies, in particular, 
that no nontrivial solution can have two zeros on [u, b]. If&(t), K,(t) are 
constants, the uniqueness of solutions of (6) is guaranteed whenever the 
interval is small enough that no nontrivial solution has two zeros on [a, b]. 
(This has been shown in [9].) 

For the proof of this theorem we need two lemmas, the first of which is 
essentially the same as Lemma 2 of [9]. F or completeness we include the 
proof. 

LEMMA 1. SuPPose f(t), gdt), gz(4 are piecewise continuous functions on 

[a, b) and u(t), v(t) are nonnegative functions satisfying 

U”(t) + I 
gl(t) u’(t) if u’(t) 3 0 
g2(t) u’(t) if u’(t) < 0 I +f (r) u(t) ’ O 

v”(t) + I 
gl(t) v’(t) if v’(t) > 0 
gz(t) v’(t) if v’(t) < 0 1 +f (t) ‘(t) ’ O 

on (a, b) with 

u(to) = v&J 

u’(t,) = v’(tJ 

for some t, E [a, b). Let I be a maximal interval containing t,, which does not 
contain a zero of u or v in its interior. Then 

u(t) > v(t) 

in I. 

PROOF. Define 6(t), w(t) on the closure of I by 

u’(t) e(t) = : - tan-l - 
u(t) 

VW w(t) = $ - tan-l - 
VW 

at interior points and by continuity at end points. Then B(t,,) = w(to). We 
shall show that 

for 

for 

t < to, 

t 2 t, . 

409/14/3-5 
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Differentiating 6’(t), we have 

eyt) = - 

or 

and similarly 

Hence 

where 

I 
g,sin28ifcose>,O 

I I 
g1sin2wifcosw 30 _ 

g,sin28ifcosB<O g, sin 2~ if cos w < 0 I 
v= 28 - 2w 

sin2 e - sin2 w 

+(f-l) epw 

is clearly bounded and integrable. It follows that 

and hence 

(W - w(t)) exp (- j:, F) 

is monotone decreasing. This means that for t < t, 

(e(t) - w(t)) exp (- j” V) 2 f-v,) - 444 = 0, 
to 

so 

Similarly 
e(t) - w(t) 2 0 for t < 2,. 

e(t) - w(t) < 0 for t > t, . 



NONLINEAR BOUNDARYVALUE PROBLEMS 437 

Now suppose there were some point ti > t,, for which u(tJ < v(tJ. Let 
t, < t, be the last point to the right of t, for which I = u(ta). Since 
n > w(tJ > 8(t,) 3 0, and since 

v(tz> tan’w(t,) = - 
VW 

u(h) tan e(t,) = __ 
u’(t2) ’ 

we can conclude that either v’(Q, u’(tz) are both of the same sign with 
v’(tz) < u’(t.J, or else that v’(&) < 0 and u’(t.J > 0. But in either case we 
would have u(t) > v(t) immediately to the right of t, , which is a contra- 
diction of the assumptions regarding t, . It follows that u(t) > v(t) for t > t, . 

Similarly u(t) > v(t) for t < t, . 

LEMMA 2. Let ui(t), i = 1 or 2, satisfr (6), (2)) (3) and let y(t) satisfy 
(I), (2). If y(t) < ul(t) (ur y(t) > z+(t)) at some point t = to E (a, b), and 
y(t) E J for a ,< t < t, , then the same inequality holds for all t E [t, , b], OT 
y(t) leaves J at some point of [t, , b]. 

PROOF. We shall treat only the case A > 0, B < 0, since none of the 
other cases is more complicated nor more difficult. Suppose that at to E (a, b), 
q(t,,) > y(t,,). By definition, z+(a) = y(a). Let t, be the first point to the 
left of t, for which u,(t,) = y(tl) and suppose first that u,(t,) > 0. Define 
z&(t) as the solution to (6) i = 1, satisfying zil(tl) = y(tl), zZl’(tl) = y’(tl). 
Then by Lemma 1, 

f&(t) 2 Y(f) 

for t, < t < the first zero to the right of t, (if any) of y(t), or until y(t) 
leaves J. Now 

dt1> = %) =r(td 
and 

%W > Y’(h) = ii,w 

By the uniqueness of the solutions to the boundary value problem (6), (2), 
(3) on all subintervals of [a, b] it follows that 

w 2 cl(t) 2 r(t) 

for t, < t < the first zero ofy(t), or until y(t) leaves J. 
If y(t) has no zero in (tl , b), there is nothing more to prove. If y(t) does 

have a zero (it cannot have more than one), say at t, , define z&(t) as the solu- 
tion to (6) which satisfies zi,(t,) = y(t,) = 0, z&‘(t.J = y’(t.& By Lemma 1 
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for t, < t < t, . Likewise by Lemma 1 applied to - y(t) and - z&(t), we 
get - y(t) 2 - Cl(t) or 

%(f) 2 y(t) 

for t, < t < b, or y leaves J on this interval. Thus if y(t) does not leave J 
on [tl , b], we have 

y(t) G %(9, t, < t < t, 

y(t) G %(4, t, < t < b. 

On (5 ,tJ 

%(h) = Y(h) G 4(td 

%(h) 2 Y(h) = %(td 

Thus there is a t3 E (tl , tJ for which 

43) = 4(4)* 

By the uniqueness of solutions to (6), (2), (3) on subintervals of [a, b], 

%(Q 3 4(t) 

for t3 < t < b. In particular 

%(4 3 %(f) 2 Y(t) 

for t, < t, < t < b, or y(t) leaves J. This completes the proof for the case 

f&) > 0. 
If ul(tl) < 0, the proof is essentially the same and is therefore omitted. 

PROOF OF THE THEOREM. We first prove that the boundary value pro- 
blem (l), (2), (3) cannot have more than one solution. The argument is 
essentially the same as that in [9]. Let yr(t), y2(t) be two distinct solutions, 
if possible, and put x(t) = yl(t) - yz(t). Without loss of generality we may 
assume b is the first zero of z(t) to the right of a, and that z’(a) > 0. Then x 
satisfies 

z”(t) + G,(t, 4th 4t)) 3 0 
z(u) = 0 x(b) = 0 

and z(t) > 0 for a < t < b. Let x(t) be the solution of 

x”(t) + G,(t, x(t), x’(t)) = 0 

x(u) = 0 x’(u) = Z’(U). 

By Lemma 1, x(t) has a zero on (a, b], since x(t) does. But this contradicts 
the hypothesis that no nontrivial solution of (6) has two zeros on [a, b], 
and the contradiction establishes the stated uniqueness. 
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We call attention to the fact, which we shall use, that no two distinct 
solutions of (I), (2) can meet again in [a, b], in view of the uniqueness just 
proved. We also observe at this time that solutions y(t) of (1) which remain 
in J are continuous (for any fixed t in (a, b)) with respect to initial conditions, 
because of the fact thatf(t, y, y’) satisfies a Lipschitz condition. 

Our next step is to show that every solution y(t) of (1) and (2) either can 
be continued as far as t = K, for every K < b, or else y(t) leaves J. (Local 
existence of solutions is already assured.) For a < K < b, let 

L = sup {I Li(t) / : a < t < K}, 

K = sup {I K,(t) 1 : a < t < A}, W = max {I m j , I M I}. 

Then so long as y(t) E J we have the uniform bound 

I y’(t) I < I Y’(U) I + 2~4~ + KW - 4 

For since, by (4), 

-KY-Ly’ify>O,y’>O Ky+Ly’ify>O,y’>O 
- Ky+Ly’ify>O,y’<O Ky -Ly’ify 30,~’ $0 

Ky + Ly’ if y < 0, y’ < 0 6 y”(t) < -KY-Ly’ify<O,y’<O 
Ky-Ly’ify<O,y’>,O -Ky+Ly’ify<O,y’>O 

the result follows by integrating over [a, t]. It now follows ([ll], p. 61, Pro- 
blem 4) that either y(t) can be continued as far as t = K or else y(t) leaves J. 

Let q(t), i = 1 or 2, be the solutions to the problems 

u;(t) + G,(t, q(t), u;(t)) = 0 
z&z) = A q(b) = B. 

We define a sequence of points tn and two sequences of functions y,,,(t), 
i = 1 or 2, by induction as follows: 

Define y&t) as the solutions to the initial value problems (l), (2) and 
yiJu) = U;(U). If both can be continued to t = K for every k < 6, define 
t, = 4 (a + b), if 6 < + co, or tl = a + 1 if 6 = + co. If not, then there 
is a first point, t, , for which either yJt,) = m or y&tl) = M. This defines 
tl , and we note that y&t,) d q(t,), y&t,) > z+(t,) by Lemma 2 and the 
fact that initially y&t) lie outside the interval [ul(t), u,(t)]. Hence by the 
continuity of solutions y(t) to (1) with respect to initial conditions, in par- 
ticular the remarks on p. 23 of [ll], there exist initial slopes for which the 
corresponding solutions yl,l(t), yzsl(t) to (I), (2) with those slopes satisfy 

Assume the points t,, and functionsy,,,(t) have been defined for I < n < N. 
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Either both y&t) can be continued to t = k for every k < 6, in which case 
wedefinetN+r=$(tN+b)ifb<-La,ortN+i=tN+lifb=+co, 
or else there is .a first point, thTfl , for which either yl,N(tN+l) = m 
or y2,N(tN+1) = M. Sincey (t ) < u (t 1.N N+l \ 1 Ntl ) andy 2.N N+l I 2 Nfl , (t ) > ZJ (t ) by 
Lemma 2 and an easy induction on N, it follows by continuity with respect 
to initial conditions again that there exist (unique) solutions yi,N+l(t) satis- 

fying (l), (2h and Yi,N+l(tN+l) = Ui(tN+l). 

By Lemma 2 and uniqueness, the intervals [~;,~(a), ~;,~(a)] form a nested 
sequence of closed intervals, and consequently have a nonempty intersection. 
Let 

P E fj[Y~..w~Y;.nwl. 

Then the solution y(t) to the initial value problem (l), (2) and y’(a) = p 
satisfies y(b) = B, as desired. 

EXAMPLE 1. Our first example illustrates the importance of using the 
restricted interval for the Lipschitz condition. We consider a problem of 
Collatz [12], pp. 145147, 

y”(t) - *y”(t) = 0 

Y(O) = 4 y(1) = 1. 

(There are two distinct solutions, one of which is expressible in elementary 
terms while the other involves elliptic functions. The former, namely 

y(t) = 4(1 + q2, 

clearly stays in the interval [l, 41, whereas the latter decreases from 4 to 
below - 10 and then increases to 1.) 

In this example our functionf is just 

f(Y) = - $Y”, 
so that 

f(Y) --f(x) = - $cr + 4 (Y - 4. 

Hence if J = [m, M] is an interval containing the subinterval [l, 41, and if 
y, x E J, then 

- 3M(y - x) MY) --f(x) d - 34Y - 4. 

Thus the functions Gr , Ga of the theorem can be taken to be 

‘-3My if y>O 
G(Y,Y’) = I_ 3my if y<O I 

G(Y,Y’) = /-yM; ;: ‘yz; I . 
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Since M 2 0 (actually M >, 4), the only circumstance under which the 
problems (6) could fail to have unique solutions is that some solution have 
two zeros on [0, 11, i.e., if m < - G/3. Or to put the matter the other way 
around, the problems (6) have unique solutions on [0, l] if m > - 7r2/3. 
And in this case, the solutions to (6) when A’ = A = 4, B’ = B = 1, 
a =o, b = 1, are simply the solutions to the linear problems 

q”(t) - 3Mu,(t) = 0, h(O) = 4, 241(t) = 1 

u2”(t) - 3mu,(t) = 0, u,(O) = 4, U,(l) = 1. 

Hence 

ul(t) = 4 cash a t + (’ ~i~~~&z) sinh flM t 

us(t) = 4 cash G t + (’ ,i”,c)TC7) sinh xGG t, 

and the ranges of ur and u, are subsets of J. 
Thus the conditions of the theorem are seen to be satisfied. We conclude 

there is exactly one solution r(t) which remains in J, and we have 

The theorem also tells us that if there is any other solution to the problem (l), 
(2), (3) it must leave J, which in this case amounts to saying it must drop 
below - a2/3 . (There is another solution, as we mentioned earlier, and it 
drops below - 10 actually.) 

By taking M = 4 we get the best lower bound ul(t), and taking its mini- 
mum value for m gives us the best upper bound u2(t). These bounds furnish 
quite good approximations to y. 

EXAMPLE 2. For our second application we treat a problem on the 
infinite interval to illustrate the theorem when a singularity is present. We 
consider R. E. Kidder’s [13] similarity solution of the unsteady flow of gas 
through a semi-infinite porous medium, initially filled with gas at a uniform 
pressure P, . At time t = 0 the pressure at the outflow face is suddenly 
reduced from P, to P, and thereafter maintained at this lower pressure. In 
terms of a dimension free quantity w, defined by 

( p”c4 w(x) = a-1 1 - - 
1 P,2 ’ (7) 

where 
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the problem takes the form (see the original paper of Kidder for the details 
of the physical problem and the reduction of the equation 

to an ordinary differential equation) 

w”w + I/l - “W(Z) 
--AL- w’(x) = 0, 

w(0) = 1, w( + co) = 0. (9) 

From (7) and (8) t i is clear we should expect w(z) to belong to the interval 
J = [0, I], in which case we would have 

L,(z) = 22 < Al Taw(z) < 2(1 - 01)-l/2 x =L,(x). 

Hence for comparison equations we take 

2(1 - c~)--l/~ zu2’(z) if u2’(z) 3 0 
uP) + (2m,‘(z) if u2’(z) < 0 ) 

= o 
’ 

NOW neither of these equations has a nontrivial solution with two zeros on 
[0, + co]. For example, by integration, 

ul’(z) = I Ce-“’ if ul’(z) 3 0 
De-(1-cr)-1~2z2 I if z+‘(z) < 0 ’ 

which clearly never vanishes (and hence ur(z) cannot have two zeros) on 
(0, + 00) except in the trivial case C or D = 0. Thus we readily verify the 
assumptions of the theorem, and find that 

z 

u2(z) = erfc z = 1 - --& 
s 

o e-t2 dt 

ul(x) = erfc ((1 - a)- 1/4z) = erfc j”2/?/ 

are the solutions which satisfy the boundary conditions 

q(O) = 1 ui(+ co) = 0. 
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Hence there is exactly one solution W(Z) of the problem which lies in [0, 11, 
and this w(z) satisfies 

erfc z lli I P, 
P, 

< w(z) < erfc z. 

The difference between these bounds is 

Comparison of these bounds on w(z) with the perturbation solution of (9) 
in powers of 01 obtained by Kidder is interesting. He centers attention on 
his zero order solution as a convenient and moderately accurate solution for 
all 01. This solution is of added interest because it is the exact solution of a 
certain linearization of the nonlinear partial differential equation. His nume- 
rical results suggest that it is everywhere too large, which is what we have 
just shown above, since his zero order solution is precisely our ~~(2). 

Our bounds function as a perturbation solution, since they collapse to 
the correct one as 01+ 0. Their use for engineering purposes is facilitated 
by the extreme ease of computation and the fact that it is easy to assess the 
accuracy of the approximation. 
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