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A general sieve for each dimension K> 1 is given which improves the sieve 
estimates of Ankeny and Onishi. The work depends on a combinatorial identity 
which is invariant under Buchstab iteration and on the solution of a pair of 
differential-difference equations with side conditions. 1’ 1988 Academic Press. Inc 

1. INTRODUCTION 

Let XI be a finite integer sequence whose members are not necessarily 
positive or distinct. Let 9 be a set of primes, z 2 2 a real number, and write 

P(z):= n p,P(z,, z):= n p=P(=)/P(,-,)(2~-,~=). (1.1) 
p-c: :,<p<= 
pe.? pc9 

The first and simplest objective of sieve theory is to estimate the sifting 
function 

S(A,z):= S(&d,9,z):= \{aE,ay’:(a,P(z))=l}l, (1.2) 

the number of elements remaining in d after the removal from .d of all 
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multiples of primes p < z that belong to 8. Thus S(.d, 2)= ISI, the 
cardinality of JZ!; and if 

dd:= {aE&:a=Omodd}, dGN 

(so that cd1 = .cu’)), we have the “inclusion-exclusion” principles 

using the basic property 

(1.4) 

of the Moebius function. 
It is evident from the first statement in (1.3) that we cannot take matters 

further unless we have information about the counting functions l&J, that 
is, unless we know something about the way d is distributed relative to 
each of the arithmetic progressions 0 mod d, at least for all those natural 
numbers d that are squarefree and composed of primes from P. Experience 
shows (see, e.g., Chapter 1 of “Sieve Methods” [6]) that such information 
is available (at varying levels of depth) for many of the most interesting 
sequences &, and takes the following form: there exists an approximation 
X to (d ( and a non-negative multiplicative arithmetic function w( . ), equal 
to 1 at 1 and to 0 at the primes not in 9, such that the “remainders” 

are small, at least on average (in some sense) over squarefree d’s that are 
made up of primes from 9 and are not too large; and such that there exist 
constants K > 0 and A > 2 so that 

OQMp)<p 

and 

This inequality implies at once that 

Q)(P) c p-log w,cp<bl 2dU’,<W, (1.6) 
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which makes more apparent that what we assume here about w( .) is no 
more than that o(p) is, in a very weak average sense, at most as large as K. 
The (smallest such) number K has come to be known as the dimension of 
the sieve problem under consideration. (“Sifting density” is an alternative 
name for K.) 

Let 

(1.7) 

then the product condition above requires that 

It is noteworthy that (Q(K)) is virtually the only arithmetic condition 
(definitions and notations apart) that we impose throughout this account. 

Loosely speaking, w(p)/p may be viewed as the “probability” that an 
element a of & is divisible by a prime p of 9, and therefore one expects 
S(&‘, 9, Z) to be estimated in terms of XV(z). Our main theorem below 
shows the extent to which this expectation can be realized in the case of 
sieve problems of dimension K > 1; but to state this theorem we have to 
introduce two functions--F,(u) and fK(u)-as well as two crucial 
parameters--srK and /?-and to assume some basic information from [2] 
about them. 

Let G,(U) be the continuous solution of the differential-difference 
problem 

u-“g(u)=A; ‘, 

i 

O<u62,A.:= (2e’)Kf(rc+1), 
(u “a(u))‘= -h-u--‘a(u-2), 2 <u; (1.8) 

here y denotes Euler’s constant. The basic information that we shall assume 
throughout this paper is summarized in the following 

THEOREM 0. Let K 3 1 be given. Then there exist numbers CC,, 0, 
satisfying 

cc,ap,>2 (1.9) 

such that the simultaneous differential-difference system 

(i) F(u) = W,(u), O<uda,, 

(ii) f(u)=& O<u6/?,, 

(iii) (~PF(u))‘=K~P-if(u- l), 
(1.10) 

u>a,, 

(iv) (u”lf(u))‘== Kd~‘~(U-- I), U>BK, 
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has continuous solutions F,(u) and f,(u) having also the properties 

F,(u) = 1 + C.I(C~), f,(u) = 1 + O(e-‘), (1.11) 

F,(u) decreases monotonically towards 1 as u -+ + 00, (1.12) 

and 

f,(u) increases monotonically toM>ards 1 as u + CO. (1.13) 

We shall deal with Theorem 0 in a forthcoming paper. Our object here is 
to show how higher dimensional sieves are constructed given the analytic 
information contained in Theorem 0. 

We remark that, as a consequence of (1.12) (l.lOii), and (1.13), 

0 <f,(u) -=c 1-c F,(u), u >o. (1.14) 

We require later on also the following straightforward consequence of (1.8) 
through (1.13) (the proof is given in Appendix I): 

o< F,(u,)-FK(U,) 

1 I  

U2--Ul 

’ fJu*)- f,(u,) vyK 
if 1 du, <u2. (1.15) 

We now state our main result: 

THEOREM. Suppose K 2 1 and that condition (Q(K)) holds. Then we have 
for any numbers y and z satisfying 

1’2232 (1.16) 

that 

+ C c+(m)& (1.17) 
ml P(r) 
t??<, 

-m~ce,cp(m)Rm. (1.18) 

*<j 

where the constants implied by the O-notation depend at most on K and A 



310 DIAMO!JD, HALBERSTAM, AND RICHERT 

(from (Q(K))) and the coqfficients c*(m) it1 the remainder stuns sati.sjj~’ 
Ic’(m)l < 1 +4”““. 

The classical case K = 1 (when CI, = 8, = 2) of the so called “linear” sieve 
is known, of course (from Jurkat and Richert [S] and, in general form, 
from [6], Chapter 8, also from Iwaniec [7]), and is included in this 
theorem only for completeness and, as it were, for calibration. For K > I, 
Appendix III gives instances of pairs of values of c(,,, /?,. Observe that 
(1.18) becomes trivial if y 6 z”&, that is, if z is too large. We therefore refer 
to fl, as the sieving limit. In (1.17), if L is large in the sense that yd:‘^. 
F,(log y/log Z) coincides with ]/a,( log J’/log Z) and ( 1.17) is then, essen- 
tially, the known upper bound Selberg sieve estimate of Ankeny and Onishi 
[I] (see also [6], Chapter 6); the theorem improves on [I] for 2 < ~q’.“*. 
Ankeny and Onishi [I] (see also [6], Chapter 7) give also a result’ of type 
(1.18), but here our lower bound is always superior, both in the value of 
the lower sieving limit and the size of./: 

Our method rests on a combinatorial identity (see Lemma 2.2 below) 
which appears to embody infinitely many iterations of Buchstab’s identity, 
and an “initial” use of Selberg’s upper bound sieve. In both these respects it 
may be viewed as a natural development, long delayed, of the approach in 
[S], and as having also points of similarity with Rawsthorne [ 1 I]. On the 
other hand, we make no direct use of [S] or [ II]; on the contrary, our use 
of Lemma 2.2-we call it here, as we have done elsewhere [S], the 
Fundamental Sieve Identity-and of other combinatorial ideas (some 
deriving from Motohashi [9] and Halberstam [4]) leads to significant 
simplification of standard sieve techniques; so much so that this approach 
can be used also in the Buchstab-Rosser-Iwaniec sieve for i < ti < 1 to give 
a much simpler account of that theory. 

As Iwaniec has been at pains to point out, the Buchstab-Rosser-Iwaniec 
sieve for ti > 1, given by him in [7] for the sake of completeness and for its 
intrinsic analytic interest, is inferior for those K’S to Ankeny and Onishi [ I] 
and afortiori to our theorem. 

Careful comparison between Ankeny and Onishi [ I] and the theorem of 
this paper shows again how good [l] is, and suggests even that, as K --, a, 
the theorem is asymptotic to [I]. For ti of intermediate size the 
improvement of the theorem over [I], modest as it will seem, may 
nevertheless prove significant in terms of applications; for one has to 
remember that, in sieve applications, estimations of S(d, 9, Z) are most 
effective when used in conjunction with weighting procedures such as are 
described in Chapters 9 and 10 of [6]. 

’ Here and elsewhere in this paper, v(nr) stands for the numbers of prime factors of nt. 
z They use a single application of the Buchstab identity. For an improvement of [ 1 ] using a 

second iteration of this identity, see Porter [IO]. 
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There is one respect (at least) in which our theorem is not optimal: 
because Selberg’s sieve is used, the remainder sums are not in Iwaniec’s 
flexible bilinear form. We pose the problem of finding an account of 
Selberg’s sieve which removes this defect. 

2. COMBINATORIAL PRELIMINARIES 

Let II > 1 be a squarefree integer. Throughout this paper we shall write 
the canonical prime decomposition of n in the form 

n=p,...p,(p,> ‘.. >p,). (2.1) 

It is convenient to have available the notations p(n) = pr and q(n) = p, for 
the least and largest prime factors of n; for the sake of completeness we put 
p(l)= cc and q(l)= 1. 

Our main result in this section is Lemma 2.2 below, what we call the 
Fundamental Sieve Identity. 

LEMMA 2.1 (The Fundamental Sieve Identity; [S]). Let ,Y( .) he an 
arithmetic function satisfying x( 1) = 1, and associate with x(. ) the jiinction 
f( .) given by 

j(l):= 0,X(d):= x if d> 1. (2.2) 

Then, for any arithmetic function h( .) and any w > 2 we haue 

1 Ad)h(d)= C Ad) x(4 h(d)+ 1 Ad) X(4 c At) h(dt). dl PI,,‘) dl P(w) dl P(w) fl P(Pldll 

(2.3) 

COROLLARY 2.1.1. We have 

SC&, 9, ur)= 1 p(d) x(d) IdA + 1 p(d) j(d) S(J& 9’. p(d)). (2.4) 
dl P(w) dlPlWJ 

ProoJ Take h(d)= l&J in (2.3). Then the sum on the left of (2.3) is 
S(d, 9, ~2) by (1.3), while the inner sum of the second expression on the 
right is, again by (1.3), equal to S(z& 8, p(d)). This proves the corollary. 
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COROLLARY 2.1.2. We havr 

Proof In (2.3) with ul=z take h(d) to be 0 when (d, P(z,))> 1, and 
when (d P(z,)) = 1 take h(d) to be S(J& 9,~~). Then the sum on the left 
of (2.3) becomes 

by (1.3); and the expression on the right of (2.3) becomes 

This proves (2.5), since 

by (1.3) with A& in place of .d. 

Some general comments on these two corollaries are in order. First of 
all, (2.4) and (2.5) are no more than rearrangements of the 
“inclusion+zxclusion” principles (1.3), and (2.4) is just the special case 
2, = 2, z= M’ of (2.5). Nevertheless, (2.4) and (2.5) serve, implicitly or 
explicitly, as starting points of all known (small) sieves. Combinatorial 
sieves, starting with Brun‘s, correspond to assigning to the function x(d) 
only the values 0 or 1 in accordance with a procedure that will be described 
below; thus x(d) may be viewed (in (2.4), say) as the characteristic function 
of some sub-set of divisors of P(w). 

The function x(d) will be required also to be divisor-closed in the sense 
that whenever x(d) = 1, then, for all t 1 d, x(t) = 1 too. It follows at once that 
j(d) also assumes only the values 0 and 1. With these remarks we are ready 
to begin describing a procedure for the choice of xP for a lower bound for 
S(d, 9, ;): Let x = x -- be a divisor-closed arithmetic function so that 
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x-(l)= 1 and x-(d)= 1 or 0 when d> 1, djP(z,,z). The second sum on 
the right of (2.5) is 

c X-(d) S(s$,, P(4) - c 2-(d) S(J4/, P(d)), (2.6) 1 < dl P(I,,Z) dl PlzI.-l v(d) even i,(d) odd 

and the S-functions are, of course, non-negative. This expression is greater 
than or equal to 

- 1 i-(d) S(.dd, P(4). 
dl P(Zl.Z) 
v(d) odd 

(2.7) 

It is a characteristic feature of lower bound sieves of dimension K > f, 
embodied here in (1.18) and (l.lOii) that there is no better lower estimate 
than the trivial one S(d, 9, z) > 0 whenever log y/log z < /I,. In this case 
we evidentally lose nothing by choosing j-(d) = 1 when p(d) = 1 and 
dropping the first sum in (2.6) to obtain (2.7). Here z translates into p(d) 
and, as will soon be clear, 1’ into y,/d (where y, < v). This may be assured 
by requiring that 

(y,/d)bp(d)Ph when j-(d)= 1 and p(d)= l,dlP(z,,r). (2.8) 

This leaves (2.7). For this we shall require xP to be such that if 
p(d)= -1, dl P(z,, z) and f-(d)= 1 then S(dd, p(d)) may be estimated 
from above using the Selberg-Ankeny-Onishi sieve (1.17) with F, = l/c, 
(see (l.lOi)) and u = log(y,/d)/log p(d) < tl,. In other words, we require of 
xP that 

y,/d6p(d)aK when f-(d)= 1 and p(d)= -1,dl P(z,,z). (2.9) 

Let us now clarify the implications of (2.8) and (2.9) in the light of (2.2). 
These requirements virtually determine x- uniquely. If xP is given what 
one might call the BuchstabRosser structure: with 

d=p,...p,(p,> ... >~,,r>l). 

let 

X,(d) = X,(d; elk, fik) 

where q,( -) assumes only the values 0 and 1; then 

f-(d)=X- (2.11) 
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and now (2.8) and (2.9) are seen to hold if 

p(n)= 1 andp(n)“kn<y,, 

P(B)= -1 and p(n)“*n<p,, (2.12) 
otherwise; 

so that x;(d) = 1 if and only if LI satisfies the Buchstab-Rosser inequalities 

(2.13) 

and x,(d) is otherwise zero. With this choice of 1, (2.5) through (2.7) yield 
the lower estimate 

In similar fashion we require of x+ that (cf. (2.8) and (2.9)) 

y,/d< JI(~)“~ when j:(d) = 1 and p(d) = 1, dl P(z,, Z) (2.15) 

and 

YI/~~P(#’ when X: (d)= 1 and p(d)= -1, dlP(~,,=); (2.16) 

and we derive from (2.5) 

where,ifd=p,...p,(p,> ... >p,;r>l), 

x,:(d)=x,:(d;cr,,8,)=rl,:(PI;G1,, P,)-+;(p, ...pr;ax, ph.) (2.18) 
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with 

p(n)= -1 andp(n)“*n<y,, 

p(n)=1 andp(n)“hn<y,, (2.19) 

otherwise; 

so that x,,:(d) = 1 if and only id d satisfies the BuchstabPRosser inequalities 

pp+‘<.v, 

pp+ ‘p, < ?‘I 

Pp+ ‘P2 P, < 4’1 
(2.20) 

and x; (d) is otherwise 0. 
We conclude this section with an observation concerning the 

BuchstabRosser inequalities (2.13) and (2.20). If 

cr,>pk+ 1, (2.21) 

then the second, fourth, etc., in other words, the euen inequalities in (2.13), 
are implied by the preceding odd ones and are therefore redundant; 
similarly all the odd term inequalities in (2.20) except the first are super- 
fluous. The distinction between the cases (2.21) and /I, < CI, -C/I, + 1 exists 
also in the analysis of the differential-difference configuration described by 
(1.8) through (1.13), although seemingly for quite different reasons. 

3. FUNDAMENTAL LEMMA 

A fundamental lemma is a result which states that S(&, 9, z) is, essen- 
tially, asymptotic to XV(z) if z is smaller than any positive power of y. A 
characteristic feature of a fundamental lemma is that it holds under a 
condition weaker then (Q(rc)). We quote a version of it from Friedlander 
and Iwaniec [3]: 

FUNDAMENTAL LEMMA. Assume that there exist constants C> 1 and 
K > 0 such that 

v(w,)<c logw k 
W’ ( > log U’i ’ 

2 d U’, < u’. (al(~)) 

641/2X,%6 
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For my gizlen numbers L > 2, r. 3 2 and squurefree nutural number q 
coprime with P(z,), there exist s?~stems qf’coejficients 7,: = 0 or 1 .such thut 

where the O-constant depends at most on C and K. 

There is one application of the Fundamental Lemma we can make at 
once: we shall prove our main theorem for small z. In the Fundamental 
Lemma let zO = ‘7, q = 1 and L = log log y; clearly L 2 2 if y is large enough, 
as we may suppose. Then, provided only that 

zdexp 1% 1’ 
( 1 log log 1’ ’ 

(3.1) 

we have, since obviously (RO(ti)) is implied by (Q( ti)), 

and these immediately yield ( 1 .17) and ( 1 .18) in view of ( 1 .l 1). 

4. THE BASIC INEQUALITIES 

In this section we return to the inequalities (2.14) and (2.17), which we 
now write in the form 

S(d, 9, 7) 2 c, -z, (4.1) 

and 

s(d,Y,z)bc: +c:, (4.2) 

respectively; here 
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and 

Note that we have written x:(d) in place of x;(d; ah-, /I,) for the sake of 
brevity, and we shall maintam this contracted notation for the rest of the 
paper. We shall estimate Z; from below, and ,YF from above, by means of 
the Fundamental Lemma; and we shall estimate C$ from above by 
Selberg’s upper bound sieve. 

From now on we take 2, to be given by 

log,-, =(E;;g’;)li(2*+2). (4.5) 

In view of the closing remarks of the preceding section, our main theorem 
has already been proved for 2 6 2 6 2, (cf. (3.1)), so that we may assume 
henceforward that 

zl<z<yl. (4.6) 

Begin with the sums ZT, where we apply to each form the Fundamental 
Lemma with zO = z,, q = d, and L = log log y. We take JJ, in (4.3) (and in 
(4.4)) to be defined by 

y,z;= y, so that ~1, = JJ exp( -(log y log log Y)(~~+ ‘)G~+ 2’). (4.7) 

Then 

- ,J, ) Ad) x,(d) 1 10) Y!,-)““‘+‘hn. (4.8) 
_ ,i mlP(=ll 

m < zf 

Now 

o(d) 
= d= dl P(Z1.Z) 

(4.9) 

so that the second expression on the right of (4.8) is, by (Q(K)), (4.5) and 
(4.61, 

@XV(z) m ( > 
2 1 log z 2K 1 

-&XV(z) - - 
V(z) 1% Y ( > log z, 1% I 

< XV(z) log 1% Y 
(log y)l/‘“+ 1)’ 
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In the third expression on the right of (4.8) write drn =n; since dlP(z,, z) 
and ml P(z,), any divisor n of P(z) has a unique decomposition n = dnz of 
this kind, with d and m coprime. Also, whenever x;; (d) = 1 we have d < y,, 
so that n < y, 2: = y by (4.7). Hence the third expression may be written 

- 1 An) b,R,,, 
,#iP(Z) 
,I c .I 

where 

b, := b,, := x,(d) yh- Y’~‘+’ (4 P(z,, z 1, mlP(z,)) (4.10) 

and therefore 6; takes only the values 0 or 1. Hence (4.8) takes the form 

C, > XV(z,) C p(d) X,(d) y+ 0 XV(z) log log ’ 
4 P(z1.z) 

(log y)ll(E+ 1) > 

It is convenient at this point to introduce the notation 

4 +(u) = FJU), d (u) =fh.(uL (4.11) 

where Fk and f, are defined in Section 1. By ( 1.14) we have 

p(d) ,j’~ )r’d’+’ (u) < p(d) <p(d) tj-- “@l(u) (4.12) 

for any u > 0, so that 

o(d) _ 4dltl 

z-;axv(zl) ,I /44x.,(d)-pf ’ 

dl PC.-1s) 

1% 1% Y 

Jwz) (log y)w+ 1) 
- C An)b,R,. 

n,P(;) 
(4.13) 

The same sort of argument leads, without any new difficulty, to 

C: GXVz,) 1 
dl P(=I.:) 

log log y 
xv(z) (log y)l’(K+l) 

+ 1 An)b,fR,, (4.14) 
n,P(r) 

where (cf. (4.10)) 

b+ .= b& := X,:(d)y!,-)@‘=Oor 1 (dJP(z,,z),mlP(z,)). ” . (4.15) 
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We come now to the sums Z:, which we estimate from above by 
Selberg’s d-sieve. We quote from [6], Theorems 6.1 and 6.3 (with 
<*= Y,L41): 

If q is squarefree and coprime with P(w), and if 

log y>. 
T=log ’ (4.16) 

then 

+ c r,Rn,; (4.17) 
ilIP 
n-c Y 

here 

r, = c A,$, (n I P(w), n < v, 
d,lP(w),d,< Y'hv= 1.2) 

LCM(d,.d2)=n 

where 

At) 

i’=rIp,, (1 -4PYP) 
( ,L-K) g(-))(,.I., g(m))-‘? tlP(w), 

m  < rqr m  < Yl:2 
(m,t) = 1 

with 

o(m) g(m)=m 
4 

1 -W(P) -l - . 
Plm P 1 

We have A, = 0 if t > Y"', /A,1 < 1 (by a well-known argument, for example, 
[6, pp. 19C~191]) and therefore 

lY”l d 3”‘“‘. (4.18) 

Actually (4.17) is proved in [6, Theorem 6.31 under a stronger condition 
than (Q(K)); but we shall show in Appendix II that (4.17) holds even 
subject to (Q(ti)). 

We substitute (4.17) (with q=d, w= p(d), and Y= y,/d) in (4.4); we do 
so, of course, only when X,i (d) = 1, p(d) = f 1, and dJ P(z, , z). In these 
circumstances, by (2.9) and (2.15) p(d)“K d> y,, so that 

log(y,ld) 
7 = Td= log p(d) < a,. (4.19) 
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Moreover, in case (2.15), x,t((dlp(d))= 1 and v(d)b2, so that, writing 
v(d)=2r and d=p,...p,,, we have p&.tt...p,<y, by (2.20); hence 
P(d) . BK - ’ d < $1, and, u ,fortiori, 

PI- @p(d) 1 <1, 
Td - lo&,/d) <B, L 

(4.20) 

In case (2.9), if v(d) > 1, a similar argument based on (2.13) also yields 
(4.20). There remains the case (2.9) with v(d) = 1, that is, with d= p; and 
we want an upper bound for t; ’ = r; I = log p/log( y,,/p} subject to p < z. 
This case occurs only with L’;, and L’; appears only in (4.1), when we 
seek a lower bound for S(d, z). A glance at (1.18) (the lower bound to be 
proved) and (l.lOii) shows that for the purpose of proving (1.18) we may 
as well suppose that log y/log z > /I’, 3 2. But then log(y/z)/log z > /I, - 1, 
or 

log z 1 
E&jxB,--l; 

since r;’ <log z/log(y,/z) we may conclude that in this case too (4.20) 
holds, at least in the less precise form 

r;‘<<l. (4.21) 

To sum up this discussion, for the purpose of each application in (4.4), 
(4.17) implies that 

y XV(p(d)) 
1 

S(Mi,P’, p(d)) < 
~.(log(y,ldMog p(d)) 

(4.22) 

n-z PIId 

Hence, by (4.4), 

C;<X c f,:(d)? 
1 

dl Ph.=) VMd)) ~,(log(y,ld)llw i-44) 
r(d) = 1 

44 W(d)) I-~ 
d log p(d) 

+ c B,+R,, (4.23) 
dl P(z1.=) miP(z) 

m < ,‘I 

where 

B,f := c 2.; (4 rn7 mlRz),m<y,, (4.24) 
dn =m 

dlP(=l,=).p(d)= 1 
nlP(p(d)) 
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so that, by (4.18) 

) B,+ 1 6 4”‘“‘. (4.25) 

The O-term in (4.23) is, using (Q(rc)) and (4.9), at most of order 

xv(z)L c VP(d)) 1% 4’ 44 

1% 4 dl P(=1.=) v(z) 1% p(d) d 

by (4.5). Hence, by (4.23), 

44 2: G-Y c X,:Wd Up(d)) 1 

dl PC=!.:) ~Alog(yd4llog /@)I 
p(d) = 1 

1% loi? Y 
xv(z) (log y)l/(2”+2) + 1 B,+R,, (4.26) m,P(;) 

m -c .Y, 

where the coefficients B,+ are given by (4.24) and estimated in (4.25). 
We deal with C; in exactly the same way on the basis of (4.22); we have 

only to remember that here we may assume that z < yllp~ < y ‘I* so that 
(4.21) holds and (4.22) is indeed available. We obtain, subject to 

l/P. Z<Y , (4.27) 

C;GX c ,,(d)f+) 
1 

dl P(=I.=) V(p(d)) ~,(log(y,ld)llog p(d)) 
p(d)= -1 

1% 1% Y mz) (log y)llczK+2, + c B,R,, m,P(-) (4.28) 

where 

B, := c X, (4 r, 9 m I P(z), m < yl, (4.29) 
dn = m  

so that 

dl P(rl.z),p(d) = ~ 1 
n I P(p(d)) 

1 B, 1 < 4”(*‘. (4.30) 
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We sum up the results of this section. By (4.1 ), (4.13). (4.28) and by 
(4.2), (4.14), (4.26) we have for z, <z < y,, 

( 
loi3 1% Y 

G XE+ + 0 XV(z) (log y)lI~2c+2) 
> 

+ 1 C+o14?2, (4.31) m,P(=) 

m < .I’ 

where 

E+ := Uz,) c 
dl PC-1.2) 

+ c 
dl Pt-l.2) 
p(d) = I 

1 
(4.32) 

vMd)) fJ,bx(Y,l~)llog P(4)’ 

- c 
dl P(z1.r) 

f, (4 y W(4) (T .(log(y l;),log p(d))’ z < Y5 
h 1 

p(d)= --I 

= 0, otherwise, (4.33) 

c’(m):= p(m)b2 +q, m I P(z), m < Y, (4.34) 

where bz are given by (4.10), (4.15) and3 Bz by (4.24), (4.29); and 
obviously, by (4.25) and (4.30), Ic*(m)l G 1 + 4’(“‘. Thus the proof of our 
main theorem requires only that we show that 

and that 

We shall deal with the short gap yl <z d y at the end of Section 6. 

3 B* is defined as 0 for y, < m i y. m 
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5. TECHNICAL PREPARATION 

We have, since o( .) is multiplicative, 

so that 

V(w)=l- 

and by subtraction, that 

-c p < n’ 
4P) 
- UP)> 

P 

W(P) -UP), < z, ,w. 
P 

(5.1) 

LEMMA 5.1. Suppose that z1 < w, and that B(t) is a non-negative, con- 
tinuous, and increasing function on [z,, w]. Then 

O(P) 

zP V(p) B(p) 6 V(w)(log w)K 
B(t) dt 

qCp<r t(log t)K+’ 

AB(w) 
+ (log #+I (5.2) 

provided onZy that (Q(K)) holds. 

Proof. By (5.1) and (Q(K)) we have 

c ~v(p)B(p)= 1 
Z,dP<W P VW) 

ww{B(z,)+j-IdB(t)} 
;,<pcw, P VW) 

=B(z,) 4P) UP) 1 -- 
z,<p<wp P VW) 

O(P) UP) ---dB(t) 
P VW) 
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and this completes the proof of the lemma. 

By (1.12), (1.13), and (4.11) we may apply Lemma 5.1 with 

(5.3) 

and v = 0 and 1 in turn; and we obtain 

LEMMA 5.2. Supose that z, < w. Zf x 2 wbK, we have 

c 
z,<p<w 

~vc,,~~(~)$M~,)f~(~)-V(M.)f;(~) 

A V(w) log w  +-..__ - , 
( > 

K. 
o,(l) logz, logz, 

(5.4) 

and if x 2 waK, we have 

ProofI With B(t) given by (5.3) and v = 0 or 1, we deal first with the 
integral on the right of (5.2); we put t = x”~ and obtain 
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( - 1 )” K log .x/log i, 
=- 

(log xl” s 
{l-&‘“+‘(<- I)} [k-‘d[ 

log .x/log w 

= (-1)” {&(~+(gg) 

-L( l +fE))] 
(log w)” 

using (l.lOiii) and (l.lOiv) at the last step, as we may do since we require 
log x/log w  2 a,, i.e., x 3 w+, when v = 0, and log x/log w  2 flK, i.e., x 2 wBK, 
when v = 1. Hence, by Lemma 5.1 and (5.1), and subject to the specified 
restrictions on log x/log w, 

(-1)’ V(z,)- V(w)- 1 +) v(,,#W(e)] 
i z,<p<x 

log x .$j-)” - 
( ) 

log x 

1% z1 
+ V(w) $(-)” - 

( ) log w  

+A VW) logw K 
logl,(logi,j (l-~(-~v+‘(‘o~:;!iy] 

or, after rearrangement, 

(-l,~{~(z’)m’-i’(~)-V(w)m’-‘.(~) 
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log .X log x > log x 
-a--- --lap,-1 
logz, log w  log u’ 

in both cases. Since fi, - 1 2 1 and FK is decreasing (cf. (1.12)), both results 
follow from ( 1. lOi). 

In the next section we shall derive (4.35) and (4.36) from Lemma 5.2. 

6. PROOF OF THE MAIN THEOREM 

We shall prove inequalities (4.35) with fl > 2’” and (4.36) with Y, > zfiR, 
and we refer the reader to the definitions of E+ and EP, namely (4.32) and 
(4.33), respectively. It is important to recall definitions (4.7) and (4.11). 
Begin with (4.35) subject to 

1’1 >, za,. (6.1) 

We introduce the expression 

E: := V(ZI) 1 v(d)x;(d) 
dlP(z1.r) 
v(d) <, 

+ 1 
dl !‘(+I.=) 

W(d)) 
1 

~,(Wy,ld)llog p(d)) 
p(d) = 1 
v(d) < r 

+(-I)’ 1 x,t(d) 
dlP(z~.r) 

v(d) = r 

y V(p(d)) d’-” 

(6.2) 
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We begin with the observation that 

log Yt ET=V(z,)F, - - ( 1 logz, 
1 X.t(Pi$-) 

z,cp<z 
V(P) fh (‘“;~;~‘) 

by1 
-V(z)F, - . ( 1 log z 

By (2.28), x-;(p)=1 ifandonly ifp<y, INA + I), so that if z < yil(flk+ ‘) the 
factor x,:(p) may be replaced by 1 in the sum on the right. By (6.1) 

Z<Jl 
,1/G < , Y;/CS~+~~ if or,> flK + 1. Hence, when a,3 fi, + 1, or when 

ax -L p, + 1 but z G y:l@*-+ I), we have 

(6.3) 

by (5.5) with w=z and x= y, this part of the lemma being applicable in 
view of (6.1). 

Suppose we are in the case of a, < 0, + 1, and that 

Here, again by (5.5), 

< v(y;“pK+‘)) F,(/3, + 1) - V(z) F, log Y, ( 1 log z 
+ A I/(y;“P.+“) log y;i(B.+l) li 

g,(l) 1% Zl ( > logz, 

The first two terms on the right contribute, by (Q(K)), 
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V(Y, IilB, + 1) 
V(z) 

1 
V(z) 

since u”F,(u) is constant when cr,<u</?,+l, by (l.lOiii) and (l.lOii). 
Since y ill 1 + 0,) is much larger than z, we obtain finally, with one further 
application of (Q( ti)), 

(6.4) 

since F,(p,+ l)<F,(l)= l/o,(l) by (1.12) and (l.lOi). From (6.3) and 
(6.4) we have in all cases 

For any integer s >, 1, consider 

v(d) = 2s - 1 

(6.5) 
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say. We introduce the sum 

and write 

%+,-EL-, =(H,-H,-H,)+(H,+H,-H,+Hs). 

It is easy to see that 

- 1 
:, C P <p(d) 

(6.6) 

(6.7) 

(6.8) 

but when v(dp)=2s+ 1 is odd, I,:(@)= I when, by (2.19), pfi*+ ‘d< y,, 
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that is, when u = log( y,/dp)/log p > fl,-and otherwise qJ: (dp) = 0. But 
then u <fi, and f,(u) = 0 (cf. (l.lOii)) anyway, so that we may write 

- c y V(p)f; (‘“~o;~‘)j. (6.9) 
=, G P-c P(d) 

Similarly we have 

H,fH,-H,+HS 

+ X,: (4) 
1 

~Jlog(y,ldpYlog P) 

44 + x,t,(d) 7 

In the inner sum of the latter expression, the form in parentheses is (cf. 
(2.11)) 

When q-: (dp) = 1, this equals 

when q.z (dp) = 0, it equals 

(6.10) 

But when v(dp)=2s and q,ll(u”)=O, (2.19) tells us that p’“+‘d>y,, 
so that u = log( y,/dp)/log p <a, and consequently F,(U) = l/a,(u) 
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(cf. (lAOi)). Hence the term in parentheses is given by (6.10) in either case, 
and we have 

To estimate the expressions (6.9) and (6.11) we turn to Lemma 5.2, and 
apply it with x = y,/d and w  = p(d). The expressions in parentheses on the 
right of (6.9) and (6.11) are each at most 

A m44) log P(d) K -~ - 
fJK(l) logz, ( ) 1% 21 

provided that y1 >~(d)“~ d in the sum on the right of (6.9) and 
y, >~(d)~~ d on the right of (6.11). But this is indeed the case, for in (6.9), 
v(d) even and I; = 1 imply that p(d)“K d-c y,, and in (6.1 l), v(d) odd 
and X:(d) = 1 imply that p(d)BK d-c y, (cf. (2.19) and (2.18)). Hence, by 
(6.8), (6.9), and (6.11) we have 

A 1 
Q-- c 

44 
flK(l) 1% z1 dl P(=1,=) 

x,: (4 d J’Md)) 
v(d) = 2s ~ I ,2s 

it follows from addition that, 

A 1 
<-- c 

44 
a,(l) 1% Zl d,p(r,,z) 

x,t I(4 d f’M4) 

v(d) =z 22 

so that, by (6.5), if y, >zQ, 
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It is evident from (4.32) and (6.2) that E+ = lim,, % Et,, + 
V(z) FJlog y,/log z) , whence, by (Q(K)), 

r = I dl P(z,.;) 
v(d) = r 

But 

=exp ( O(P) 
> 

Vz,) 1 - <- 
z,<pc.- 

+j=)“(l +p&jT’ 

using (Q(K)) once again; hence 

so that, by (4.5) 

It follows from (4.31) that 

+ c c+(m)R,,, z1 <z-c yp. 

mlP(r) 
m-=Y 

If yi’“” < z < y1 there is (4.17) at our disposal, now to be applied with q = 1, 
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w = z and (cf. (4.16)) with Y = y,-so that 1 <r < a,-in view of (1.1(h), 
we have immediately 

+ c Co’(~)kv z,626y1, (6.13) 
NP(=) 
m c ., 

where c:(m) = c+(m) + rrn. In view of the remarks at the conclusion of 
Section 3, we may drop the condition zr <z in this inequality, and replace 
it by 2 <z. 

By (1.15) with u1 =log y,/logz and u,=log y/logz, 

by (4.7). Hence F,Jlog y,/log z) may be replaced by F,(log y/log z) on the 
right of (6.13). This all but proves the upper bound in our main theorem. 
All that remains to do is to bridge the gap 

but this is straightforward. We have only to observe that, initially, 

S(d, s, z) < S(d, 9, Y,) if y,<z, 

and to apply (6.13) with z = y,, to S(&, 9, y,). Only the first term on the 
right requires examination. Here 

as above, and, by (Q(K)), 

V(Yl) = V(z) f$+w(~~(l+&) 

G vtzJ(EjK(l +gg 

( ( 
1% log Y 

G W) 1 + 0 (log y)1/12K+ 2) 
>> 
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by (4.7). Hence even when y1 <z d 1’ we have 

S(d, 9, z) < S(d, 9, ))I) d XV(z) 
i ( 

1 + 0 
log log J 

(1% Y) l,12K+2,)]{FK g3 

+ 1 co’(m)R,, 

where cc(m) = 0 if m 1 P(z) but mjP( yl). This proves the upper bound part 
of our main theorem. 

We turn to the estimation of E-, as given by (4.33), and aim for (4.36). 
Accordingly, we assume that 

z,<z<y”P, p=p,>2. (6.14) 

The procedure we follow is similar to that used in the discussion of E+, but 
we give it in detail for the sake of completeness. 

Define, for r 2 1, 

%I) c A4X,(4 
dl P(Zl.Z) 
v(d) < r 

+ 1 x,(d) y W(d)) 
1 

4 P(ZlJ) o,((log y,ldYlog p(d)) 
a(d)= -1 

v(d) < I 

-t-l)’ C x,(d) y V(p(d))&“+’ (6.15) 
dlP(z1.z) 

v(d) = r 

so that 

(6.16) 
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we require an upper bound for E,-. We have 

If we apply Lemma 5.2, (5.5), with w  = z and x = y, we obtain at once 
(since x,(p) = 1 -X,(p) by (2.2) with d= p) 

Next, 

Z,<P<Z 
(6.17) 

E;=E;+(E;-E;) 

=E; + V(zl) 1 x,(p)~F, 
z,gp<z 

1 

+ 1 x;(P)* p UP) 
1 

2I<PCZ ~K((log Y,/P)llog P)’ 

In the inner sum over p I, ny;(ppl) may be replaced by 1, for, by (2.12), it 
equals 1 if pp+‘p<y,, and if pf=+*> , Y, it is zero, but then so is 
f,(log(y,/pp,)llog PI), by (1.1(X). This inner sum therefore is, by (5.5) 
(with w  = p and x = y,/p), at most 
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But x,(p) = 1 if and only if y, > pZ* + ’ (cf. (2.13)), and is otherwise zero. 
Hence 

E,<E,+AJ- c 00 V(p) - log p 

( > 
x 

~K(l)l% --I ;,<p<: P log Z, 
p%+‘<?, 

+ c I,,(p)? V(P) 
1 

Z,<P<Z fJA(log yJp)llog P) 

I+ c 
.-,<P<Z 

(6.18) 

by (6.17), since l/a,(u)= F,(u) when u<<c(, and 

log(y,/P) < cI 
log p ’ h 

when y, <pa,+‘, i.e., precisely when jJ; (p) = 1. 
For s 3 1 we now consider E; + z - E, . By (6.15 ) we have 

J%+2 -E; = V(z,) 1 X.,(d)~ 
44 F 

K ~ 
4 P(z1*=) 

“(d) = 2s + 1 

- X,(d) dl P(=l*=l 
v(d) = 2.~ 

+ c 
dl P(zI.z) 

X&y W(d)) (T ((log y,,&og p(d)) 
K 

v(d)=Zs+ 1 

- 1 x,(d) y VP(d))f, (WJ 
dl P(=I.-1 

v(d)=2.,+2 

+ c 
dli7z1.z) 
v(d)=2s 

In the third sum on the right, the presence of j;(d) implies that we 
may take q,(d) =O; since v(d) is odd this means (cf. (2.12)) that p(d)+2 
y,/d so that we may write F,((log y,/d)/log p(d)) in place of 
l/a,((log y,/d)/log p(d)). Having done that, replace j,(d) in the third sum 
by x,;WiW)) - x,(d) (cf. CWb m other words, write the third sum as 



COMBINATORIAL SIEVES 337 

Then 

Eii+2--G 

v(d) = 2s + 1 

v(d) = 2s 

In the first sum on the right, the factor q,(dp) may be replaced by 1, for 
qY; (dp) vanishes precisely when the f-term does (remember that f,(u) = 0 
when u < /I,). In the first sum also, xJ; (d) = 1 implies that p(d)+ -c y ,/d, 
and in the second sum x,(d) = 1 implies that p(d)BK -CC y,/d. Applying 
Lemma 5.2 in the two sums, with x = y,/d and w  = p(d), we obtain 

44 
c d dl P(zI.=) 

v(d) = 2s,2s + 1 

Hence, by (6.18) and then the identical argument leading up to (6.12) 
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It follows from (6.16) that, subject to (6.14) 

and consequently, by (4.3 1 ), that 

The rest is cosmetics. Equation (1.15) in conjunction with (4.7) permits 
us as before to replace f,(log y,/log z) on the right by f,(log y/log z). 
Moreover, our main theorem gives only the trivial lower bound 
S(&, 9, z) > 0 when y:‘fl~ < z < y’lPk; for with such a z, 

log log Y 
4(log y)lI~2K+2) 

by (1.15) and (4.7). Thus the proof of our theorem is, in fact, complete. 

APPENDIX I 

Proof of (1.15). By the mean-value theorem 

FK(U, I- FK(%) = -r;l,(kJ)(~, - Ul), u1<4l<u2, 

and 

f,(uz) -fJu,) =f :(u*)(% - u,), u,<u*<u2. 

If u0 > a,, (l.lOiii) implies that 

If u,, < c1,, F,(u,) = l/(a,(uo)) and (1.8) applies: if u. < 2 even, 
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and if 2 < u,, 6 c1,, the second statement in (1.8) implies that 

-F&)<K-, l AcF,(l). 
uo fl,(uo) Ul 

Since F,( 1) = l/0,( 1) = AK, the first statement in the lemma follows. 
Now for the second statement. We may as well suppose that U* > fl,, 

and then, by (l.lOiv), 

since /?, 3 2. This leads at once to the second statement of ( 1.15). 

APPENDIX II 

Inequality (4.17) was proved in [6] under the two-sided condition 

-L< c 
O(P) 1% P -Klog%A, 2dw,<w, (*) 

1(‘, Q p < w  P WI 

where A > 1 and L >, 1 are independent of w, and w. In [ 121, Rawsthorne 
shows in an ingenious way that the right hand inequality alone suffices. 
The right hand inequality in (*) is, however, not a consequence of our 
(G?(rc)). This is readily seen from the example 

which satisfies (Q(K)) but not the upper inequality in (*). 
We follow the procedure in [12] (first suggested by Jurkat in a lecture) 

of showing that, for the purpose at hand, the values of CD(.) may be “topped 
up” so as to satisfy a two-sided inequality (see (5) below)). The details are 
somewhat more complicated than in [12]. 

From Mertens prime number theory we know that 

w,J!<w2 (I 3 l=~(l+c($--)), 2<w,<w*. (1) 

Let g( .) be a non-negative function defined on the primes such that 

Ji!<Jl+ g(p)) <(Z>‘(l+&), 2<M’.,<w*, (2) 
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where K 3 1 and A > 1 are constants. In view of ( 1) we may write (2) in the 
form 

JJ (l+g(p)) 1-i K,l++-& 2dW,<W,? 
w, i p < w2 ( > 

where A, >, 1 is a constant. Let us even weaken this condition on g a little 
to 

n (l+g(P)) I-- 
n’] < p < W’2 

( j)“<exp(-$---). 2Gw6w1. (3) 

LEMMA. Let g( .) be a non-negative arithmetic function whose values at 
the primes satisfy (3). Then there exists a ,function g’( .) defined on the 
primes such that 

for every prime and 

g’(p) 2 g(p) (4) 

ex p ( ) - 2 G I-J (1 + g’(p)) 1 - 
u<p<v 

( jJ+w($$-) (5) 

for all pairs of integers u, v satisfying 2 < u < v. 

By (1) it follows directly from (5) that there exists a constant B > 1 such 
that 

(6) 

Proof of the Lemma. Let 

b,:= log(l+g(p)) 

for all primes p. Then, by (3), 

Let q be the least prime such that b, > 0. If q > 2, define 

b;=OZb,, P < 4. (9) 
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Suppose that for every integer T, q < Y 6 n, 

but that 

The integer n here defined may be very large or even infinite. But if it is 
finite then n + 1 is a prime and b, + 1 < 0. We break up the argument into 
two cases. 

Case I. n < q2. Define 

b;=b,, q<pdn, 

b;+,= - c bp(2b,+,). 
4<p<fl 

Suppose that [u, u] c [q, n + 11. When v 6 n, we deduce at once from 
(8) that 

and since b: + , < 0 this inequality is all the more true when v = n + 1. To 
estimate this sum from below we suppose first that v < n. Then, by (8) and 
(ll), 

so that 

(because u < v <n < 4’). Next, admit the possibility that u = n + 1. By (11) 
and (8), b’ n + i 2 -A ,/log q, whence, by the preceding argument, 
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To sum up Case I, we have defined in (11) a block (hb: q 6 p d n + 1) of 
new terms whose sum is 0 and which have the desired property 

whenever [u, u] c [q, n + 11. (12) 

We shall refer to the Case I block as a short block. 

Case II. n 2 q2 + 1. Here we terminate the block at q2 + 1; that is, we 
define 

b;=b,, q<pGq2+1, (13) 

and refer to { bb: q 6 p d q2 + 1 } as a long block. The sum of elements in a 
long block is no longer zero, but from (8) we do know that 

(14) 

Suppose that [u, u] = [q, q2 + 11. By (13) and (8) we see at once that 

As for a lower bound, we argue as in Case I: we have by (8) 

since u < u 6 q* + 1 < q3. Thus for a long block we have 

-f$< c b+-$, whenever [u, u] c [q, q2 + 11. (15) 
u<pdrJ 

With the first block defined, we begin again: we start a new block with 
the first element b,, that is positive, and define b; = 0 for the primes p < q’ 
(at which b, < 0 necessarily) that come after the first block; etc. 

We are now ready to complete the proof of the Lemma. Consider any 
sum 
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where, without any loss of generality,4 we may suppose that b: lies in block 
{ bb: q < p < q’} and b: lies in block { bb: Y < p < r’}. Moreover, the terms 
of the sum lie in non-overlapping blocks and are otherwise zero. Since the 
sum of elements in any one complete block is non-negative, we see at once 
that, by (12) and (15), 

since u < r. 

Also, again by (12) and (15) 

where the sum over q extends over the suffices of the first elements of the 
intervening long blocks. The short blocks may be ignored since their sums 
arezero. Each q>u; and if {b,:q,<p<qf+l}, {b,:q,<p<qi+l} are 
two successive long blocks (with q1 < q2), then in fact q2 > qf and therefore 

1 1 1 
-<--. 
1% 92 2 1% 41 

Hence 

CL<L 
y lwq l%U 

and 

This completes the proof of the Lemma; for we have only to define g’ by 
means of the relation 

(l+g’(p)) l--j I=!$, 
( > 

and (4) follows from bb 2 b, (for all p) in our construction. Then (5) is an 
immediate consequence of (16) and (17). 

4 The point is that elements bb not in a block are 0. 
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(3x3 2) = c g(d), (18) 
dl PC-1 
d<Y 

where g(d) is multiplicative on the squarefree numbers and satisfies (3) on 
the sequence of primes. Note that 

G(x, z)< c (1 + g(p)); (19) 
p-C= 

also that 

G(x, z) = G(x) : = c p’(d) g(d) when x 6 z. (20) 
d < .x 

Let G’(x, z) be the same summatory function associated with the 
function g’ whose existence we established in the preceding lemma. By an 
argument of Rawsthorne [12], we have 

n (l+g’(p))-‘G’(x,z)6 fl (l+g(jW’G(x,z). (21) 

The proof is so short that we repeat it here, for the sake of completeness. 
First, it clearly suffices to prove the inequality for the simple case when 
g’(p) = g(p) for all primes p < z except one, say pO, when g’( pO) > g(pO). 
Now 

G(x> z) = c g(d) + d/d 1 g(d) = S, + g(po) Sz, 
dl fY=vPo dl PC~)lPO 

d<r; d-z .~lPO 

say, where obviously S, > S2 ; and similarly G’(x, z) = S, + g’(p,,) S2. 
Hence 

G(x, z) G’k z) 

1 + gm - 1 + d(h) 

= k’hd - g(Po))(S, - S2) > o 

(1 + dPo))(l + g’(Po)) ’ ’ 

as we claimed. By iterating this procedure, if necessary, the proof of (21) is 
complete. 

On the basis of the two-sided condition (5), asymptotic formulae may be 
derived for G’(x) and G’(x, z) by the method used in [6] (see Chapter 5, 
Lemma 5.4 and Chapter 6, Lemma 6.1; or use the alternative procedure 
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indicated by Remark 2 on p. 198). While the condition Q,(K, L) used there 
is slightly stronger than (5), this causes no new difficulties and, in view of 
(21), justifies assertion (4.17). 

APPENDIX III’ 

1 2 2 
1.5 3.9114.. 3.1158.. 
2 5.3577.. 4.2664.. 
2.5 6.8399.. 5.4440.. 
3 8.3719.. 6.6408.. 
3.5 9.9388.. 7.85 14.. 
4 11.5317.. 9.0722.. 
4.5 13.1447.. 10.3006.. 
5 14.7735.. 11.5347.. 
5.5 16.4153.. 12.7730.. 
6 18.0679.. 14.0146.. 
6.5 19.7295.. 15.2585.. 
7 21.3989.. 16.5042.. 
7.5 23.075 1.. 17.7511.. 
8 24.7571.. 18.9988.. 
8.5 26.4444.. 20.2470.. 
9 28.1326.. 21.4955.. 
9.5 29.8323.. 22.7440.. 

10 31.5320.. 23.9924.. 

2.06.. 
3.22.. 
4.42.. 
5.63.. 
6.85.. 
8.09.. 
9.32.. 

11.80.. 

14.28.. 

16.77.. 

19.25.. 

21.74.. 

24.22.. 

Note added in proof: Motohashi has now resolved the problem mentioned at the end of 
Section 1. 
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