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1. Introduction

The increasing demands for high performance materials require
the adequate constitutive modeling, as well as the appropriate pre-
dictions of the overall failure mechanisms under complex thermo-
mechanical loads. When engineering materials classified as elas-
tic–plastic-damage (for example polycrystalline metals) are sub-
jected to external loading, the material degradation connected
with slip rearrangements of crystallographic planes through dislo-
cation motion, observed at the macro-scale as plastic behavior
(Chaboche, 2008), is accompanied by the development of other
microscopic defects, like micro-cracks and micro-voids (Lemaitre,
1992; Abu Al-Rub and Voyiadjis, 2003). The nucleation, growth
and interaction of these micro-defects under external loads result
in a deterioration process on the macro-scale and, as a conse-
quence, change of the constitutive properties of the material.

If the elastic–plastic-damage material is loaded so that not only
inelastic strains develop, but also the temperature is changed, then
thermo-elasticity, thermo-plasticity and thermo-damage are
encountered. The experimental results (Bednarek and Kamocka,
2006) proved that not only the temperature itself but also the heat-
ing rate makes a significant impact on parameters that determine
carrying capacity at elevated temperatures, and that heating rate
should be accounted for in the strength analysis of structures ex-
posed to high temperatures. The need for the additional term, pro-
portional to the temperature rate in the evolution equation for the
back-stress was already considered by Prager (1958), introduced
ll rights reserved.
also by Chaboche (1997b) in the unified viscoplastic constitutive
equations using the Armstrong–Frederic format. In Chaboche
(2008) the discussion is made for the necessity of temperature rate
terms in the context of hardening rules.

Ganczarski and Skrzypek (2009) take into account the temper-
ature dependence of all material functions that characterize plas-
ticity and damage components, which results in extended
thermo-plastic-damage equations, with the additional tempera-
ture rate terms in all evolution equations of thermodynamic conju-
gate forces. More general case of the non-associated plasticity and
non-associated damage, when not only temperature-softening but
also damage-softening is taken into account is due to Egner (2009).

In the present analysis a general phenomenological model, based
on the irreversible thermodynamics, is formulated and used to de-
scribe the dissipative elastic–plastic-damage material in the small
strain range. A special attention is paid to the proper description of
coupling between heating rate and two dissipative phenomena:
plasticity and damage, taking place in the material subjected to non-
isothermal conditions. Both thermal softening and damage soften-
ing are accounted for and the consequences of coupling in
consistency conditions and loading/unloading conditions are stud-
ied in detail.

2. General thermodynamical model of dissipative materials

2.1. Basic assumptions

We consider a closed thermodynamic system that is susceptible
of several possibly coupled dissipative phenomena (like plasticity,
damage, phase changes, frictional slips on closed crack lips etc.,)
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that are formalized on the macroscopic level by the use of a proper
set of state variables. The motions of the system obey the funda-
mental laws of continuum mechanics (conservation of mass, con-
servation of linear momentum, conservation of angular
momentum) and two laws of thermodynamics written here in
the local form:

� Conservation of energy
Fig. 1. Components of the strain tensor induced by k-th dissipative phenomenon.
q _u� _eijrij � r þ qi;i ¼ 0 ð1Þ

� Clausius–Duhem inequality

q_s� r
h
þ

qi;i

h
� qi

h;i
h2 P 0 ð2Þ

where q is the mass density per unit volume; r is the stress tensor;
u is the internal energy per unit mass; e is the strain tensor; r is the
distributed heat source per unit volume; q is the outward heat flux;
s is the internal entropy production per unit mass and h is the abso-
lute temperature.

Depending on the scale, different approaches may be used in or-
der to describe an overall structural response of a dissipative struc-
ture on the macro-scale. In general, micro-mechanical models
relate the macro-properties and the macro-response of a structure
to its microstructure. In such approach the rearrangements of mi-
cro-structure are discrete and stochastic phenomena induced by a
number of weakly or strongly interacting micro-changes that influ-
ence the overall structural response. The micro-mechanical models
have the advantage of being able to sustain heterogeneous struc-
tural details on the micro-scale and meso-scale, and to allow a mi-
cro-mechanical formulation of the evolution equations based on
the accurate micro-changes growth processes involved (cf. Voyia-
djis et al., 2007; Boudifa et al., 2009; Aboudi, in press).

Continuum mechanics approach, applied in the present work,
provides the constitutive and damage evolution equations in the
framework of thermodynamics of irreversible processes. The mate-
rial heterogeneity (on the micro- and meso-scale) is smeared out
over the representative volume element (RVE) of the piece-wise
discontinuous material. The true state of material within RVE, rep-
resented by the topology, size, orientation and number of micro-
changes, is mapped to a material point of the quasi-continuum.
The true distribution of micro-changes within the RVE, and the cor-
relation between them are measured by the change of the effective
constitutive properties. The micro-structural rearrangements are
defined by the set of state variables of the scalar, vectorial or ten-
sorial nature (cf. Murakami and Ohno, 1980; Chaboche, 1997a;
Skrzypek et al., 2008; Ganczarski et al., 2010).

In the case of infinitesimal deformation the total strain e can be
expressed as the sum of the elastic (reversible) strain eE, inelastic
(irreversible) strain eI, and thermal strain eh:

eij ¼ eE
ij þ eI

ij þ eh
ij ð3Þ

In the process of deformation, various microstructural rearrange-
ments of material structure may be induced, for example the
changes in density and configuration of dislocations, the develop-
ment of microscopic cavities, changes from primary to secondary
phase etc. All these rearrangements may contribute to both revers-
ible and irreversible strains (cf. Abu Al-Rub and Voyiadjis, 2003),
therefore:

eE
ij ¼ ee

ij þ
Xn

k¼1

eEk
ij ; eI

ij ¼
Xn

k¼1

eIk
ij ; ek

ij ¼ eEk
ij þ eIk

ij ; k ¼ 1;2; . . . ;n

ð4Þ

where ee
ij is a ‘‘pure’’ elastic strain, and eEk

ij ; eIk
ij are respectively the

reversible and irreversible components of the total strain ek
ij induced
by k-th dissipative phenomenon (see Fig. 1), e.g. plastic flow (k = p),
damage (k = d), phase change (k = ph) etc. For example, in the case of
thermo-elastic–plastic-damage material the total strain tensor is
expressed as

eij ¼ ee
ij þ eEd

ij|fflfflfflffl{zfflfflfflffl}
eE

ij

þ ep
ij þ eId

ij|fflfflfflffl{zfflfflfflffl}
eI

ij

þeh
ij ð5Þ

while its damage induced component, ed
ij, consists of both reversible

(Ed) and irreversible (Id) damage strain terms

ed
ij ¼ eEd

ij þ eId
ij ð6Þ
2.2. State variables

The irreversible rearrangements of the internal structure can be
represented by a group of state variables describing the current
state of material microstructure:

fKkg; k ¼ p; d;ph; . . . ð7Þ

where Kk may be scalars, vectors or even rank tensors. For damage
description, in the case where the damaged material remains iso-
tropic, the current state of damage is often represented by the scalar
variable Kd denoting the volume fraction of cracks and voids in the
total volume.

Damage acquired orthotropy requires a second order tensor, for
example the classical (Murakami and Ohno, 1980) tensor:

Kd ¼ D ¼
X3

i¼1

Dini � ni ð8Þ

where Di ¼ dAd
i =dAi denotes the ratio of cracks and voids area to the

total area on the principal plane of normal unit vector n. In the most
general case of anisotropy the description of damage needs to be
embodied in an eight-order tensor (cf. Cauvin and Testa, 1999),
while the principle of strain equivalence allows using fourth-order
tensors.

For the phase transformation analysis the scalar variable

Kph ¼ n ¼ dVs

dV0 ð9Þ

is commonly adopted (cf. Egner and Skoczeń, 2010), which denotes
the volume fraction Vs of the martensite in the total volume V0 of
the martensite-austenite representative volume element, if mar-
tensitic transformation c ? a0 is considered. However, a scalar var-
iable is not capable of describing the acquired anisotropy due to
partially directional nature of the martensitic inclusions in the
austenitic matrix. Therefore, instead of scalar variable (9) a sec-
ond-order tensor can be defined in analogy to (8):
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Kph ¼ n ¼
X3

i¼1

nini � ni; ð10Þ

where ni ¼ dAs
i=dAi describes the ratio of the secondary phase area

to the total area on the principal plane of normal unit vector n
(cf. Egner, 2010).

Another group of state variables consists of internal (hidden)
variables corresponding to the modifications of loading surfaces

fhkg ¼ rk;ak
ij; l

k
ijpq; g

k
ijpqmn

n o
; k ¼ p;d;ph; . . . ð11Þ

where rk corresponds to isotropic expansion of the loading surface,
ak

ij affects translatoric displacements of the loading surface, lk
ijpq is a

hardening tensor of the fourth order which includes varying lengths
of axes and rotation of the loading surface, and gk

ijpqmn describes
changes of the curvature of the loading surface (distortion) related
to k-th dissipative phenomenon (cf. Kowalsky et al., 1999; see
Fig. 2).

The complete set of state variables {Vst} reflecting the current
state of the thermodynamic system consists of observable vari-
ables: elastic (or total) strain tensor eE

ij and absolute temperature
h, and two groups of microstructural {Kk} and hardening {hk} state
variables:

fVstg ¼ feE
ij; h; Kk; hkg; k ¼ p;d; ph; . . . ð12Þ

When thermo-elastic–plastic-damage two phase material is consid-
ered, the exemplary set of state variables is listed in Table 1.

By the use of state variables (12) the Helmholtz free energy of
the material can be written as a sum of elastic (e), plastic (p), dam-
age (d), phase change (ph) etc. terms (cf. Lemaitre and Chaboche,
1990; Abu Al-Rub and Voyiadjis, 2003):

qw ¼ qwðVstÞ ¼
Xn

j¼1

qwj; j ¼ e;p;d; ph; . . . ð13Þ

By eliminating all the reversible processes from the Clausius–Du-
hem inequality (2) the following state equations which express
the thermodynamic forces conjugated to the observable state vari-
ables are obtained:

rij ¼
@ðqwÞ
@eE

ij

ð14Þ

s ¼ � @w
@h

ð15Þ
Fig. 2. Modifications of the loading surface related to the k-th dissipative
phenomenon in the space of thermodynamic conjugate force Yk

ij .
In addition, the pairs of forces (Yk,Hk) conjugated to other micro-
structural and hidden state variables (Kk,hk) are postulated in a
similar form to (14) and (15) (cf. Chaboche, 1997a):

� Yk ¼ @ðqwÞ
@Kk

; k ¼ 1;2; . . . ð16Þ

Hk ¼ @ðqwÞ
@hk

; k ¼ 1;2; . . . ð17Þ

In the above equations Yk stand for thermodynamic forces conju-
gated to microstructural state variables Kk, whereas Hk are harden-
ing forces conjugated to hidden state variables hk (see Table 1).

2.3. Dissipation potentials and evolution rules

To derive the kinetic equations it is assumed that at any given
temperature and state of microstructure, the rate at which any spe-
cific microstructural rearrangement occurs is fully determined by
the thermodynamic force associated with this rearrangement (cf.
Rice, 1971). Additionally, the existence of several dissipation
potentials F k is assumed, corresponding to each k � th microstruc-
tural rearrangement (due to plastic flow F p, damage growth Fd,
phase change F ph etc.) and defined independently but partly cou-
pled (weak dissipation coupling), (Chaboche, 1997a).

Dissipation functions F k in general can be expressed in the fol-
lowing nonassociated form:

Fk ¼ f k þ gk
isoðR

kÞ þ gk
kinðXkÞ þ gk

rotðLkÞ þ gk
distðGkÞ; k ¼ p; d;ph; . . .

ð18Þ

where gk
iso; g

k
kin; g

k
rot and gk

dist are functions corresponding to respec-
tively isotropic, kinematic, rotational and distortional recovery ef-
fects of partial progressive return to the original microstructure
(Kuo and Lin, 2007; Mirzakhani et al., 2009). Only the first two
terms, related to isotropic and kinematic recovery, are used in the
majority of existing models. Usually the recovery functions are de-
fined as quadratic functions of thermodynamic forces conjugated to
hardening variables, Rk, Xk, Lk, Gk. In (18) f k stands for loading sur-

face related to k-th dissipative phenomenon. Loading functions fk,
described by relevant thermodynamic forces which are tensors of
different order, can be listed in a polynomial hierarchy with increas-
ing complexity and hardening properties, see (Kowalsky et al.,
1999).

The kinetic equations for state variables are obtained by the use
of the generalized normality rule (Chaboche, 1997a; Egner, 2010):

_eI
ij ¼

Xn

k¼1

_kk @Fk

@rij
¼ _kp @Fp

@rij|fflfflffl{zfflfflffl}
_ep
ij

þ _kd @Fd

@rij|fflfflffl{zfflfflffl}
_eId
ij

þ _kph @Fph

@rij|fflfflfflffl{zfflfflfflffl}
_eph
ij

þ . . . ð19Þ

_Kk ¼
Xn

i¼1

_ki @Fi

@Yk
¼ _kp @Fp

@Yk|fflfflffl{zfflfflffl}
_Kpk

þ _kd @Fd

@Yk|fflfflffl{zfflfflffl}
_Kdk

þ _kph @Fph

@Yk|fflfflfflffl{zfflfflfflffl}
_Kphk

þ . . . ð20Þ

� _hk ¼
Xn

i¼1

_ki @Fi

@Hk
¼ _kp @Fp

@Hk|fflfflffl{zfflfflffl}
_hpk

þ _kd @Fd

@Hk|fflfflffl{zfflfflffl}
_hdk

þ _kph @Fph

@Hk|fflfflfflffl{zfflfflfflffl}
_hphk

þ . . . ð21Þ

where _ki are non-negative consistency multipliers and n is a num-
ber of dissipative phenomena, like plastic flow, damage growth,
phase change etc., taking place in the material. For rate-indepen-
dent problems the consistency multipliers may be calculated from
the consistency conditions

_f k ¼ 0; k ¼ 1;2; . . . ;n: ð22Þ



Table 1
State variables and corresponding thermodynamic conjugated forces for the elastic–plastic-damage two phase material.

Variables Corresponding thermodynamic conjugated forces

Observable eE
ij

rij

h s
Micro-structural Kd

ij ¼ Dij ðdamageÞ �Yd
ij

Kph
ij ¼ nij ðphase transformationÞ �Yph

ij

hardening rp

ap
ij

lpijkl

gp
ijklmn

9>>>=>>>;plastic

Rp

Xp
ij

Lp
ijkl

Gp
ijklmn

9>>>=>>>;plastic

rd

ad
ij

ldijkl

gd
ijklmn

9>>>=>>>;damage

Rd

Xd
ij

Ld
ijkl

Gd
ijklmn

9>>>=>>>;damage

rph

aph
ij

lph
ijkl

gph
ijklmn

9>>>>=>>>>;phase transformation

Rph

Xph
ij

Lph
ijkl

Gph
ijklmn

9>>>>=>>>>;phase transformation
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The parameters _ki are assumed to obey the classical Kuhn–Tucker
loading/unloading conditions:

f k
6 0 and _f k

< 0 and _kk ¼ 0) passive loading
¼ 0 and _kk ¼ 0) neutral loading
¼ 0 and _kk > 0) active loading

8><>: ð23Þ

When the classical approach based on the normality rule is used,
the rate of a given state variable is derived from one dissipation
function, related to dissipative phenomenon represented by this
variable. On the other hand, if another approach, based on the pos-
tulate of maximum dissipation is applied, coupling between dissi-
pation phenomena is possible to represent in evolution equations,
however only associated theories are then described, since the ki-
netic laws result from side conditions of a minimization Lagrange
problem, which are imposed on the loading functions and not dissi-
pation functions. Note that Eqs. (19)–(21) describe both coupling
between dissipation phenomena (so that all dissipation functions
may appear in each kinetic law) and non-associated rules. Conse-
quently, the inelastic strain rate consists not only of the plastic
strain rate, but also of strain rates related to other dissipative phe-
nomena. As well, the rates of microstructural state variables, _Kk in-
clude terms resulting from coupling of k-th dissipation
phenomenon with other dissipation phenomena. At the same time
the description of nonassociated theories is possible. Therefore, the
evolution rules (19)–(21) may be considered as the generalization
of classical normality rules and approaches based on the postulate
of maximum dissipation.

The comparison between kinetic Eqs. (19)–(21) and approaches
presented in Abu Al-Rub and Voyiadjis (2003) (postulate of maxi-
mum dissipation) and in Chaboche (1997a) (generalized normality
rule) for elastic–plastic-damage material is presented in Table 2.

2.4. Thermo-mechanical coupling

To determine the temperature distribution within the body the
heat equation is used, derived from the first law of thermodynam-
ics (1) by substituting into it the internal energy density

u ¼ wþ hs ð24Þ

together with Fourier’s law

qi ¼ �kijh;j: ð25Þ

where k is the thermal conductivity tensor.
The law of energy conservation (1) takes then the following

general form (Ottosen and Ristinmaa, 2005):
qch
e
_h ¼ ðkijh;jÞ;i þ r þ qh

@2w
@eij@h

_eij � _eI
ij

� �
þ q

@w
@eij

_eI
ij

þ rij � q
@w
@eij

� �
_eij � q

@w

@Kk
� h

@2w

@h@Kk

 !
_Kk

� q
@w

@hk
� h

@2w

@h@hk

 !
_hk: ð26Þ

In the above equation ch
e stands for the specific heat capacity at con-

stant strain. According to Eq. (26) the determination of the temper-
ature distribution within the body is coupled not only to the total
strain rate _e but also to the inelastic rates, _eI , and fluxes _Kk and
_hk. Therefore the problem can be solved only if the equations for
_e; _eI

; _Kk and _hk are solved simultaneously.
3. Example of application: modeling of coupling between
thermo-plasticity and thermo-damage

3.1. Temperature effects on material characteristics

The most characteristic feature of the temperature influence on
the mechanical properties of conventional engineering materials is
that the yield stress changes with temperature. The effect of yield
stress drop with temperature is evident for example from the
experimental results of Phillips and Tang (1972) shown in
Fig. 3a. Generally speaking, degradation of mechanical properties
is observed (referred to as thermal softening), accompanied by
increasing values of the thermal properties: thermal expansion
coefficient ah, thermal conductivity kh, and specific heat ch, cf f.ex.
Ottosen and Ristinmaa (2005). Neglecting temperature depen-
dence of the material properties may result in highly erroneous
predictions of the material behavior. Fig. 3b presents predicted
yield surfaces for several temperatures for [ ± 45]s laminate of
SiC/Ti (Herakovich and Aboudi, 1999). If temperature-dependent
properties (TDP) are used, the yield surface contracts with increas-
ing temperature. However, if temperature-independent properties
(TIP) are considered, the yield surface expands with increasing
temperature and at 300�C it is much larger than at 21�C, which
is an erroneous and nonconservative prediction.

Also heating rate makes a significant impact on the material
characteristics and phenomena occurring in some engineering
materials (Bednarek and Kamocka, 2006). For different heating
rates the microstructure of S235JRG2 steel shows significant differ-
ences among grain shapes, and reveals empty spaces of various
location and size in the vicinity of fracture (see Fig. 4a and b).



Table 2
Comparison between evolution rules proposed in the present paper and in Abu Al-Rub and Voyiadjis (2003) and in Chaboche (1997a).

Present article Abu Al-Rub and Voyiadjis (2003) Chaboche (1997a)

ðaÞ _eI
ij ¼ _kp @Fp

@rij
þ _kd @Fd

@rij
¼ _ep

ij þ _eId
ij

nonassociated and coupled with damage
flow rule for inelastic strain

_eI
ij ¼ _kp @f p

@rij
þ _kd @f d

@rij
¼ _ep

ij þ _eId
ij coupled with damage but

associated with plastic and damage loading surfaces;
equivalent to (a) if recovery terms in (30) are independent of
rij

_ep
ij ¼ _kp @Fp

@rij
nonassociated, but uncoupled from damage, _eId

ij

neglected

ðbÞ _Dij ¼ _kp @Fp

@Yd
ij
þ _kd @Fd

@Yd
ij
¼ _Dp

ij þ _Dd
ij

nonassociated and coupled with

plasticity flow rule for damage variable

_D¼ij
_kp @f p

@Yd
ij
þ _kd @f d

@Yd
ij
¼ _Dp

ij þ _Dd
ij coupled with plasticity but

associated with plastic and damage loading surfaces;
equivalent to (b) if recovery terms in (30) are independent of

Yd
ij

_Dij ¼ _kd @Fd

@Yij
nonassociated, but uncoupled from plasticity, _Dp

ij

neglected

ðcÞ _ap
ij ¼ � _kp @Fp

@Xp
ij
� _kd @Fd

@Xp
ij

nonassociated and

coupled with damage flow rule for
plastic kinematic hardening variable

_ap
ij ¼ � _kp @Fp

@Xp
ij

nonassociated, but uncoupled from damage;

equivalent to (c) if damage dissipation potential Fd does not
depend on plastic hardening variable Xp

ij

_ap
ij ¼ � _kp @Fp

@Xp
ij
� _ks @Fs

@Xp
ij

nonassociated, Fs is additional, static

microstructural evolution potential, but uncoupled from

damage

ðdÞ _rp ¼ � _kp @Fp

@Rp � _kd @Fd

@Rp nonassociated and

coupled with damage flow rule for
plastic isotropic hardening variable

_rp ¼ _p ¼ � _kp @Fp

@Rp nonassociated, but uncoupled from damage; in
a general case inconsistent with (a) (see Eq. (54))

_rp ¼ � _kp @Fp

@Rp � _ks @Fs

@Rp nonassociated, Fs is additional, static

microstructural evolution potential, but uncoupled from

damage

ðeÞ _ad
ij ¼ � _kp @Fp

@Xd
ij
� _kd @Fd

@Xd
ij

nonassociated and

coupled with plasticity flow rule for
damage kinematic hardening variable

_ad
ij ¼ � _kd @Fd

@Xd
ij

nonassociated, but uncoupled from plasticity;

equivalent to (e) if plastic dissipation potential Fp does not

depend on damage hardening variable Xd
ij

_ad
ij ¼ � _kd @Fd

@Xd
ij

nonassociated, but uncoupled from plasticity;

equivalent to (e) if plastic dissipation potential Fp does

not depend on damage hardening variable Xd
ij

ðfÞ _rd ¼ � _kp @Fp

@Rd � _kd @Fd

@Rd nonassociated and

coupled with plasticity flow rule for
damage isotropic hardening variable

_rd ¼ _r ¼ � _kd @Fd

@Rd nonassociated, but uncoupled from plasticity; in

a general case inconsistent with (a)

_rd ¼ � _kd @Fd

@Rd nonassociated, but uncoupled from plasticity

Fig. 3. (a) Effect of temperature on the yield surfaces of pure aluminum subjected to combined tension and torsion (after Phillips and Tang, 1972)); (b) Predicted yield
surfaces for SiC/Ti (after Herakovich and Aboudi, 1999).

H. Egner / International Journal of Solids and Structures 49 (2012) 279–288 283
Increasing the heating rate results in decreasing the slip along
grain boundaries and leads to the creation of local empty spaces,
which decrease the cross-section area and give reasons for more
brittle cracking than in the case of a long-time low heating rate.
The low heating rate creates a significant grain deformation within
the pearlite-and-ferrite areas, accompanied by the ductile damage,
while the high heating rate causes small grain deformation accom-
panied by the brittle damage.

3.2. Damage effect on mechanical and thermal modules

The influence of damage on material characteristics (referred to
as damage softening) is much less recognized in the existing liter-
ature than the influence of temperature, and most often only the
elastic stiffness is considered as affected by damage.

However, it seems justified to accept that not only elastic stiff-
ness but also other mechanical characteristics are affected by dam-
age. The influence of damage on plastic behaviour of metals is well
visible in cyclic loading. Fig. 5a and b present cycle fatigue stress–
strain behaviour for AISI 316L stainless steel (Lemaitre, 1992) and
aluminium alloy Al-2024 (Abdul-Latif and Chadli, 2007). Detailed
analysis of the subsequent strain–stress loops confirms an elasto-
plastic behaviour of both materials and strong influence of damage.
During the initial cycles the materials exhibit plastic hardening
leading to the stabilized cycle, then asymmetric drop of both the
stress amplitude and the modulus of elasticity reveals following
damage growth. This process is accompanied by a gradual decrease
of the hysteresis area and a change of shape of subsequent hyster-
esis loops, associated with a formation of the characteristic inflec-
tion point on their lower branches. The mathematical model to
describe such cycle fatigue behavior, based on continuous damage
deactivation in which microcracks close gradually, was proposed
by Ganczarski and Cegielski (2010).

The considerations on the effect of damage on the thermal
properties of materials were performed by Skrzypek and Ganczar-
ski (1998) and Ganczarski (1999).



Fig. 4. S235JRG2steel microstructure after mechanical tests: (a) 5�C/min heating rate; (b) 50�C/min heating rate (after Bednarek and Kamocka, 2006).

Fig. 5. Cycle fatigue stress–strain behaviour for (a) AISI 316L stainless steel (experimental results by Dufailly in: Lemaitre, 1992); (b) aluminium alloy Al-2024 (test by Abdul-
Latif and Chadli, 2007).

284 H. Egner / International Journal of Solids and Structures 49 (2012) 279–288
It is of interest to obtain knowledge about the variation of all
material parameters when micro-damage evolves. So far, the influ-
ence of damage on most of material characteristics is usually not
accounted for in the models due to the existing gap between the
formulated constitutive equations and the possibilities to identify
the material parameters. However, fast development of computa-
tional possibilities allows to simulate numerically even very com-
plex problems. In addition, with the increased attention paid to
many innovative materials of complex microstructure, and a dee-
per understanding of the meaning of material characteristics, to-
gether with the development of advanced experimental
techniques which allow for the determination of structural fea-
tures such as size and volume fractions of microstructural inhomo-
geneities in a variety of materials, the identification becomes much
more well-founded.

3.3. Extended equations of thermo-elastic–plastic-damage materials

In view of above experimental observations it seems justified to
extend the common formulations for coupled thermo-elastic–plas-
tic-damage behavior, accounting not only for damage effect on the
elastic modules but also on plastic and thermal characteristics.
Additionally, the effect of both temperature and damage rates
has to be included. The complete set of state variables (12) for
the thermo-elastic–plastic-damage material:

fVstg ¼ eE
ij; h; Dij; rp;ap

ij; r
d;ad

ij

n o
ð27Þ
consists in the present example of elastic strain eE
ij and absolute

temperature h; microstructural damage variable Dij (see Eq. (8)),
internal variables: kinematic and isotropic plastic hardening vari-
ables ap

ij and rp, and kinematic and isotropic damage hardening vari-
ables ad

ij and rd. For simplicity, the anisotropic and distortional
hardening of plastic and damage loading surfaces is not here
considered.

3.3.1. State equations
The state equations result from the assumed form of the state

potential, which is here the Helmholtz free energy (13), decom-
posed into thermo-elastic (qwte), thermo-plastic (qwtp) and ther-
mo-damage (qwtd) terms, after (Abu Al-Rub and Voyiadjis, 2003)
and Chaboche (1989):

qwðVstÞ ¼ qwteðeE; h; DÞ þ qwtpðh; D;rp;apÞ þ qwtdðh; D;rd;adÞ ð28Þ

The following functions for qWtk are here assumed:

qwte ¼ qhðhÞ þ 1
2
eE

ijEijklðh;DÞeE
kl � bijðh;DÞeE

ijðh� h0Þ;

bijðh;DÞ ¼ Eijklðh;DÞah
klðh;DÞ

ð29Þ

qwtp ¼ 1
3

Cpðh;DÞap
ija

p
ij þ Rp

1ðh;DÞ rp þ e�bpðh;DÞrp

bpðh;DÞ

" #
ð30Þ

qwtd ¼ 1
2

Cdðh;DÞad
ija

d
ij þ Rd

1ðh;DÞ rd þ e�bdðh;DÞrd

bdðh;DÞ

" #
ð31Þ
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In Eqs. (29)–(31) h(h) is the function of temperature, ah(h,D) is the
thermal expansion tensor; Eðh; DÞ is the elastic stiffness tensor;

Cpðh;DÞ;Cdðh;DÞ;Rp
1ðh;DÞ;R

d
1ðh;DÞ; b

pðh;DÞ; bdðh;DÞ; are material
parameters, which in general may be temperature and damage
dependent. Symbol h0 stands for the reference temperature at
which no thermal strains exists.

The expression for elastic term of the Helmholtz free energy
(29) was written in the simplified form which does not account
for the unilateral damage effect (cf. Krajcinovic, 1996; Bielski
et al., 2006). In the present example, which is focused on coupling
between thermo-plasticity and thermo-damage, this effect is ne-
glected for simplicity.

State equations can be written as follows (see Eqs. (14)–(17)):

rij ¼
@ðqwÞ
@eE

ij

¼ EijkleE
kl � bijðh� h0Þ ð32Þ

Xp
ij ¼

@ðqwÞ
@ap

ij

¼ 2
3

Cpap
ij ð33Þ

Rp ¼ @ðqwÞ
@rp

¼ Rp
1ð1� e�bprp Þ ð34Þ

� Yd
ij ¼

@ðqwÞ
@Dij

¼ � Yed
ij þ Ypd

ij þ Ydd
ij

� �
ð35Þ

Xd
ij ¼

@ðqwÞ
@ad

ij

¼ Cdad
ij ð36Þ

Rd ¼ @ðqwÞ
@rd

¼ Rd
1ð1� e�bdrd Þ ð37Þ

Note that the damage driving force Yd
ij in the presence of coupling

between thermo-elasticity, thermo-plasticity and thermo-damage
in the state potential (28), consists of three terms:

Yed
ij ¼ �

@½qwteðh;DÞ�
@Dij

¼ Yed
ij ðr; h;DÞ; ð38Þ

Ypd
ij ¼ �

@½qwtpðh;DÞ�
@Dij

¼ Ypd
ij ðX

p;Rp; h;DÞ; ð39Þ

Ydd
ij ¼ �

@½qwtdðh;DÞ�
@Dij

¼ Ydd
ij ðXd;Rd; h;DÞ; ð40Þ

which stand here for the elastic, plastic and damage strain energy
release rates, respectively, as the extension of commonly used def-
initions of the elastic strain energy release rate only (cf. Lemaitre,
1992).

3.3.2. Evolution equations
Potentials of dissipation, plastic (Fp) and damage (Fd) are here

assumed not equal to plastic yield surface (non-associated ther-
mo-plasticity) and damage surface (non-associated thermo-dam-
age), respectively. This allows obtaining non-linear plastic and
damage hardening rules, which give more realistic description of
the material response:

Fp ¼ f p þ 3
4

cpðh;DÞ
Cpðh;DÞ

eXp
ij
eXp

ij þ
1
2
gpðh;DÞðeRpÞ2 ð41Þ

Fd ¼ f d þ 1
2

cdðh;DÞ
Cdðh;DÞ

Xd
ijX

d
ij þ

1
2
gdðh;DÞðRdÞ2 ð42Þ

where cp(h,D), cd(h,D), gp(h,D) and gd(h,D) are material parameters.
f p = 0 is the von Mises-type plastic yield surface, and fd = 0 is the
damage surface:

f p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

~sij � eX 0pij� �
~sij � eX 0pij� �r

� Rp
0 þ eRp

� �
¼ 0 ð43Þ

f d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Yd
ij � Xd

ij

� �
Yd

ij � Xd
ij

� �r
� Rd

0 þ Rd
� �

¼ 0 ð44Þ
Since plasticity can only affect the undamaged material skeleton, it
seems justified to define the plastic potential in terms of the effec-
tive variables:

eX 0pij ¼ Mikjl �
1
3

Mrkrldij

� �
Xp

kl;

~sij ¼ Mikjl �
1
3

Mrkrldij

� �
rkl; ð45Þ

eRp ¼ Rp

1� Deq
; Deq ¼

ffiffiffiffiffiffiffiffiffiffiffi
DijDij

q
In the special case when gp(h,D) = 0 and gd(h,D) = 0 the dissipation
functions (41) and (42) are equivalent to functions proposed in Abu
Al-Rub and Voyiadjis (2003).

A concept of the fourth-rank damage effect tensor MðDÞ is intro-

duced in (45) that transforms the thermodynamic forces rij and Xp
ij

in the physical space of RVE to the effective forces ~sij and eXp
ij in the

fictitious pseudo-undamaged space of quasi-continuum, basing on
the adopted equivalence hypothesis between physical and ficti-
tious spaces. Many different expressions for MðDÞ exist in litera-

ture. A comprehensive review of the most common formulations
and equivalence hypotheses can be found for example in Skrzypek
and Ganczarski (1999).

The rates of state variables are obtained by the use of the gen-
eralized normality rule, Eqs. (19)–(21):

_eI
ij ¼ _kp @Fp

@rij
þ _kd @Fd

@rij
¼ _ep

ij þ _eId
ij ð46Þ

_Dij ¼ _kp @Fp

@Yd
ij

þ _kd @Fd

@Yd
ij

¼ _Dp
ij þ _Dd

ij ð47Þ

_ap
ij ¼ � _kp @Fp

@Xp
ij

� _kd @Fd

@Xp
ij

¼ _app
ij þ _adp

ij ð48Þ

_rp ¼ � _kp @Fp

@Rp � _kd @Fd

@Rp ¼ _rpp þ _rdp ð49Þ

_ad
ij ¼ � _kp @Fp

@Xd
ij

� _kd @Fd

@Xd
ij

¼ _apd
ij þ _add

ij ð50Þ

_rd ¼ � _kp @Fp

@Rd
� _kd @Fd

@Rd
¼ _rpd þ _rdd ð51Þ

where _kp and _kd are non-negative consistency multipliers.
Note that isotropic plastic hardening variable rpp is in general

not equal to classical accumulated plastic strain defined as:

p ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ep
ij
_ep

ij

r
dt ð52Þ

In the case of non-associated plasticity and/or coupling with dam-
age in Eq. (41) the definition of plastic hardening variable rpp as
being equal to accumulated plastic strain (52) leads to inconsis-
tency between Eqs. (46) and (49). According to Eqs. (46) and (52)
we can write

_kp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ep
ij
_ep

ij

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
@Fp

@rij

@Fp

@rij

q ¼
_pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3
@Fp

@rij

@Fp

@rij

q ¼
_pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MikjlMikjl

p : ð53Þ

Substitution of Eq. (53) into Eq. (49) leads to the following relation
between _rpp and _p:

_rpp ¼ _p
1� Deq � gpRp

ð1� DeqÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MikjlMikjl

p ð54Þ

It can be seen from (54) that generalized accumulated plastic strain
rpp reduces to classical parameter p only in the special case of asso-
ciated plasticity (gp = 0) without damage (Deq = 0,Mikjl = Iikjl). Also
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rdd is in general not equal to accumulated damage strain

q ¼
R t

0

ffiffiffiffiffiffiffiffiffiffiffi
_eid

ij
_eid

ij

q
dt for similar reasons.

The evolution equations for thermodynamic conjugate forces
are derived taking the time rate of state Eqs. (32)–(37), see Table 3.

By taking into account the temperature and damage depen-
dence of material characteristics the additional terms appear in
rate equations of thermodynamic forces (see Table 3), which may
play a significant role when solving high temperature and/or dam-
age rate problems, such as fire conditions or thermal shock
problems.
3.3.3. Consistency conditions
Since the thermodynamic conjugate forces are functions of tem-

perature and damage, the consistency relations (22) for develop-
ment of plasticity and damage take the following forms:

_f p ¼ @f p

@rij
_rij þ

@f p

@Xp
ij

_Xp
ij þ

@f p

@Rp
_Rp þ @f p

@Dij

_Dij þ
@f p

@h
_h ¼ 0 ð55Þ

_f d ¼ @f d

@Yd
ij

_Yd
ij þ

@f d

@Xd
ij

_Xd
ij þ

@f d

@Rd
_Rd þ @f d

@Dij

_Dij þ
@f d

@h
_h ¼ 0 ð56Þ

However, as a consequence of coupling between thermo-plasticity
and thermo-damage the damage driving force Yd is a function of
all other thermodynamic forces. Therefore, the consistency condi-
tion for damage (56) has an extended form:

_f d ¼ @f d

@rij
_rij þ

@f d

@Xd
ij

_Xd
ij þ

@f d

@Rd
_Rd þ @f d

@Xp
ij

_Xp
ij þ

@f d

@Rp
_Rp þ @f d

@Dij

_Dij

þ @f d

@h
_h ¼ 0 ð57Þ

Using the chain rule and equations from Table 3 the consistency
conditions may be transformed to the following form:

_f p ¼ @f p

@rij
Eijkl _ekl � _kph11 � _kdh12 þ Sp _h ¼ 0 ð58Þ

_f d ¼ @f d

@rij
Eijkl _ekl � _kph21 � _kdh22 þ Sd _h ¼ 0 ð59Þ

The quantities h11, h12, h21 and h22 are the generalized hardening
moduli (cf. Ottosen and Ristinmaa, 2005) which are shown in de-
tails in Egner (2011)). The following cases are (mathematically) pos-
sible to describe: plastic-hardening thermo-plasticity (h11 > 0),
plastic-ideal thermo-plasticity (h11 = 0), plastic-softening thermo-
plasticity (h11 < 0), damage-hardening thermo-plasticity (h12 > 0),
damage-ideal thermo-plasticity (h12 = 0), damage-softening ther-
mo-plasticity (h12 < 0), plastic-hardening thermo-damage (h21 > 0),
plastic-ideal thermo-damage (h21 = 0), plastic-softening thermo-
damage (h21 < 0), damage-hardening thermo-damage (h22 > 0),
damage-ideal thermo-damage (h22 = 0), damage-softening thermo-
damage (h22 < 0).
Table 3
Evolution equations for thermodynamic conjugate forces with additional terms resulted f

No coupling Coupling with

_rij ¼ Eijkl _eE
kl þ @Eijpq

@Dkl
eE

pq �
@bi

@Dk

h
_Xp

ij ¼
2
3 Cp _ap

ij þ
Xp

ij

Cp
@Cp

@Dkl

_Dkl

_Rp ¼ Rp
1bpe�bprp

_rp
þ Rp

Rp
1

@Rp
1

@Dij
þ Rp

1�ð
b

�
_Xd

ij ¼ Cd _ad
ij þ Xd

ij

Cd
@Cd

@Dkl

_Dkl

_Rd ¼ Rd
1bde�bdrd

_rd þ Rd

Rd
1

@Rd
1

@Dij
þ Rd

1�ð
b

�

The temperature sensitivity parameters Sp and Sd (see Egner,
2011) express how the yield and damage surfaces change with
temperature:

Sp

> 0) yield surface contracts
¼ 0) yield surface remains constant
< 0) yield surface expands;

8><>: ð60Þ

Sd

> 0) damage surface contracts
¼ 0) damage surface remains constant
< 0) damage surface expands:

8><>: ð61Þ

With reference to the majority of experiments the physical meaning
seems to have the case when the yield surface contracts with
increasing temperature and damage.

3.3.4. Loading/unloading criteria
To obtain the general loading/unloading criteria let us first ob-

serve that for fp < 0 and fd < 0 a thermo-elastic response occurs.
Thermo-plasticity requires fp = 0 and _kp P 0, while thermo-damage
demands fd = 0 and _kd P 0. Taking into account (58) and (59) we
have:

_kp ¼ 1
w

h22
@f p

@rij
�h12

@f d

@rij

� �
Eijkl _eklþðh22Sp�h12SdÞ _h

� 	
¼ 1

w
Ap

ijEijkl _eklþ Sp _h
� �

;

ð62Þ

_kd ¼ 1
w

�h21
@f p

@rij
þh11

@f d

@rij

� �
Eijkl _eklþðh11Sd�h21SpÞ _h

� 	
¼ 1

w
Ad

ijEijkl _eklþ Sd _h
� �

;

ð63Þ

where:

w ¼ h11h22 � h21h12 > 0; ð64Þ

Therefore, for coupled thermo-plasticity and thermo-damage we ar-
rive at the following loading/unloading criteria (23):

f p ¼ 0 and

Ap
ijEijkl _ekl þ Sp _h > 0) thermo-plastic loading

Ap
ijEijkl _ekl þ Sp _h ¼ 0) neutral loading

Ap
ijEijkl _ekl þ Sp _h < 0) elastic unloading

8>><>>: ð65Þ

f d ¼ 0 and

Ad
ijEijkl _ekl þ Sd _h > 0) thermo-damage growth

Ad
ijEijkl _ekl þ Sd _h ¼ 0) thermo-damage initiation

Ad
ijEijkl _ekl þ Sd _h < 0) elastic unloading:

8>><>>:
ð66Þ

It should be noticed here that conditions (65), (66), in the presence
of the full thermo-plasticity and thermo-damage coupling, are sig-
nificantly different from corresponding conditions for uncoupled
isothermal case (see Fig. 6). Namely, if we consider purely ther-
mo-elastic behaviour, where _kp ¼ 0 and _kd ¼ 0, we obtain the ther-
mo-elastic stress rate which results for a given total strain rate _ekl
rom coupling with damage and temperature.

damage Coupling with temperature

j

l
ðh� h0Þ

i
_Dkl þ @Eijkl

@h eE
kl �

@bij

@h ðh� h0Þ þ bij

h i
_h

þ
Xp

ij

Cp
@Cp

@h
_h

RpÞ
p

@bp

@Dij
ln Rp

1
Rp
1�Rp

� �	
_Dij þ Rp

Rp
1

@Rp
1

@h þ
Rp
1�Rpð Þ

bp
@bp

@h ln Rp
1

Rp
1�Rp

� �� 	
_h

þ Xd
ij

Cd
@Cd

@h
_h

RdÞ
d

@bd

@Dij
ln Rd

1
Rd
1�Rd

� �	
_Dij þ Rd

Rd
1

@Rd
1

@h þ
Rd
1�Rdð Þ

bd
@bd

@h ln Rd
1

Rd
1�Rd

� �� 	
_h



Fig. 6. Illustration of loading/unloading conditions for (a) uncoupled isothermal
process, (b) coupled thermo/plastic/damage process: loading surface contracting
with increasing temperature and damage.
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and a given temperature rate _h provided that the material responds
thermo-elastically (Ottosen and Ristinmaa, 2005), see Table 3:

_rte
ij ¼ Eijkl _ekl þ

@Eijkl

@h
eE

kl �
@bij

@h
ðh� h0Þ þ bij

� 	
_h ð67Þ

Now if the considered loading surface contracts with increasing
temperature and/or damage, then even if ð@f p=@rijÞ _rte

ij < 0 the
expression (62) may still have positive value and active plastic load-
ing then occurs (see Fig. 6b), and even if ð@f d=@rijÞ _rte

ij < 0 the
expression (63) may still have positive value and active damage
loading then occurs.

3.3.5. Heat balance equation
In the case of thermo-elastic–plastic-damage material, for

which the number of state variables (12) is reduced to (27), the
general coupled heat Eq. (26) takes the following form:

qch
e
_h ¼ ðkijh;jÞ;i þ r þ qh

@2w
@eij@h

ð _eij � _eI
ijÞ þ q

@w
@eij

_eI
ij

þ rij � q
@w
@eij

� �
_eij � q

@w
@Dij
� h

@2w
@h@Dij

 !
_Dij

� q
@w
@rp
� h

@2w
@h@rp

 !
_rp � q

@w

@ap
ij

� h
@2w

@h@ap
ij

 !
_ap

ij

� q
@w
@rd
� h

@2w
@h@rd

 !
_rd � q

@w

@ad
ij

� h
@2w

@h@ad
ij

 !
_ad

ij ð68Þ

which is nonlinear and fully coupled to mechanical problem.

4. Conclusions

In the presented article a general thermodynamic framework
for the formulation of a coupled constitutive model for dissipative
materials in the small strain range was presented:

� Two additional hardening variables were included into the gen-
eral set of state variables to account for the effects of rotation
and distortion of the specific loading surface.
� Also, the recovery effects related to rotational and distortional

hardening were consistently indicated in the general formula-
tion of dissipation potentials.
� A new consistent normality rule for deriving the kinetic equa-

tions was proposed, as a generalization of the classical normal-
ity rule (Chaboche, 1997a) and the maximum dissipation
principle approach (Abu Al-Rub and Voyiadjis, 2003).
� It was also shown that the classical accumulated plastic strain

and accumulated damage strain are not the properly defined
hardening state variables in a general case of non-associated
coupled elastic–plastic-damage formulations.

A systematic construction of a special case of thermo-elastic–
plastic-damage constitutive model derived from the general for-
mulation, and destined for solving high temperature and damage
rate problems was shown in detail.

� A special attention was paid to complete and consistent incor-
poration of temperature and damage softening into the kinetic
equations, which results in additional, temperature and damage
rate dependent terms, most often neglected in the existing
models. However, for high temperature and/or damage rates
these terms may play a significant role.
� The ability of the proposed model to describe different cases of

plastic/damage hardening/softening combinations was pre-
sented by introducing the generalized hardening moduli.
� It was indicated, that in the case of plastic and/or damage soft-

ening the classical loading/unloading conditions have to be
extended with additional terms accounting for thermal-plas-
tic-damage coupling, otherwise the recognition of active/neu-
tral/passive processes may be false.

The application of the presented considerations to a general dis-
sipative material requires better experimental recognition of the
influence of different dissipative phenomena (like damage, phase
transformations etc) on the material characteristics. If a simple
case of thermo-plasticity is considered, the experimental identifi-
cation of material parameters in a wide range of temperatures
may be found for example in Velay et al. (2006), while in a consti-
tutive model presented there the temperature terms are neglected.
For such cases the analysis presented in the paper also forms a
good basis for the extension to general nonisothermal applications.
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