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The collapse of neural networks important for memory and cognition, including death of neurons and degen-
eration of synapses, causes the debilitating dementia associated with Alzheimer’s disease (AD). We suggest
that synaptic changes are central to the disease process. Amyloid beta and tau form fibrillar lesions that are
the classical hallmarks of AD. Recent data indicate that both molecules may have normal roles at the syn-
apse, and that the accumulation of soluble toxic forms of the proteins at the synapse may be on the critical
path to neurodegeneration. Further, themarch of neurofibrillary tangles through brain circuits appears to take
advantage of recently described mechanisms of transsynaptic spread of pathological forms of tau. These
two key phenomena, synapse loss and the spread of pathology through the brain via synapses, make it crit-
ical to understand the physiological and pathological roles of amyloid beta and tau at the synapse.
Brains of AD patients are characterized by accumulation of

amyloid beta (Ab) into senile plaques and hyperphosphorylated

tau into neurofibrillary tangles (Figure 1). Although these

defining lesions were first described over a century ago by

Alois Alzheimer (Alzheimer, 1907), their link to brain degenera-

tion has remained elusive. Genetic evidence from rare familial

forms of AD strongly supports accumulation of Ab as causative

to the disease process. Mutations in the amyloid precursor

protein (APP) and in presenilins 1 and 2, which are essential

in generating Ab, cause familial, early-onset AD (Tanzi, 2012).

However, there are challenges to the amyloid hypothesis sug-

gesting that Ab may not play a central role in the degenerative

process after disease initiation. The accumulation of plaques in

the brain does not correlate with cognitive impairments in

patients (Giannakopoulos et al., 2003; Ingelsson et al., 2004),

a large number of people without any cognitive impairment

have substantial accumulations of plaques in their brains

(Perez-Nievas et al., 2013), and the reduction of plaque load

in the brain by immunotherapy does not result in cognitive

improvement in AD patients (Holmes et al., 2008). Tangles,

on the other hand, do correlate strongly with cognitive decline

and with neuronal and synapse loss (Arriagada et al., 1992;

Duyckaerts et al., 1998; Giannakopoulos et al., 2003; Ingelsson

et al., 2004); however, mutations in tau cause frontotemporal

dementia, not AD (Goedert and Jakes, 2005). Of the neuro-

pathological features of the disease, synapse loss correlates

most strongly with dementia, implicating it as important to

the disease process (Koffie et al., 2011). As well as frank syn-

apse loss, it is becoming clear from animal models that

dysfunction of synapses and impaired synaptic plasticity are

also key components of the neurodegenerative process in

AD and that both Ab and tau contribute to this degeneration

(Crimins et al., 2013). Here we will discuss recent hypotheses

about how synaptic structure and function are disrupted by
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Ab and tau in the AD brain, contributing to cognitive impair-

ment. Further, we will discuss the important role of synapses

in the spread of pathology through the brain.

Function of Healthy Synapses
In the healthy adult brain, synaptic plasticity is thought to bewhat

allows learning and the formation of memories. The most striking

symptom of AD is memory loss, so it is not surprising that the

areas of the brain essential for memory, and the synaptic plas-

ticity that forms the neurochemical and structural basis of mem-

ory, degenerates. In particular, the hippocampus and neocortex

are important for learning and memory (Dudai and Morris, 2013),

and the circuitry connecting them is particularly impacted by AD

pathology (Figure 2). During the course of AD, synaptic plasticity

is altered, and many of the mechanisms involved in normal plas-

ticity become dysregulated, leading to synapse dysfunction and

collapse.

The concept of synaptic plasticity and its role in learning was

put forward by Ramon y Cajal, who noted that the number of

neurons in the brain did not appear to change significantly

over our lifespan, making it unlikely that new memories were

the result of new neurons being born and integrated into the

brain. Instead, he proposed that changes in the strength of con-

nections between existing neurons could be the mechanism for

memory formation (Cajal, 1894; Jones, 1994). In 1949, Hebb

expanded upon this idea when he postulated that the connec-

tion between two neurons would be strengthened if they acti-

vate simultaneously and weakened if they activate separately

(Hebb, 1949). The description of long-term potentiation (LTP)

and its counterpart, long-term depression (LTD) from studies

of animal brain slices, provides molecular understanding of

the phenomenon of synapse strengthening or weakening. LTP

is a specific, long-lasting increase in the strength of synaptic

transmission when the pre- and postsynaptic neurons are
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Figure 1. Neuropathology of AD
AD brains are characterized by striking atrophy compared to control brains (A).
Particularly evident is shrinkage of the cortical mantle and the hippocampus
(asterisk shows hippocampal atrophy). Microscopically, AD is defined by
deposition of Ab in senile plaques (arrowheads) and tau in neurofibrillary
tangles (arrows). In this micrograph, the fibrillar deposits (both plaques and
tangles) are stained green with thioflavine S. Ab is also immunostained with
antibody AW7 (courtesy of Dominic Walsh), illustrating the halo of soluble Ab
around fibrillar plaque cores and the heterogeneous nature of plaques. Scale
bars represent 1 cm in (A) and 20 mm in (B).
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activated simultaneously, which was first described in rabbit

hippocampus (Bliss and Gardner-Medwin, 1973). The mecha-

nisms of LTP can be pre- or postsynaptic, but postsynaptic

mechanisms seem most affected in AD models. There are early

and late phases of LTP, with the early phase dependent

upon protein kinase activation causing several changes to syn-

aptic AMPA receptors (AMPARs) including phosphorylation,

enhanced activity, and insertion of new receptors into the post-

synaptic density. During late-phase LTP, increased levels of

calcium at the postsynaptic site and persistent activation of

kinases (importantly PKC, PKMz, and CamKIIa, which converge

on ERK) lead to activation of transcription factors including

CREB. This in turn causes production of proteins (including

locally translated proteins in ‘‘tagged’’ synapses), which are

involved in new dendritic spine formation (Bliss et al., 2003;

Frey and Morris, 1997; Redondo and Morris, 2011; Sanhueza

and Lisman, 2013).
LTD is a weakening of synaptic strength following a stimulus.

LTD can occur via several mechanisms, which unsurprisingly

have effects opposite to those seen in LTP, including internaliza-

tion of AMPA receptors (Collingridge et al., 2010; Dudek and

Bear, 1992; Massey and Bashir, 2007). NMDA receptor

(NMDAR)-dependent LTD, which appears to be most affected

in AD, depends on calcium influx, calcineurin activation, and

nonapoptotic caspase activation (Li et al., 2010; Mulkey et al.,

1993). LTD is thought to be important for clearing old memory

traces and in situations requiring behavioral flexibility

(Collingridge et al., 2010). Interestingly, this forgetting aspect of

LTD may be hijacked during AD as very similar molecular mech-

anisms are involved in LTD and AD-related synapse degenera-

tion, in particular the central role of calcineurin activation.

Along with potentiation and depotentiation of synaptic

strength, structural changes occur in response to brain plasticity.

LTP has been associated with the formation of new dendritic

spines, increases in perforated postsynaptic densities (receiving

more than one presynaptic input), and with the enlargement of

spine heads (Bosch and Hayashi, 2012; Maletic-Savatic et al.,

1999; Nägerl et al., 2004; Van Harreveld and Fifkova, 1975).

Conversely, LTD has been associated with spine shrinkage

and loss (Bastrikova et al., 2008; Matsuzaki et al., 2004; Nägerl

et al., 2004; Zhou et al., 2004), with recent fascinating data indi-

cating that this process may involve nonapoptotic caspase-3

activation (D’Amelio et al., 2012; Li et al., 2010). Under conditions

of environmental enrichment, substantial numbers of new den-

dritic spines (and corresponding excitatory synapses) and new

dendritic branches form on pyramidal neurons (Mora et al.,

2007; Nithianantharajah and Hannan, 2006).

During the course of Alzheimer’s disease, the normal function

of synapses is impaired, synapses are eliminated, and patholog-

ical proteins are transported through synapses. Before exploring

these phenomena, we will present background on the neuropa-

thology of AD and then follow with how pathological lesions

affect synapses.

Alzheimer’s Disease Pathology: Plaques and Ab
Structural changes in the AD brain have been classified as ‘‘pos-

itive’’ lesions, i.e., the accumulation of plaques, tangles, neuropil

threads, dystrophic neurites, cerebral amyloid angiopathy (CAA),

and other lesions that are deposited in AD patients’ brains, and

‘‘negative’’ lesions, comprising the massive atrophy due to

neuron loss and the degeneration of neurites and synapses

(Serrano-Pozo et al., 2011a). Each of these lesions is present

in a characteristic pattern in AD, which provides some clues

about the relationship between the lesions and disease progres-

sion and symptoms. There are also structural changes in the

neuropil associated with plaques and tangles, which are thought

to contribute to cognitive impairments (Figure 2).

Senile plaques, first described by Alzheimer using Bielchow-

sky silver staining on brain sections from a patient with dementia,

were determined in the early 1980s to be largely composed of the

amyloid beta peptide (Glenner and Wong, 1984; Masters and

Selkoe, 2012). Neuritic, or dense-cored, plaques have a dense

center of amyloid surroundedby a halo of silver-positive neurites.

After the sequencing of the peptide and development of anti-

bodies to Ab, it was found that Ab also aggregates in ‘‘diffuse’’
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Figure 2. Structural Changes in AD Brain
The neural circuitry involved in memory including the entorhinal cortex-hippocampal circuitry (A) are severely affected by AD pathology, including the deposition
of plaques (blue) and tangles (green) and dramatic neuronal and synapse loss. Along with the dramatic neuronal loss, there are structural changes to remaining
neurons in the AD brain that are thought to contribute to neural circuit disruption and cognitive impairments (B), including damage to neurites in the halo of soluble
amyloid beta surrounding plaques, tau aggregation in cell bodies and neurites, and synapse loss associated with oligomeric Ab around plaques. (A) is modified
from Gomez-Isla et al. (2008).
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plaques of several different morphologies (Dickson and Vickers,

2001; Gomez-Isla et al., 2008; Serrano-Pozo et al., 2011a).

From cross-sectional studies of postmortem human brain, it

appears that senile plaque deposition occurs early in the disease

process and proceeds slowly, beginning in the neocortex and

progressing through the allocortex, then to the diencephalon,

striatum, and basal forebrain cholinergic nuclei, followed by

progression to brainstem nuclei and finally to the cerebellum

(Thal et al., 2002). Watching plaques appear in real time in the

brains of mice that overexpress AD-associated APP and PS1

mutations with in vivo multiphoton imaging surprisingly reveals

that individual plaques coalesce from soluble Ab remarkably

rapidly. Plaques formwithin 24 hr and surrounding neurites begin

to curve and degenerate within days after plaque formation

(Meyer-Luehmann et al., 2008).

Dense plaques are toxic to the surrounding brain paren-

chyma, causing a number of phenomena that may contribute

to synapse dysfunction and loss. Many neurites surrounding

plaques exhibit swollen, dystrophic morphologies and often

contain aggregates of phospho-tau and multiple cellular com-

ponents that likely accumulate due to disrupted cellular trans-

port (Serrano-Pozo et al., 2011a; Woodhouse et al., 2005).

The trajectories of axons and dendrites, which are usually fairly

straight, are disrupted in the vicinity of amyloid plaques in

mouse models of AD, which may impact synaptic integration

of signal (Le et al., 2001; Spires et al., 2005; Stern et al., 2004;

Urbanc et al., 2002). There is also substantial gliosis and related

oxidative stress around plaques, which are likely to contribute to

synaptic changes (Ingelsson et al., 2004; McLellan et al., 2003;

Serrano-Pozo et al., 2011b).
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Alzheimer’s Disease Pathology: Tau
While plaques are associated with disrupted neurite

morphology, gliosis, and oxidative stress, less is known about

the impact of NFT on the surrounding neuropil. Neurofibrillary

tangles and neuropil threads are formed of aggregated tau pro-

tein. Tau is a microtubule binding protein found largely in axons,

where it serves to stabilizemicrotubules (Goedert and Spillantini,

2006). During the course of Alzheimer’s disease, tau is hyper-

phosphorylated, becomes detached from the microtubules,

and accumulates in the somatodendritic compartment in paired

helical filaments and straight filaments (Kidd, 1963; Spillantini

and Goedert, 2013; Stoothoff and Johnson, 2005). The deposi-

tion of tangles occurs in a hierarchical fashion beginning in the

entorhinal cortex and progressing through the hippocampal for-

mation, association cortices, and only affecting primary sensory

areas in late stages of the disease (Arnold et al., 1991; Braak and

Braak, 1991).

NFT deposition in human AD correlates with cognitive decline

and neuronal loss (Arriagada et al., 1992; Duyckaerts et al., 1998;

Giannakopoulos et al., 2003; Gómez-Isla et al., 1997). The asso-

ciation of NFT with neuronal loss and the presence of ghost

tangles—NFT that remain in the brain after the neuron has

died—strongly suggest that at least some neurons with tangles

die during the course of the disease; however, the amount of

neuronal loss vastly exceeds the number of neurofibrillary

tangles and ghost tangles within given brain regions, supporting

the idea that a tangle is not necessary for neuron death in AD

(Gómez-Isla et al., 1997). As intracellular lesions, NFT could

be expected to have less impact on the surrounding environment

than the extracellular accumulation of plaques; however,



Figure 3. Dendritic Spine Loss in AD Mouse Models
Mouse models that exhibit plaque formation or tangle formation exhibit
dendritic spine loss. Crossing APP/PS1 mice (A) and rTg4510 mice (B) with
YFP overexpressing lines allowed quantification of dendritic spine density on
cortical pyramidal neurons (layer II/III). Dense plaques are stained with thio-
flavine S in (A) and neurofibrillary tangles are stained with PHF1 antibody in (B),
while neurons in both panels are filled with YFP due to transgenic over-
expression. Similar results are found when fluorescent markers are introduced
via viral infection of neurons or direct injection of fluorophores. In plaque-
bearing mice, dendritic spine loss is most pronounced within 50 mm of
plaques, whereas in tangle-bearing mice, the presence of a tangle does not
affect dendritic spine density (C). Data in (C) are adapted from Kopeikina et al.
(2013a, 2013b), Rocher et al. (2010), Rozkalne et al. (2011), and Spires et al.
(2005). Scale bars represent 20 mm in (A) and 50 mm in (B).
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we recently observed gliosis in the vicinity of NFTs that corre-

lates with disease progression (Serrano-Pozo et al., 2011b).

Synaptic Dysfunction, Synapse Loss, and Relationships
to Pathology
Synapse loss in ADwas described in the early 1990s by DeKosky

and Scheff using electron microscopy and by Terry and Masliah

using densitometry of immunostained synaptic proteins. These

groups observed synapse loss in frontal cortex, temporal cortex,

and dentate gyrus of the hippocampus and found that synapse

loss is the strongest pathological correlate of dementia

(DeKosky and Scheff, 1990; DeKosky et al., 1996; Masliah

et al., 1994; Terry et al., 1991). Interestingly, the entorhinal cor-

tex, one of the earliest and most severely affected areas of the

brain in terms of neuronal loss and tangle formation, does not

appear to undergo loss of synapse density in the remaining neu-

ropil (Scheff et al., 1993), despite a significant loss of synapses in

the target zone of the EC in the dentate gyrus.

The association of amyloid pathology with local synapse loss

was largely pioneered in animal and cell culture models. Due to
the obvious neuropil disruption surrounding dense core plaques,

fibrillar Ab was long assumed to be toxic; however, studies over

the past decade strongly implicate soluble forms of Ab that accu-

mulate around dense plaques as more toxic than fibrils. Elegant

experiments by several groups over the late 1990s and 2000s

demonstrated that soluble forms of Ab cause loss of dendritic

spines in cultured neurons, while fibrils and monomers are

comparatively inert (Klein, 2006; Lambert et al., 1998). A series

of studies demonstrated that oligomeric forms of Ab produced

by cultured cells or extracted from human AD brain are toxic to

synaptic function, including disrupting LTP in brain slices and

impairing cognition when injected into healthy rodents in vivo

(Cleary et al., 2005; Shankar et al., 2007, 2008; Walsh et al.,

2002, 2005). There is also an association of dimers of Ab with

dementia in human brain (McDonald et al., 2010). In vivo imaging

studies in plaque-bearing mice revealed a loss of dendritic

spines around plaques due to altered structural plasticity

(Figure 3) (Rozkalne et al., 2011; Spires et al., 2005; Spires-Jones

et al., 2007). Removing soluble Ab with topical application of an

antibody results in increased formation of dendritic spines in vivo

and long-lasting increases in synaptic markers (Rozkalne et al.,

2009; Spires-Jones et al., 2009), supporting the idea that soluble

forms of Ab are toxic to synapses.

Despite all of the indirect evidence that oligomeric Ab contrib-

utes to synapse dysfunction and loss, technical limitations had

prevented the determination of whether oligomers of Ab are

actually physically present at synapses in the brain. This is due

to the limit of the axial (z direction) resolution of light microscopy

being larger than the size of an individual synapse, which

precludes accurate colocalization studies using immunofluores-

cence, and the difficulty of finding antibodies that work on

glutaraldehyde-fixed tissue for electron microscopy. Micheva

and Smith developed an imaging technique that combined

ultrathin sectioning of tissue into ribbons of 50–100 nm serial

sections with immunofluorescence techniques to allow recon-

struction of three-dimensional volumes of protein localization

at subsynaptic resolution (Micheva et al., 2010; Micheva and

Smith, 2007). We applied this array tomography technique to

plaque-bearing AD mouse brains and confirmed the presence

of oligomeric Ab in a subset of postsynaptic densities, particu-

larly near plaques (Koffie et al., 2009), using Lee’s antibody

that preferentially recognizes oligomeric (not monomeric) forms

of Ab (Lee et al., 2006). In these mice, the accumulation of olig-

omeric Ab around plaques negatively correlated with the linear

synapse loss approaching the plaque edge, and synapses

containing Ab were significantly smaller than neighboring post-

synaptic densities, supporting the idea that oligomeric Ab con-

tributes to synapse shrinkage and collapse (Koffie et al., 2009).

We then extended this technique to human autopsy tissue

(Kay et al., 2013) and examined whether Ab was present at syn-

apses around plaques in postmortem AD brain tissue (Figure 4).

We confirmed using array tomography that oligomeric Ab is

present in both pre- and postsynaptic puncta, and furthermore

we found an association of increased Ab at synapses that also

contain apolipoprotein E ε4 (apoE4) (Koffie et al., 2012). This

is important because the APOE4 gene increases the risk for

developing sporadic AD, but the mechanisms leading from

APOE4 to AD are not fully understood (Corder et al., 1993;
Neuron 82, May 21, 2014 ª2014 Elsevier Inc. 759



Figure 4. Array Tomography Reveals
Colocalization of Oligomeric Ab with
Synapses in Human Brain
The array tomography technique overcomes the
axial resolution of light microscopy by physically
sectioning resin-embedded brain tissue into rib-
bons of ultrathin (70 nm) serial sections that are
stained with immunofluorescence, imaged with a
fluorescent microscope at the same place along
the ribbon (red dots), and a three-dimensional data
set acquired of multiple markers at synapses
(A and D). Using human AD brain tissue (B and C),
we observed oligomeric Ab stained with NAB61
(red) present at a subset of synapses as can be
seen in the inset in (B) (presynaptic terminals
stained here with synapsin I, green). We also
observe a reduction in synapsedensity in thehaloof
oligomeric Ab surrounding the Thioflavin S (ThioS)-
positive dense cores of plaques (arrows). Scale
bars represent 5 mm in (B andC) and 1 mm in inset in
(B). (D) is a reconstruction of a 36 mm 3 33 mm 3
1.2 mm volume (images from 17 serial sections). (A)
is adapted from Micheva and Smith (2007).
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Strittmatter and Roses, 1996). Our data suggest that apoE4 con-

tributes to AD risk at least in part by increasing the localization of

toxic oligomeric Ab to synapses.

Another possibility that could explain the lack of correlation of

amyloid pathology with cognitive decline is that the Ab-induced

synaptic changes could be important contributors early in the

disease process but at later stages, tau pathology contributes

more to synapse degeneration and resultant dementia (Hyman,

2011). Tau was historically thought to reside only in axons, but

recent data from several groups suggest an important role for

tau in maintaining the protein composition of the postsynaptic

density (PSD). Tau was observed to be important for targeting

fyn kinase to the PSD (Ittner et al., 2010) and P301L mutant tau

accumulation in dendritic spines in cultured neurons was

observed in conjunction with disrupted synaptic transmission

and altered neurotransmitter receptor composition of the PSD

(Hoover et al., 2010). Overexpression of P301L tau in rTg4510

mice leads to alterations in synaptic function and loss of synap-

ses (Figure 3) (Crimins et al., 2011, 2012, 2013; Kopeikina et al.,

2013a, 2013b; Rocher et al., 2010). We also observed tau pre-

sent in dendritic spines in the brains of rTg4510 mice using array

tomography (Kopeikina et al., 2013a). While many of these

studies finding tau in the PSD have been in model systems

with artificially high levels of tau overexpression, other studies

have found endogenous tau present in dendrites undergoing

Ab-induced spine loss in cultured neurons (Zempel et al.,

2010). We also observed tau in postsynaptic terminals of nonde-

mented human control as well as AD cases strengthening

the case that tau is present in the postsynaptic compartment

(Tai et al., 2012).

In mouse models of tauopathy and human AD brain, tangle-

bearing neurons are observed to receive fewer synapses onto

their somata and to express less synaptic proteins than nontan-

gle-bearing neurons (Callahan et al., 1999; Ginsberg et al., 2000;

Katsuse et al., 2006). We also recently observed the accumula-

tion of oligomeric forms of tau in synapses in AD brain

(Tai et al., 2012), and in a recent study of AD cases versus

high-pathology controls, Perez-Nievas and colleagues observed

that while the total number of NFT was not associated with
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dementia compared to high-pathology controls, increased levels

of phospho-tau specifically in the synaptic compartment were

associated with dementia (Perez-Nievas et al., 2013).

Role of Tau and Ab in Normal Synaptic Biology
Interestingly, it increasingly appears that tau, Ab, and proteins

involved in Ab generation may play a role in healthy synaptic

physiology.

Ab has been implicated in developmental synaptic plasticity

both in visual deprivation paradigms and in the development of

the olfactory bulb (Cao et al., 2012; Kim et al., 2013). Moreover,

in nondemented human subjects, oligomeric Ab at a subset of

synapses is associated with smaller synapse volume (Koffie

et al., 2012), indicating that Ab may play a role in synaptic plas-

ticity. The machinery for generating Ab is also present in the

synaptic compartment (APP, beta and gamma secretases),

providing support for the notion that Ab (or APP) may have a

normal role at the synapse. Generation of Ab is enhanced by

neuronal activity in vitro and in vivo (Cirrito et al., 2005; Kamenetz

et al., 2003; Li et al., 2013; Sheng et al., 2012) and although the

functional relevance of this activity-dependent regulation

remains unclear, it is possible that it plays a role in normal synap-

tic function.

Tau probably plays an important role in synapse function due

to its regulation of microtubule stability and thus axonal trans-

port. Interestingly, phosphorylation of tau increases during hiber-

nation of ground squirrels and is associated with a transient,

reversible loss of synaptic protein markers, indicating a physio-

logical role for tau phosphorylation in synapse biology in these

animals (Arendt et al., 2003). Beyond this indirect regulation of

synaptic function, tau may also play a more direct role at the

PSD in regulating NMDAR function via an interaction with fyn

kinase (Ittner et al., 2010; Mondragón-Rodrı́guez et al., 2012).

It is not yet clear whether this is a physiologic role of tau or a toxic

role.

Mechanisms of Synaptic Dysfunction and Loss
Although it is now well established that oligomeric Ab is toxic to

synapses, the exact species and the identity of the receptor(s)
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at synapses that are responsible for the toxic effects of Ab are

hotly debated. Oligomeric Ab is a ‘‘sticky’’ molecule and multiple

binding partners have been elucidated at the synapse, but which

of these interactions is most important in toxicity remains to be

determined (Benilova and De Strooper, 2013). Direct binding of

Ab to NMDA receptor subunits has been reported in many

studies (De Felice et al., 2007; Lacor et al., 2004, 2007; Rönicke

et al., 2011). mGluR5 has also been proposed as an important

binding partner of Ab. In cultured neurons, Renner et al.

observed that quantum dot-tagged Ab oligomers clustered at

active excitatory synapses and sequestered mGluR5 into the

clusters, preventing mGluR5 diffusion-causing local hyperexcit-

ability and increased calcium concentrations (Renner et al.,

2010). Ab can bind to a7-nicotinic acetylcholine receptors

(Wang et al., 2000), and Greengard’s group found that these

receptors are necessary for Ab-induced NMDA receptor inter-

nalization in cultured neurons (Snyder et al., 2005).

Receptor tyrosine kinases including the EphB2 receptor have

also been implicated as Ab receptors. EphB2, which regulates

NMDA receptors, is depleted in the brains of plaque-bearing

transgenic mice (Tg2576 line) and in human AD brain (Simón

et al., 2009). Cissé et al. found that oligomeric Ab binds

EphB2, leading to its degradation by the proteasome. Further,

they observed that increasing EphB2 expression in a mouse

model of plaque deposition (hAPP line) reversedmemory deficits

and reversed impairments of LTP (Cissé et al., 2011), arguing

that this could be an important synaptic binding partner of oAb.

The cellular form of the prion protein (PrPC) has also been pro-

posed as the critical binding partner of Ab that initiates synapse

dysfunction and loss. In 2009, Laurén et al. reported that binding

of oligomeric Ab with PrPC is required for the impairment of

LTP (Laurén et al., 2009), a finding that became controversial

when several groups failed to replicate it (Balducci et al., 2010;

Benilova andDeStrooper, 2010; Calella et al., 2010). More recent

studies have however confirmed that antibodies targeting a spe-

cific domain of PrPC (amino acids 94–104) can prevent the oligo-

meric Ab-induced inhibition of LTP (Barry et al., 2011; Freir et al.,

2011), and Larson et al. observed that soluble Ab binding to PrPC

in dendritic spines forms a complex with Fyn, causing Fyn activa-

tion and tau phosphorylation (Larson et al., 2012). The interaction

of Ab and PrPC appears to depend on mGluR5 (Um et al., 2013).

These last two studies are intriguing as they link Ab to tau pathol-

ogy via Fyn, which has been seen to be an important interacting

partner of tau at the PSD; however, the molecules that link PrP to

Fyn remain unknown (Chen et al., 2013).

Another binding partner of Ab surprisingly appears to be a

major histocompatibility complex class 1 (MHC1) receptor.

MHC1 normally functions in the immune system, but the recep-

tors are also expressed in the brain, where they contribute to

synaptic plasticity (Shatz, 2009). The mouse MHC1 receptor

paired immunoglobulin-like receptor B (PirB) and its human

ortholog, leukocyte immunoglobulin-like receptor (LilrB2), have

been implicated by Shatz and colleagues as binding partners

for oligomeric Ab (Kim et al., 2013). Further, slices from PirB

knockout mice do not show impairment of LTP with application

of oAb, and crossing APP/PS1 mice with PirB knockout mice

prevents cognitive impairment and deficits in ocular dominance

plasticity (Kim et al., 2013).
The molecular mechanisms leading to synapse dysfunction

and loss downstream of Ab and tau have not been fully eluci-

dated, but some candidate pathways have become very clear

from multiple studies (reviewed in (Dinamarca et al., 2012). In

the case of Ab, increased Ca2+ levels in dendrites and dendritic

spines appear central to synapse dysfunction and loss. Applica-

tion of oligomeric Ab to cultured neurons causes increased Ca2+

concentrations associated with dendritic spine loss (Demuro

et al., 2005; Hudry et al., 2012; Mattson et al., 1992; Wu et al.,

2010; Zempel et al., 2010). Similar increases in calcium concen-

tration have been observed in dendrites around plaques in vivo

in AD transgenic models, which are associated with a loss of spi-

nodendritic calcium compartmentalization (Kuchibhotla et al.,

2008). This is the same region in which our postmortem observa-

tions reveal high levels of oligomeric Ab (Koffie et al., 2009).

Downstream of calcium activation, it appears that calcineurin

is an important mediator of synaptic degeneration. Expressing

constitutively active calcineurin both in vitro and in vivo recapit-

ulates the morphological phenotypes associated with Ab: den-

dritic spine loss, neurite curvature, and neurite dystrophies;

and inhibiting calcineurin prevents these phenotypes in vitro

and in vivo, providing a strong argument that calcineurin activa-

tion is both necessary and sufficient to cause synapse loss and

neurite degeneration (Cavallucci et al., 2013; Rozkalne et al.,

2011; Wu et al., 2010). This Ab-induced calcineurin activation

begins in dendritic spines and propagates into dendrites and

soma over time (Wu et al., 2012).

The changes in calcium concentrations and activation of calci-

neurin induced by Ab interfere with normal synaptic plasticity

(Figure 5). LTP and LTD depend on calcium influx through

NMDA receptors or mGluRs, with rapid, high levels of calcium

influx causing LTP and lower levels of calcium influx associated

with LTD (Kullmann and Lamsa, 2007). Oligomeric Ab robustly

impairs LTP in slices and in vivo (Lambert et al., 1998; Shankar

et al., 2008; Walsh et al., 2002). LTD is associated with shrinkage

and loss of dendritic spines, and recent data suggest that the

mechanisms of normal LTD are induced by oligomeric Ab, indi-

cating that this normal synaptic LTD ‘‘forgetting’’ machinery

may be hijacked during AD, causing synapse loss and memory

problems. Application of oligomeric Ab enhances LTD (Christie

et al., 2001; Li et al., 2009; Shankar et al., 2008). In addition,

Ab causes the internalization of AMPA and NMDA neurotrans-

mitter receptors through the same calcineurin-mediated path-

ways involved in LTD (Hsieh et al., 2006; Koffie et al., 2011;

Snyder et al., 2005; Wang et al., 2004). Nonapoptotic caspase

activation also plays a role in the AMPAR and NMDAR internali-

zation observed during LTD (Chen et al., 2013; Li et al., 2010),

and Ab induces caspase-3 activation, which appears to be

involved in the observed enhancement of LTD and internalization

of synaptic receptors (Chen et al., 2013; D’Amelio et al., 2011; Liu

et al., 2010). As well as influencing internalization of synaptic

receptors, altered calcium dynamics act to destabilize the cyto-

skeleton in dendritic spines allowing spine collapse. Some

evidence of this has been found in cultured neurons, where the

scaffolding protein ranBP9 potentiates Ab-induced mitochon-

drial dysfunction and calcium dysregulation (Roh et al., 2013).

Developmental synaptic pruning mechanisms, which allow for

synapse elimination during postnatal refinement of neural
Neuron 82, May 21, 2014 ª2014 Elsevier Inc. 761



Figure 5. Pathways Involved in Normal Synaptic Plasticity and How
They May Be Affected in AD
Under normal conditions, LTP promotes recruitment of neurotransmitter
receptors to active synapses and causes synapse potentiation, stabilization,
and growth. LTD conversely results in synapse depotentiation and spine
collapse. Both of these processes are affected in animal models of AD, with
oligomeric Ab clearly affecting the calcium and calcineurin pathways involved
in these phenomena. Tau overexpression has been observed to affect
synaptic function in transgenic models and to be necessary for oligomeric
Ab-mediated synapse dysfunction, but the mechanisms by which pathological
forms of tau affect synaptic plasticity are less well understood. It is possible
that hyperphosphorylation affects microtubule stability and the transport of
mitochondria to synapses, which could affect synaptic function. The cleavage
of tau by caspase-3 has also been observed, which could be tied to the
nonapoptotic role of caspase-3 in LTD and spine collapse.
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circuits, may also be reactivated and contribute to synapse loss

in Alzheimer’s disease. Microglia are involved in synaptic refine-

ment, where they appear to engulf and remove dendritic spines

‘‘marked’’ for removal by members of the classical complement

cascade complement receptor 3 and C1q (Chu et al., 2010;

Clarke and Barres, 2013; Harry, 2013; Paolicelli et al., 2011;

Stephan et al., 2013; Tremblay et al., 2010). In AD, gliosis is a

prominent feature around plaques including recruitment of acti-

vated microglia, which may contribute to local synapse loss

around plaques.

The mechanisms of synapse degeneration associated with

pathological changes in tau are less well established. The pre-

dominating view is that pathological changes in tau cause dis-

ruptions in microtubule-based cellular transport, since tau is a

microtubule-stabilizing protein (Kopeikina et al., 2012). Disrupt-

ing cellular transport prevents the trafficking of essential cargoes

to synapses including mitochondria and synaptic receptors. Tau

overexpression in cultured neurons inhibits anterograde axonal

transport, particularly of mitochondria, by interfering with kinesin

molecular motors (Ebneth et al., 1998; Kanaan et al., 2011;

LaPointe et al., 2009; Stoothoff et al., 2009). Impairment of mito-

chondrial transport to pre- and postsynaptic terminals is thought

to cause synapse loss and eventual dying-back of axons due to

the essential roles of mitochondria in ATP production and cal-

cium buffering (Kopeikina et al., 2012; Sheng and Cai, 2012).

Accumulation of pathologically phosphorylated and misfolded

tau may impair transport by directly competing with cargo or
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by impairing signaling cascades involved in kinesin-based trans-

port including JNK3 and GSK3 regulation (Dubey et al., 2008;

Ittner et al., 2009; Morfini et al., 2009).

Impaired microtubule-based transport may also contribute to

the hyperexcitability of neurons in transgenic mice expressing

FTD-associated P301L mutant tau (rTg4510 line), which could

be caused by impairments in trafficking of dendritically targeted

ion channels (Crimins et al., 2012, 2013; Rocher et al., 2010).

Recent work by Hoover et al. also demonstrated that abnormally

phosphorylated tau impairs glutamate receptor subunit GluA1,

GluA2/3, and NR1 trafficking to the postsynaptic density (Hoover

et al., 2010), in support of the idea that pathological tau confers

synaptic toxicity by impairing cellular transport. Presynaptically,

pathological tau may also impair synaptic function. In squid

axons that received microinjections of human tau, synaptic

transmission was blocked (Moreno et al., 2011).

In addition to the impaired transport of mitochondria due to

pathological changes in tau, mitochondria appear to be key

players in the molecular cascades leading to synapse loss in

AD on several fronts (Eckert et al., 2010). Mitochondrial

dynamics, that is the fission and fusion of mitochondria to regu-

late the mitochondrial network in different subcellular compart-

ments, are altered in AD by both Ab and tau (Quintanilla et al.,

2012; Wang et al., 2009). Similarly, Ab and tau both cause mito-

chondrial dysfuction. Tau specifically impairs mitochondrial

complex I function and Ab impairs complex IV function (Eckert

et al., 2013), and mitochondrial function, particularly at the syn-

apse, is crucial for synaptic function. It further appears that mito-

chondria are central to the nonapoptotic caspase activation that

is associated with synapse loss in ADmodels. The caspase acti-

vation associated with LTD is via the intrinsic mitochondrial

apoptotic cascade pathway (Li et al., 2010), and caspase upre-

gulation is associated with synapse loss in AD models (Hoover

et al., 2010). Mitochondria may also play a role in spine collapse

through cofilin, a filamentous-actin-cleaving protein implicated

in spine remodeling. Translocation of cofilin to mitochondria is

an early step in apoptosis, which causes cytochrome c release

and mitochondrial swelling (Chua et al., 2003; Klamt et al.,

2009). Translocation of cofilin to mitochondria is also associated

with Ab-mediated mitochondrial dysfunction and calcium dysre-

gulation (Roh et al., 2013), likely due to cofilin activation through

NMDA-induced activation of calcineurin (Pontrello et al., 2012).

Finally, mitochondria are essential for calcium homeostasis in

synapses and preventing transport of mitochondria to synapses

undoubtedly impairs synaptic calcium buffering (Eckert et al.,

2013).

The Intersection of Ab and Tau at the Synapse
Several recent studies suggest that these two pathological pro-

teins act in concert in synapse degeneration (Figure 6; reviewed

recently by Crimins et al., 2013; Ittner and Götz, 2011). An early

indication that synapse dysfunction depended on the actions

of both Ab and tau came from the observation that removing

endogenous tau in mutant APP-overexpressing mice by

crossing them with a tau knockout line prevented Ab-associated

cognitive deficits and reduced the susceptibility to seizures

induced by a GABA antagonist (Roberson et al., 2007). Later

studies suggested that this protective effect of tau reduction is



Figure 6. Synaptic Effects of Ab and Tau
Many studies implicate oligomeric Ab in synapse
dysfunction and loss in models of AD. Ab may be
specifically trafficked to the synapse by apoE4,
where it binds to postsynaptic receptors, causes
an increase in calcium concentration, calcineurin
activation, caspase-3 activation, and downstream
internalization of synaptic receptors. Tau has also
been implicated in synapse dysfunction down-
stream of Ab, and pathological forms of tau (pTau)
are transferred through synaptic circuits, although
which forms of tau are transported and how they
are transported remains to be determined.
Figure courtesy of A. Hermann.
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due to the normal role of tau in recruiting fyn kinase to the post-

synaptic density in response to Ab at the synapse (Ittner et al.,

2010; Roberson et al., 2011). In cultured neurons, soluble Ab

oligomers isolated from human AD brain induce neuritic degen-

eration in concert with tau hyperphosphorylation (Jin et al.,

2011). Mechanistically, a neuronal culture study by the Mandel-

kow group provided tantalizing evidence for the importance of

both calcium and mitochondria when they observed that den-

dritic spine loss induced by exogenous Ab occurs specifically

in regions of the dendrite to which tau has been missorted, cal-

cium levels have been elevated, microtubules have been disrup-

ted, and mitochondrial distribution has been impaired (Zempel

et al., 2010, 2013).

In both neuronal cultures and in vivo, calcium increases in

response to Ab have been seen to be important in synapse

dysfunction and loss, and the recent data suggesting that tau

is necessary for Ab-mediated synapse degeneration beg

the question of whether tau is ‘‘upstream’’ or ‘‘downstream’’ of

increases in calcium. Using in vivo multiphoton imaging, we

observed that tau-associated dendritic spine loss in the

rTg4510 mouse model is not associated with chronically

increased resting calcium levels, nor does tau overexpression

impair calcium responses to visual stimulation, indicating that

pathological forms of tau can cause synapse collapse in a

pathway independent of calcium (Kopeikina et al., 2013b;

Kuchibhotla et al., 2014). This would support a model in which

alterations in tau were downstream of increased calcium levels

induced by Ab, but further studies are needed to confirm.

Soluble versus Fibrillar Species at the Synapse: Which
Are Toxic?
As the defining lesions for AD, fibrillar Ab and tau in plaques and

tangles were long believed to be toxic to the brain. However, it is

becoming quite clear that while fibrils themselves are not likely
Neuron
toxic, soluble forms of these proteins

strongly contribute to toxicity. Many

studies have clearly demonstrated in

cell cultures and animal models that

oligomers but not fibrils of Ab are toxic

to synapses and can impair cognition in

wild-type animals (reviewed by Klein,

2013; Mucke and Selkoe, 2012). Recent

data from models of tauopathy similarly

indicate that soluble forms of tau, but
not NFT, are toxic to synapses. In rTg4510 mice, accumulation

of soluble oligomers of tau correlates with memory loss (Berger

et al., 2007), neurons show electrophysiological impairments

and structural degeneration that does not depend on the pres-

ence of a tangle (Crimins et al., 2012; Rocher et al., 2010), and

cultured neurons from these mice have accumulation of phos-

phorylated tau (not aggregates) at dendritic spines that impairs

synaptic function (Hoover et al., 2010). Memory deficits in

rTg4510 mice (Santacruz et al., 2005) and proaggregant TauRD

mice (Sydow et al., 2011) are reversible when tau transgene

expression is suppressed even in the continued presence of

neurofibrillary tangle pathology, strongly arguing in favor of sol-

uble forms of tau as toxic to synaptic function.

Deficits in axonal trafficking thought to contribute to synaptic

dysfunction downstream of tau pathology also appear to be

due to soluble forms of tau. Impairments to cellular transport

could be due to a loss of function of tau-stabilizing microtubules

and/or a toxic gain of function of aggregated tau either ‘‘block-

ing’’ the microtubule tracks or directly interfering with cellular

transport motors (Dixit et al., 2008; Mandelkow et al., 2003;

Stoothoff et al., 2009). In an assay that measures the distribution

ofmitochondria through the cell soma and neurites, we observed

that misfolded tau in cell bodies and neuropil threads is associ-

ated with impairments in mitochondrial distribution in both

rTg4510 mice and human AD. Interestingly, in rTg4510 mice,

these deficits in mitochondrial distribution recovered after

lowering soluble tau levels, even in the continued presence of

aggregated misfolded tau (Kopeikina et al., 2011). This argues

against the idea of tau aggregates as ‘‘roadblocks’’ and rather

for soluble tau impairing trafficking either through destabilizing

microtubules or disrupting the function of molecular motors.

Another strong argument against the overt toxicity of aggre-

gates comes from observations that there is a substantial pro-

portion of the elderly population (approximately one-third) who
82, May 21, 2014 ª2014 Elsevier Inc. 763
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have plaques and tangles in their brains without exhibiting any

signs of dementia. This has been observed in many large-scale

postmortem cohort studies of aging including the religious

orders study (Arnold et al., 2013; Bennett, 2006; Schneider

et al., 2009), the Nun Study (Tyas et al., 2007), the Baltimore Lon-

gitudinal Study of Aging (O’Brien et al., 2009), and the Medical

Research Council Cognitive Function and Aging Study (Savva

et al., 2009). Further, in human imaging studies using Pittsburgh

Compound B positron emission tomography (PET) to assess

amyloid deposition, amyloid is found in the brains of approxi-

mately 30% of cognitively normal aged individuals (Aizenstein

et al., 2008; Andrews et al., 2013). This cognitive resilience in

the face of pathological lesions could be due to a ‘‘reserve’’ of

connectivity with many extra synapses perhaps resulting from

a highly enriched lifestyle. Another possibility is that the amount

of tau pathology and the regions it occupies may be different in

individuals who convert from cognitively normal to dementia.

This possibility has not been thoroughly explored in the pub-

lished literature but the advent of new tau-imaging markers

may clarify this point (Maruyama et al., 2013).

Alternatively, the aggregates themselves may genuinely be

nontoxic and people with pathology who do not have cognitive

problems may have less of the toxic soluble forms of Ab and

tau that are normally associated with pathology. In support of

this latter idea, a recent study in Gomez-Isla’s group found that

the burden of dense-core plaques and the burden of plaques

positive for oligomeric Ab in plaques measured with Lee’s

NAB61 antibody were increased in patients with dementia

(Perez-Nievas et al., 2013). They also observed significantly

less synapse and neuronal loss and gliosis in people who had

plaques and tangles but intact cognition. A similar study

comparing AD patients and high-pathology control cases used

a new detection method to detect Ab oligomers in brain lysates

and found that soluble oligomer levels in demented patients

were more tightly correlated with plaque burden, supporting

the possibility that plaque-associated oligomers are particularly

toxic (Esparza et al., 2013), similar to our previous work showing

plaque-associated synaptotoxicity in mouse models and human

brain. These data are also interesting in light of recent biophysi-

cal work exploring the mechanisms of Ab aggregation. Cohen

and colleagues demonstrated that fibrils catalyze the formation

of oligomers (Cohen et al., 2013), in accord with the high concen-

tration of oligomers around dense plaques. Similarly, accumula-

tion of prefibrillar tau oligomers correlates with cognitive decline

in postmortem studies of brains from people with mild cognitive

impairment (Mufson et al., 2014; Vana et al., 2011).

A Role for Synapses in Disease Progression
Synapse loss correlates strongly with cognitive decline and both

Ab and tau appear to contribute to this loss, perhaps synergisti-

cally, but that is not the end of the story. Synapses may also be

key to both the initiation and the spread of disease processes

throughout the brain.

The accumulation of Ab pathology appears to be related to

synaptic activity. In hippocampal slices (Kamenetz et al., 2003)

and in vivo in mouse models, neuronal activity increases gener-

ation of Ab (Bero et al., 2011; Cirrito et al., 2008), due to the

increase in endocytosis associated with synaptic activity.
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Conversely, decreasing activity levels by denervation of somato-

sensory cortex causes a reduction in Ab levels (Bero et al., 2011).

In human brain, Ab generation is higher in patients with higher

neurological status, supporting the animal data that neuronal ac-

tivity increases Ab levels (Brody et al., 2008). Interestingly, the

immediate-early gene Arc/Arg3.1, which is involved in synaptic

plasticity and AMPAR internalization, regulates the activity-

dependent generation of Ab via an endosomal pathway

(Wu et al., 2011). There is also a link between areas with high

baseline levels of neuronal activity and Ab generation in AD.

In vivo PIB imaging of humans reveals that the earliest senile pla-

ques appear in the neocortex, particularly in areas of the brain

that are active in the ‘‘default’’ state (Buckner et al., 2005). These

data indicate that synaptic activity plays a role in disease onset

since accumulation of Ab in the brain is widely regarded as the

initial stage of Alzheimer’s disease.

Recent work also shows that tau, which is predominantly an

intracellular, axonal protein, is also released from cells (Chai

et al., 2012; Karch et al., 2013; Pooler et al., 2014; Saman

et al., 2012). Similar to the studies of Ab, tau release from neu-

rons also appears to be increased with synaptic activity both

in vitro and in vivo (Pooler et al., 2013a; Yamada et al., 2014).

Synapses also appear to play a role in the spread of disease

through the brain. When Ab-rich brain extracts (derived from

human AD brain or transgenic mouse models) are injected into

human APP transgenic models before any amyloid deposits

are present, they seed plaque formation (Jucker and Walker,

2013). The induction of Ab aggregation initially occurs near the

injection site; however, there is spreading to axonally connected

regions in the neural circuits suggesting that the seeds of aggre-

gation are taken up by local neurons, travel along the axon, and

propagate across the synapse to connected neurons (Eisele

et al., 2009; Jucker and Walker, 2011). Restricted expression

of mutant human APP to the entorhinal cortex (EC) in a mouse

model also showed deposition of Ab in plaques both locally in

the EC and in the synaptically connected dentate gyrus of the

hippocampus (Harris et al., 2010).

The role of synaptic connections in the spread of tau pathology

is even more strongly supported. The progression of neurofibril-

lary tangle pathology through the brain correlates well with

cognitive decline (Nelson et al., 2012) and is a very systematic

process, beginning in the entorhinal cortex and then spreading

through the hippocampal formation, limbic and association

cortices, and finally affecting most brain areas in late stages of

the disease (Braak and Braak, 1991; Hyman et al., 1984). This

systematic march of tau pathology through the brain appears

to follow neural circuits, and recent data from mouse models

confirm that pathological forms of tau do progress through

synaptically connected circuits (Pooler et al., 2013b). Injection

of brain extracts from P301S tau mice, which had tangles, into

mice expressing human wild-type four repeat tau, which do

not usually exhibit pathology, induced tau aggregation at the

site of injection, which spread to neighboring brain regions

(Clavaguera et al., 2009; Goedert et al., 2010).

Transgenic models to examine tau propagation have also

been developed. Three independent groups generated models

with P301L mutant human tau expression restricted to the ento-

rhinal cortex (de Calignon et al., 2012; Harris et al., 2012;
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Liu et al., 2012). These mice express tau in the medial EC and

closely associated pre- and parasubiculum, which results in

accumulation of misfolded, phosphorylated tau first in the EC.

Over time, we observe that the misfolded human tau spreads

to dentate gyrus granule cells, which do not express the human

tau transgene, then further propagates to downstream regions in

the neural circuit including CA3, CA1, and anterior cingulate cor-

tex (de Calignon et al., 2012). Even before overt neurofibrillary

pathology occurs in the dentate gyrus, there is evidence of hip-

pocampal dysfunction. At an age prior to synaptic loss or the

appearance of NFT in the dentate gyrus, sensitive electrophyso-

logical and molecular markers demonstrate abnormalities in the

presynaptic function of the perforant pathway projection to the

hippocampal formation, implicating misfolded but soluble tau

in neural system failure (Polydoro et al., 2014). Importantly,

work on the rTgTauEC model indicates that lowering soluble

tau levels by transgene suppression prevents synapse loss

and transsynaptic spread of mutant tau and surprisingly allows

reversal of existing neurofibrillary tangle pathology both in the

dentate gyrus and entorhinal cortex (Polydoro et al., 2013).

This has implications for therapeutics as it implies reducing tau

levels will prevent both the spread of the disease through the

brain and the synapse loss that appears to contribute signifi-

cantly to cognitive decline.

Moving Forward: Outstanding Questions
Although great strides have beenmade in understanding the role

of synapses in Alzheimer’s disease, many outstanding questions

remain, which need to be addressed in order to develop thera-

peutics to target synaptic degeneration and the transsynaptic

spread of pathology. We highlight a few of these below.

Which forms are toxic? Despite the strong evidence that solu-

ble forms of Ab and tau are toxic at synapses, the exact forms of

the toxic species remain to be determined. There is evidence for

toxicity of both low molecular weight dimers and trimers of Ab

(Jin et al., 2011; Masters and Selkoe, 2012; Mc Donald et al.,

2010; Shankar et al., 2008) and larger dodecamers (Lesné

et al., 2006; Reed et al., 2011); however, the complete story

probably includes a mix of species in complexes with other mol-

ecules including apolipoprotein E. Synaptotoxic tau is likely to be

phosphorylated or misfolded oligomers (Hoover et al., 2010;

Lasagna-Reeves et al., 2010, 2011). In order to appropriately

target synaptotoxic species, these will need to be accurately

identified. Further, we need to better understand the relative

role of soluble versus aggregated species of both Ab and tau.

Are they in equilibria with each other? If the toxic species are

the soluble (oligomeric) forms, then are therapies aiming to

disrupt the fibrillar aggregates potentially harmful?

What are the molecular mechanisms leading to synapse loss?

An abundance of data from model systems are beginning to

converge on a solid pathway from Ab to calcium increases to

synapse degeneration, but there are still holes, particularly the

link between Ab and tau in synapse loss, the receptor that Ab

binds, and whether we can prevent either this binding or down-

stream consequences, thus saving synapses. However, to the

extent that the synaptic alterations are subsequent to enhanced

physiological processes, and to the extent that normal plasticity

might be linked to some extent to Ab at the synapse, a deeper
understanding of what it means to manipulate this system is crit-

ical for the development of appropriately targeted therapeutics.

Should we target extracellular tau? To the extent that we now

recognize extracellular tau as a normal species, increased after

neuronal activity, rather than simply a marker of neuronal dam-

age, we need to understand what its normal role is and, in

particular, if it has a role at the synapse. There is exciting recent

evidence that immunotherapy directed at tau is beneficial

in mouse models, which could be due to the removal of the

extracellular tau that is being transferred between neurons

(Boutajangout et al., 2011; Chai et al., 2011; d’Abramo et al.,

2013; Yanamandra et al., 2013).

In summary, synapse dysfunction and loss and the propaga-

tion of pathological proteins through synaptic connections

appear to be important contributors to dementia in AD, and ther-

apeutic approaches to prevent these deficits have the potential

to prevent or reverse cognitive decline in the future.
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Polydoro, M., de Calignon, A., Suárez-Calvet, M., Sanchez, L., Kay, K.R.,
Nicholls, S.B., Roe, A.D., Pitstick, R., Carlson, G.A., Gómez-Isla, T., et al.
(2013). Reversal of neurofibrillary tangles and tau-associated phenotype in the
rTgTauEC model of early Alzheimer’s disease. J. Neurosci. 33, 13300–13311.

Polydoro, M., Dzhala, V.I., Pooler, A.M., Nicholls, S.B., McKinney, A.P.,
Sanchez, L., Pitstick, R., Carlson, G.A., Staley, K.J., Spires-Jones, T.L., and
Hyman, B.T. (2014). Soluble pathological tau in the entorhinal cortex leads
to presynaptic deficits in an early Alzheimer’s disease model. Acta Neuropa-
thol. 127, 257–270.

Pontrello, C.G., Sun, M.-Y., Lin, A., Fiacco, T.A., DeFea, K.A., and Ethell, I.M.
(2012). Cofilin under control of b-arrestin-2 in NMDA-dependent dendritic
spine plasticity, long-term depression (LTD), and learning. Proc. Natl. Acad.
Sci. USA 109, E442–E451.

Pooler, A.M., Phillips, E.C., Lau, D.H., Noble, W., and Hanger, D.P. (2013a).
Physiological release of endogenous tau is stimulated by neuronal activity.
EMBO Rep. 14, 389–394.

Pooler, A.M., Polydoro, M., Wegmann, S., Nicholls, S.B., Spires-Jones, T.L.,
and Hyman, B.T. (2013b). Propagation of tau pathology in Alzheimer’s disease:
identification of novel therapeutic targets. Alzheimers Res Ther 5, 49.

Pooler, A.M., Noble, W., and Hanger, D.P. (2014). A role for tau at the synapse
in Alzheimer’s disease pathogenesis. Neuropharmacology 76 (Pt A), 1–8.
Neuron 82, May 21, 2014 ª2014 Elsevier Inc. 769



Neuron

Review
Quintanilla, R.A., Dolan, P.J., Jin, Y.N., and Johnson, G.V. (2012). Truncated
tau and Ab cooperatively impair mitochondria in primary neurons. Neurobiol.
Aging 33, e25–e35.

Redondo, R.L., and Morris, R.G. (2011). Making memories last: the synaptic
tagging and capture hypothesis. Nat. Rev. Neurosci. 12, 17–30.

Reed, M.N., Hofmeister, J.J., Jungbauer, L., Welzel, A.T., Yu, C., Sherman,
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J.R., Patel, T.K., Hochgräfe, K., Mandelkow, E.-M., andHoltzman, D.M. (2014).
Neuronal activity regulates extracellular tau in vivo. J. Exp. Med. 211, 387–393.

Yanamandra, K., Kfoury, N., Jiang, H., Mahan, T.E., Ma, S., Maloney, S.E.,
Wozniak, D.F., Diamond, M.I., and Holtzman, D.M. (2013). Anti-tau antibodies
that block tau aggregate seeding in vitro markedly decrease pathology and
improve cognition in vivo. Neuron 80, 402–414.

Zempel, H., Thies, E., Mandelkow, E., and Mandelkow, E.-M. (2010). Abeta
oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau
into dendrites, Tau phosphorylation, and destruction of microtubules and
spines. J. Neurosci. 30, 11938–11950.

Zempel, H., Luedtke, J., Kumar, Y., Biernat, J., Dawson, H., Mandelkow, E.,
and Mandelkow, E.-M. (2013). Amyloid-b oligomers induce synaptic damage
via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J. 32,
2920–2937.

Zhou, Q., Homma, K.J., and Poo, M.M. (2004). Shrinkage of dendritic spines
associated with long-term depression of hippocampal synapses. Neuron 44,
749–757.
Neuron 82, May 21, 2014 ª2014 Elsevier Inc. 771


	The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer’s Disease
	Function of Healthy Synapses
	Alzheimer’s Disease Pathology: Plaques and Aβ
	Alzheimer’s Disease Pathology: Tau
	Synaptic Dysfunction, Synapse Loss, and Relationships to Pathology
	Role of Tau and Aβ in Normal Synaptic Biology
	Mechanisms of Synaptic Dysfunction and Loss
	The Intersection of Aβ and Tau at the Synapse
	Soluble versus Fibrillar Species at the Synapse: Which Are Toxic?
	A Role for Synapses in Disease Progression
	Moving Forward: Outstanding Questions
	Acknowledgments
	References


