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Abstract

Laminar flow in the boundary layer at the leading edge of swept airplane wings typically becomes transitional and turbulent shortly

downstream of the attachment line. Flow control techniques to maintain the flow laminar, such as suction into the wall, therefore

must focus on this instability, which otherwise leads to turbulent flow and thus contaminates the flow over the entire wing chord.

The present paper presents new results on how the linear leading-edge boundary layer (LEBL) instability of swept-cylinders flow,

which models swept-wing flow, may be avoided. The classical Reynolds number definition is employed, which is based on the

far-field velocity Q∞, the cylinder radius R∗, and the sweep angle Λ. It is demonstrated that the flow can be stabilized by increasing

the Reynolds number at constant wall suction through an increase of R∗ or Λ, but not of Q∞.

The stability analysis is carried out for the swept Hiemenz boundary layer (SHBL), a widely used flat-plate approximation of the

swept-cylinder LEBL. As demonstrated recently 1, the SHBL with suction becomes similar to the two-dimensional asymptotic

suction boundary layer (ASBL) when increasing the classical Reynolds number ReSH to large values. In the limit of ReSH →
∞, the SHBL with suction becomes identical to the highly stable ASBL, and hence inherits its linear stability properties. The

transformation of these recent findings concerning the linear stability of the SHBL with suction to the swept-cylinder LEBL

unveils that stabilization of flow with constant suction can be observed by increasing ReS H .
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Nomenclature

x cylinder-chordwise direction

η cylinder-normal direction

z streamwise/sweep direction

Recyl cylinder Reynolds number

(= R∗Q∞ cosΛ/ν)
ReSH swept Hiemenz Reynolds

number (= W∞/
√

aν)

Q∞ free-stream velocity

R∗ cylinder radius

Λ cylinder sweep angle

V0 wall-normal suction velocity

W∞ sweep velocity (= Q∞ sinΛ)

a chordwise strain rate

(= 2Q∞ cos(Λ)/R∗)
ΔSH reference length (=

√
ν/a)

θ b.l. momentum thickness

Ql flat-plate impingement vel.

γ flat-plate strain rate (= Ql/θ)
κ wall suction (= V0/

√
νγ)

ϕ flat-plate sweep angle

ν kinematic viscosity

θ̄ nondim. boundary-layer

momentum thickness

1. Introduction

1.1. Motivation

The leading-edge boundary layer flow on swept aircraft wings undergoes transition to turbulence usually immedi-

ately downstream of the attachment line. However, it is indispensable for achieving laminar flow over large portions

of the chord and hence for significant wing drag reduction to avoid transition near the leading edge of swept wings,

or swept cylinders. The aim of the present paper is to contribute to the understanding of the viscous linear instability

in the very front part of the leading edge. New results on the influence of the leading-edge radius and sweep angle on

the flow stability are presented. In light of the decade-long efforts to maintain the flow over wings laminar, these are

potentially of relevance to wing design.

1.2. The LEBL, SHBL and their connection to the ASBL

The leading-edge geometry is defined by the cylinder radius R∗ and the sweep angle Λ against a free-stream of

velocity Q∞ (cf. nomenclature). The irrotational far-field flow is determined by the three parameters {Q∞, R∗, Λ},
which lead to a chordwise strain rate a = 2Q∞ cos(Λ)/R∗ of the outer flow. Close to the attachment line, the resulting

swept-cylinder LEBL may be approximated2,3 by the flat-plate swept Hiemenz boundary layer (SHBL). The latter

flow is self-similar, and it is characterized4 by the sweep velocity W∞ and a strain rate a, which must be matched to

the outer strain rate of the cylinder flow.

The SHBL belongs to the class of Falkner-Skan (FS) boundary layers5 and requires the chordwise strain rate a
to be nonzero. However, it was recently demonstrated6,1 by the introduction of a new boundary-layer formalism

(figure 1) that the chordwise flow may vanish, a = 0, if suction is present. In that case, the SHBL with suction

becomes identical to the two-dimensional asymptotic suction boundary layer (ASBL). The classical Reynolds number

definition, however, diverges in this limit, ReS H
∣∣∣
a→0
→ ∞, even though the flow is well-behaved and possesses a non-

zero boundary-layer thickness. In particular, the ASBL has a linear critical Reynolds number and favorable stability

properties. This singularity makes a direct transformation (e.g. of stability results) of the SHBL with suction to the

swept-cylinder LEBL impossible in this limit, when employing the classical FS formalism. By employing the new

formalism, a quantitative transformation of the stability results to the LEBL is possible, as long as the boundary-layer

thickness remains nonzero. In particular, it becomes possible in the flat-plate limit, i.e. when R∗ → ∞, or Λ → π/2.

Using the new transformation, linear stability results for swept-cylinder LEBL are obtained on the basis of stability

results for the flat-plate SHBL when approaching the limit ReS H
∣∣∣
a→0
→ ∞. This will be demonstrated in section 2.

1.3. The linear stability of the SHBL and the ASBL

The linear stability analysis of the SHBL7 for a classical normal-mode ansatz8,9 results in a linear critical Reynolds

number of ReSH
crit
≈ 583.1. The stability may be enhanced by applying homogeneous wall suction7, as verified in

numerical simulations10 and experiments11,12,13. Adding wall suction with constant dimensional velocity V0 leads to

the definition of a second nondimensional suction number7 κSH = V0/
√
νa. The ASBL has a linear critical Reynolds
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number14 of ReAS
class,crit

≈ 54 370 and Herron et al. 15 reported a large portion of its stability diagram. The ASBL was

shown to be subcritically unstable16 while its transition Reynolds number17 of ReAS
class,tr ≈ 4 800 is far below ReAS

class,crit
.

1.4. Stabilization by suction

The nondimensional wall suction κSH required to stabilize a SHBL according to linear theory increases monotoni-

cally7 with the Reynolds number ReSH . This suggests that increasing ReSH also requires an increase of the dimensional

suction velocity V0 to maintain the flow linearly stable. This is the case for relatively low Reynolds numbers ReS H .

However, for large Reynolds numbers ReS H , the classical stability condition of monotonically increasing κSH can be

misleading: Both the classical Reynolds number ReS H as well as κS H diverge when the chordwise strain rate a van-

ishes. However, the boundary-layer thickness may remain nonzero, if suction is present. Therefore, the case Q∞ → ∞,

in which the boundary-layer thickness vanishes, must be investigated separately from the two cases of R∗ → ∞ and

Λ→ π/2, in which the boundary-layer thickness remains finite.

It is the aim of the present paper to further elucidate the significance of the asymptotic solution7 κSH
crit
→ ∞ for

ReSH → ∞ when applied to swept-cylinder flow. It is demonstrated that this result only means that flows of increasing

free-stream velocity Q∞ require increasing physical suction velocities V0. To the contrary, it is shown that increasing

ReSH → ∞ via the cylinder radius R∗ → ∞ or the sweep angle Λ → π/2 may even lead to flow stabilization if the

physical suction V0 is held constant.

The remainder of this paper is structured as follows. First, the transformations between the LEBL, the SHBL and

the ASBL are explained in section 2. The linear stability properties of the SHBL together with those of the ASBL are

illustrated in section 3. Then, these linear stability results are transformed to the swept-cylinder geometry (LEBL) in

section 4, before the stabilizing effect of an increasing Reynolds number ReS H is discussed in section 5. Section 6

concludes this paper.

2. From swept-cylinder to flat-plate boundary-layer flow with finite and vanishing chordwise velocity

2.1. Transformation of the swept-cylinder LEBL to the flat-plate SHBL

The first step consists in the transformation of the swept-cylinder LEBL to the flat-plate SHBL. The three quantities

{Q∞, R∗, Λ} define the far-field flow around the swept cylinder, which gives rise to the chordwise strain rate a. The

associated cylinder Reynolds number Recyl is defined with R∗ as the reference length scale and the cylinder-normal

reference velocity Q∞ · cosΛ (see nomenclature). The transformation to the self-similar flat-plate SHBL is carried

out by requiring equal far-field strain rates a and sweep velocities W∞ of both flows. The SHBL Reynolds number

ReSH is defined with the wall-parallel reference velocity W∞ and the synthetic length scale ΔSH =
√
ν/a. Then, Recyl

is related to ReSH according to ReSH =
√

Recyl/2 · tanΛ. When a vanishes (e.g. R∗ → ∞ or Λ → 90◦), the classical

ansatz18 becomes singular because the SHBL length scale ΔSH diverges.
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2.2. Unification of the flat-plate SHBL and ASBL flows
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Fig. 1. The Hiemenz boundary layer (ϕ = 0), the SHBL (0 < ϕ < 90◦) and the ASBL (ϕ = 90◦). All three homogeneous flat-plate boundary layers

are described by one formalism, which employs the sweep angle ϕ of the infinite flat plate. Adapted from (author?) 1 with permission.

The second step, i.e. the unification of the SHBL and the ASBL, is explained here only briefly6,1. The SHBL

singularity which occurs for vanishing chordwise flow is overcome by introducing the sweep angle ϕ of the infinite

plate into the boundary-layer similarity ansatz (figure 1). This angle is a representation of the streamline orientation

near the attachment line and is not to be confused with the swept-cylinder sweep angle Λ (see figure 2(c) below). The

reference length scale Δ of the new solution is not constructed from viscosity and the chordwise strain rate a, unlike

ΔS H . Instead, it is based on the boundary-layer momentum thickness θ of the velocity profile in the z-direction. As

a result, the similarity coordinate η = y/Δ remains bounded even if the chordwise strain rate a vanishes1. In brief,

the new reference velocity is Ql = W∞/ sinϕ and the length scale is Δ =
√
ν/γ, with the strain rate γ = a/ cosϕ.

Thus, the new Reynolds number is Re = Ql/
√
γν and the nondimensional suction is κ = V0/

√
νγ. The transformation

to the classical nondimensional numbers of the SHBL is given1 by ReS H = θ̄0 tanϕ and κS H = κ/
√

cosϕ, where

θ̄0 ≈ 0.4042. As a result, the governing equations for the three velocity components U, V and W of homogeneous

flat-plate boundary layers, in particular the SHBL (0 < ϕ < π/2) and the ASBL (ϕ = π/2), read

U(x, η) = x f ′/Re, V(η) = − f /Re, W(η) = g sinϕ, (1a,b,c)

f ′′′ + f f ′′ − f ′2 + cos2 ϕ = 0, g′′ + f g′ = 0, (2a,b)

subject to the boundary conditions

f (0) = κ, f ′(0) = 0, f ′(η→ ∞) = cosϕ, (3a,b,c)

g(0) = 0, g(η→ ∞) = 1. (3d,e)

In summary, the two preceding subsections 2.1 and 2.2 present two transformations, which allow us to relate the

dimensional swept-cylinder parameters {Q∞, R∗, Λ} and wall suction velocity V0 of the LEBL, via the SHBL, to ϕ
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and κ directly. These are the two nondimensional numbers that describe homogeneous flat-plate flow. The direct

transformations read

Q∞(ϕ; R∗,Λ) = 2
(
θ̄0 tanϕ

)2 ν cosΛ

sin2 ΛR∗
, (4a)

R∗(ϕ; Q∞,Λ) = 2
(
θ̄0 tanϕ

)2 ν cosΛ

sin2 ΛQ∞
, (4b)

Λ(ϕ; Q∞,R∗) = arccos

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−
(
θ̄0 tanϕ

)2
ν

Q∞R∗
+

√√√√√√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
θ̄0 tanϕ

)2
ν

Q∞R∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

+ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4c)

V0(ϕ, κ; Q∞,Λ,R∗) = κ
Q∞ sinΛ

θ̄(ϕ, κ) sinϕ
. (4d)

Examples of these explicit relations between ϕ and {Q∞, R∗, Λ} are illustrated in figure 2. We emphasize that the

relatively large values of ϕ ≈ 90◦ result from the fact that the streamlines are almost parallel to the attachment line at

the distance of one boundary-layer momentum thickness from the attachment line in the chordwise direction.

If ϕ is increased to 90◦ by increasing the cylinder radius R∗ or the sweep angleΛ (figures 2(b) or (c)), the chordwise

flow component vanishes, but the boundary-layer thickness θ remains finite. As a result, the SHBL flow becomes

identical to the ASBL. However, this is not the case if ϕ is increased to 90◦ by letting Q∞ → ∞ as the boundary-layer

momentum thickness vanishes in this limit.
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Fig. 2. (a) Free-stream velocity Q∞, (b) cylinder radius R∗, (c) sweep angle Λ as functions of ϕ (eq. (4a-c)) where the respective other quantities

are Q∞ = 250 m/s, Λ = 35◦, R∗ = 0.15 m, ν = 3.5 · 10−5 m2/s.

3. Linear stability for finite and for vanishing chordwise flow

The transformation of stability results from the flat-plate SHBL configuration to the LEBL in the present publi-

cation is based on the solution of the stability equations in ref. 1. There, the temporal linear stability analyses were

carried out both for finite (a > 0) as well as for vanishing chordwise flow (a = 0) for the first time. The neutral

surface was obtained on the basis of the new formalism (1), by solving the stability equations for ϕ ∈ [0, π/2] and

various suction values κ ≥ 0 for real wave numbers α. As a result, a smooth, compound neutral surface in the {ϕ, κ, α}
parameter space was obtained1. Neutral curves for various values of κ are illustrated in figure 3.
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Fig. 3. Neutral curves of the compound linear stability investigation of the SHBL and the ASBL. The neutral curve for κ = 0 describes the classical

Görtler-Hämmerlin (GH) instability with the linear critical Reynolds number of ReS H
crit ≈ 583.1 (filled square). This neutral curve as well as those

obtained for κ > 0 are in good agreement with results by (author?) 7 (open squares and triangles). For ϕ = 90◦ and positive suction κ > 0 all

neutral curves remain bounded. The neutral curve of the ASBL reported by (author?) 15 and the most unstable Tollmien-Schlichting (TS) mode

are recovered (circles).

In particular, the neutral surface does not diverge in the limit of ϕ = π/2, which corresponds to the singularity

ReS H → ∞ of the classical formalism. Furthermore, a maximum nondimensional wall suction κmax exists for which

the flow is linearly stable at all Reynolds numbers ReSH .

These new stability results can be applied to the swept-cylinder LEBL: The most intuitive approach would consist

in performing a two-step transformation: First, this neutral surface would be converted from the new scaling to the

classical nondimensionalizations of the SHBL and the ASBL (cf. section 2.2). This would recover the classical

results for the SHBL7 and the ASBL14,15, as documented previously1. Second, the results would be converted from

the classical SHBL nondimensionalization to cylinder geometries, as presented in section 2.1. However, performing

these two steps one after the other, i.e. converting ϕ to ReS H and κ to κS H first, would again result in diverging

solutions. In order to overcome the singularity ReS H → ∞ of the SHBL formalism, both steps must be carried out

simultaneously, employing the direct transformation equations (4). This is done in the following section.

4. Transformation of the linear stability results for the SHBL with suction to the LEBL

4.1. Transformation of the neutral curve for several far-field flows

A projection of the neutral surface illustrated in figure 3 in the direction of α leads to the neutral curve κcrit(ϕ),

shown in figure 3 by a solid curve. This needs to be converted into a dimensional suction velocity V0,crit(Q∞,R∗,Λ) as

a function of the dimensional far-field quantities {Q∞, R∗, Λ}.
First, ϕ is converted to a set of parameters {Q∞, R∗, Λ} according to equations (4a-c). Naturally, there are infinitely

many parameter combinations which are described by the same angle ϕ (or ReS H), since the stability results were

obtained for a self-similar flat-plate boundary layer. Two of the three values {Q∞, R∗, Λ} are chosen arbitrarily while
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the third one is calculated. Second, V0,crit(Q∞,R∗,Λ) is calculated in a straightforward manner from equation (4d).
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Fig. 4. Neutral curve in dimensional units V0 as a function of (a) Q∞ at R∗ = 0.15m, Λ = 35◦, (b) leading-edge radius R∗ at Q∞ = 250m/s for

various Λ (15◦, 35◦, 55◦), (c) sweep angle Λ for various R∗ (0.15 m, 0.50 m, 1.0 m) at Q∞ = 250m/s, ν = 3.5 · 10−5m2/s. Increasing R∗ or Λ can

stabilize the flow, if the constant suction V0 is stronger than the values denoted by the filled symbols (b) �, �, �, or (c) �. Increasing Q∞ cannot

stabilize the flow, the dashed curve in (a) shows the asymptotic behavior of the required suction V0 as Q∞ → ∞.

Exemplary results in dimensional units are shown in figure 4. Panel (a) illustrates the neutral curve V0,crit(Q∞) as

a function of the far-field velocity Q∞ for a constant cylinder radius and sweep angle. The classical result7, which

states that the suction required to stabilize a LEBL diverges with the far-field velocity, is confirmed. The asymptote is

marked in the figure by a dashed line. Figure 4(b) shows three neutral curves V0,crit(R∗) as a function of the cylinder

radius R∗ for three different sweep angles Λ. Analogously, panel (c) illustrates three neutral curves V0,crit(Λ) as a

function of the sweep angle Λ for three different radii R∗. Both panels (b) and (c) show that, for any given value of

R∗ and Λ, sufficiently strong finite suction velocities V0 stabilize the LEBL. This holds even in the limit of infinite

cylinder radius R∗ or full sweep Λ = 90◦, where the baseflow becomes identical to the ASBL. There, the stability

properties (e.g. wave number, phase velocity) of the LEBL become identical to those of the flat-plate ASBL.

4.2. Stability diagram of the swept-cylinder LEBL

The results from figure 4 are recovered and extended in figure 5. The neutral curve κcrit(ϕ) is illustrated by a black

curve as it results from the stability equations, separating the regions of linear stability and instability. The ϕ and

κ-axes are directly transformed to the classical Reynolds number definitions which describe the SHBL and the ASBL,

respectively, labeled on the top and right boundaries of figure 5. The three sets of curves illustrated in panels (a)-(c) are

isolines of V0 for various {Q∞, R∗, Λ}. The curves of panel (a) illustrate the coordinate system {Q∞,V0}, while those

of panels (b) and (c) illustrate the systems {R∗,V0} and {Λ,V0}, respectively. Along all these curves, V0 is constant

and either one of the three parameters {Q∞, R∗, Λ} varies. From one curve to the next, V0 is discretely altered (see

caption).

From figure 4(a) it can be seen that increasing the far-field velocity Q∞ makes all flow configurations enter the

region of instability eventually. A flow with constant suction V0 cannot be stabilized by increasing the far-field

velocity Q∞. Likewise, panels (b)-(c) show that stable flows may become unstable by increasing R∗ or Λ. The first

linear instability occurs where the green (blue) curves intersect with the black neutral curve. In contrast to panel (a),

however, some configurations illustrated in panels (b) and (c) eventually leave the region of unstable flow, when R∗
or Λ is further increased. Thus, flow stabilization occurs even when V0 is held constant. All flow configurations of

panels (b)-(c) terminate at the right axis (ϕ = 90◦, positive suction κ > 0) when R → ∞ or Λ = 90◦, respectively.

Some of them end within the region of unstable flow, some of them in the stable domain. Whether or not the curves

terminate inside the region of unstable flow is determined by the stability properties of the ASBL, which may or may

not be stable, depending on the Reynolds number.
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Fig. 5. (Color online) Neutral curve (black) and curves of constant suction velocity V0 for (a) various far-field velocities Q∞, V0 =

{0.1, 1, 10, 100} cm s−1, (b) various cylinder radii R∗, V0 = {0.2, 0.8, 1.4, 2.0} cm s−1, (c) various sweep angles Λ, V0 = {0.2, 0.8, 1.4, 2.0} cm s−1.

The constant reference parameters for the respective other panels are Q∞ = 250 m s−1, Λ = 35◦, R∗ = 0.15 m, ν = 3.5 · 10−5 m2 s−1 (cf. fig. 2).

5. Flow stabilization by increasing the Reynolds number

A surprising result is the fact that the curves shown in figure 4(b) and (c) are non-monotonic, or, that the blue and

green curves of figure 5(b-c) may intersect with the black neutral curve twice. This demonstrates that an unstable

LEBL may not only be stabilized by increasing the wall suction or by decreasing the Reynolds number ReSH . To the

contrary, if the dimensional suction velocity V0 exceeds a certain threshold, a LEBL with constant suction may be

stabilized by increasing Λ or R∗ and thus ReSH . As an example, it may be observed from figure 4(c) that a swept

cylinder of radius R∗ = 0.5 m at V0 = 2.5 cm/s wall suction first becomes linearly unstable when the sweep angle

exceeds Λ ≈ 60◦ but re-stabilizes again when Λ ≈ 80◦.
Finally, it is pointed out that ReSH increases monotonically both with R∗ and with Λ. Thus, re-stabilization of any

LEBL is observed for all wave numbers by increasing Λ or R∗ if the physical wall suction V0 is sufficiently large.

Likewise, there are LEBL flows which are stable at all wave numbers for any value of Λ or R∗ if V0 is large enough.

For the examples of leading-edge boundary-layer flow presented here, suction on the order of 1cm/s is sufficient. On

the other hand, Q∞ must not be increased in order for the flow to be stabilized (see figure 5(a)).

6. Conclusions

We have shown that the leading-edge boundary layer (LEBL) with wall suction may be stabilized by increasing

the Reynolds number. The stability properties were obtained from the swept Hiemenz boundary layer (SHBL) along

a flat plate, a commonly used model flow with the classical Reynolds number definition ReS H . The reason for this

counterintuitive observation is the fact that, despite the singularity ReS H → ∞ in the limit of vanishing chordwise flow

a = 0, the flow is physically sensible and identical to the very stable ASBL configuration1 if nonzero wall suction is

applied. Therefore, the LEBL with wall suction inherits the properties of the ASBL if the chordwise flow vanishes.

Even before reaching the limit of vanishing chordwise flow, an increase of the cylinder sweep angle Λ or radius R∗
(which lets ReS H become large) may already stabilize the LEBL as it approaches the ASBL solution. An increase of

the far-field velocity Q∞, however, does not lead to flow stabilization. In summary, a stabilization of the LEBL may

be observed by an increase of the SHBL Reynolds number ReS H , if wall suction is present.
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forschung. Eine Festschrift in Originalbeiträgen., edited by H. Görtler and W. Tollmien, Vieweg, Braunschweig, 1955, pp. 304–314.

9. Hämmerlin, G., “Zur Instabilitätstheorie der ebenen Staupunktströmung,” 50 Jahre Grenzschichtforschung. Eine Festschrift in Original-
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