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This is an update of the 1981 survey by the first author. In themean-

time, a considerable amount has been learned about the very spe-

cial structure of the important class of inverseM-matrices. Develop-

ments since the earlier survey are emphasized, but we have tried to

be somewhat complete; and, some results have not previously been

published. Some proofs are given where appropriate and references

are given for others. After some elementary preliminaries, results

are grouped by certain natural categories.
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0. Introduction

By an M-matrix, we mean an n-by-n matrix A with nonpositive off-diagonal entries that has an

entry-wisenonnegative inverse. This is equivalent toAbeingof the formαI−B, inwhichB is entry-wise

nonnegative and α > ρ(B), the spectral radius of B (or A having nonpositive off-diagonal entries and

being positive stable, i.e., each eigenvalue has positive real part). A nonnegative matrix that occurs as

the inverse of anM-matrix is called an inverseM-matrix.We denote the n-by-n entry-wise nonnegative

matrices byN , the n-by-n positive (nonnegative) diagonalmatrices byD (D), the n-by-nmatriceswith
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nonpositive off-diagonal entries byZ , theM-matrices byM, and the inverseM-matrices by IM. Much

is known about each of these important classes [1,22,30,34]. It was shown in [22] that A ∈ M if and

only if A ∈ Z and A has positive principal minors. From this it follows that if A ∈ IM, then det A > 0

and A has positive diagonal entries. Many equivalent conditions for a Z-matrix to be anM-matrix may

be found in the above references.

For anym-by-nmatrix A,α ⊆ M = {1, . . . ,m} andβ ⊆ N = {1, . . . , n}, we denote the submatrix

lying in rows α and columns β by A[α, β]. If m = n, the principal submatrix A[α, α] is abbreviated
A[α]. Similarly, A(α, β) denotes the submatrix obtained from A by deleting the rows indexed by α and

the columns indexed by β and if m = n, the submatrix A(α, α) is abbreviated A(α). We denote the

cardinality of α, the complement of α, and the relative complement of α in β by |α|, αc , and β − α,

respectively. For i ∈ N, we abbreviate α − {i} by α − i, α ∪ {i} by α + i, A({i}, {j}) by A(i, j), and
A[{i}, {j}] by A[i, j] or aij . Inequalities between matrices are entry-wise throughout.

1. Preliminary facts

A number of facts follow from the definition of IM-matrices and are presented without proof.

Theorem 1.1. If A ∈ N is invertible, then A ∈ IM if and only if A−1 ∈ Z .

Corollary 1.1.1. If A, B ∈ IM, then AB ∈ IM if and only if (AB)−1 ∈ Z .

Example 1.1.2. Consider the IM matrices

A =

⎡
⎢⎢⎢⎣
21 14 13

13 24 20

14 13 24

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣
24 20 13

13 24 14

14 13 24

⎤
⎥⎥⎥⎦ .

AB is not IM since the (1, 3) entry of (AB)−1 is positive.

Remark. Multiplicative closure can be shown to hold for n = 2 (since A, B, and AB have positive

determinant).

Corollary 1.1.3. If A, B ∈ IM, then A + B ∈ IM if and only if A + B is invertible and (A + B)−1 ∈ Z .

Additive closure does not even hold for IM matrices of order 2.

Example 1.1.4. Consider the IMmatrix

A =
⎡
⎣ 2 1

3 2

⎤
⎦ .

If B = AT (the transpose of A), then A + B is not even invertible.

However, if det(A + B) > 0, then A + B is IM in the 2-by-2 case.

From theorem 1.1 and the cofactor form of the inverse we have

Theorem 1.2. If A ∈ N , then A ∈ IM if and only if det A > 0 and either det A(i, j) = 0 or sgn

det A(i, j) = (−1)i+j+1 for 1 ≤ i, j ≤ n, i �= j.

Theorem 1.2.1. If P is a permutation matrix, then A ∈ IM if and only if PTAP ∈ IM.

Theorem 1.2.2. A ∈ IM if and only if AT ∈ IM.
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Theorem 1.2.3. If D, E ∈ D, then A ∈ IM if and only if DAE ∈ IM.

An n-by-n complex matrix A = (aij) is said to be diagonally dominant of its rows if

|aii| >
∑
j �=i

|aij|, i = 1, . . . , n,

and diagonally dominant of its columns if AT is diagonally dominant of its rows. A is said to be diagonally

dominant of its row entries if

|aii| > |aij|, j �= i, i = 1, . . . , n,

and diagonally dominant of its column entries if AT is diagonally dominant of its row entries.

Theorem 1.3. If A ∈ IM, then

(i) there is a D ∈ D such that DA is diagonally dominant of its column entries,

(ii) there is an E ∈ D such that AE is diagonally dominant of its row entries, and

(iii) there are G, H ∈ D such that GAH is diagonally dominant of both its row and column entries.

Proof. Let A ∈ IM so that B = A−1 ∈ M. It follows from the Perron–Frobenius theorem [29] that

there is a D ∈ D such that R = BD is diagonally dominant of its rows. Let S = R−1 = D−1A = (sij)

and suppose i, j ∈ N with i �= j. Then it follows from the cofactor expansion of R−1 and from R ∈ Z
that

|sii| − |sji| = det R[N − i] + det R[N − i,N − j]
det R

= det T

det R

in which T is obtained from R[N − i] by adding the column ±R[N − i, i] to the jth column. Since R

is diagonally dominant of its rows and has positive diagonal, det T > 0 and so |sii| − |sji| > 0. Thus,

S = D−1A is diagonally dominant of its column entries and (i) holds.

The proof of (ii) is similar and (iii) follows from (i) and (ii). �

Of course, because of theorem 1.2.3, any IM matrix may be diagonally scaled to one with 1’s on

the diagonal, a normalized IM matrix. In fact, the scaled IM matrix may be taken to have 1’s on the

diagonal and entries < 1 off [46].

It is known that M matrices have diagonal Lyapunov solutions; that is, for each B ∈ M, there is a

D ∈ D such that DB + BTD is positive definite. (This follows from the fact that an M-matrix may be

scaled to have both row and column diagonal dominance [38].) This allows us to prove the analogous

fact for IM matrices.

Theorem 1.4. For each A ∈ IM, there is a D ∈ D such that DA + ATD is positive definite.

Proof. If A ∈ IM, then A−1 ∈ M and thus there is D ∈ D such that DA−1 + (A−1)TD is positive

definite. Hence, AT (DA−1 + (A−1)TD)A = DA + ATD is also. �

Our next fact is immediate from the corresponding property for M-matrices.

Theorem 1.5. Each A ∈ IM is positive stable.

Theorem 1.6. If A ∈ IM and Eii is the n-by-n matrix with a 1 in the (i, i) position and 0’s elsewhere, then

A + tEii ∈ IM for any t ≥ 0.
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Proof. Let A ∈ IM and let A−1 = (αij). Without loss of generality, we may assume that i = 1. Let

B = A + te1e
T
1 in which e1 denotes the first standard basis vector. Then, from [29, p. 19–20], we have

B−1 = A−1 − 1

1 + eT1A
−1e1

A−1e1e
T
1A

−1

= A−1 − 1

1 + α11

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α11

α21

...

αn1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
α11 α12 . . . α1n

]

= A−1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− + + . . +
+ − − . . −
+ − − . . −
. . . . . .

. . . . . .

+ − − . . −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A−1 + C.

For j �= 1, |α1j| ≥ α11

1+α11
|α1j| = c1j and |aj1| ≥ α11

1+α11
|αj1| = cj1. Thus, B

−1 ∈ Z which implies

B ∈ IM and completes the proof. �

Closure under addition of a nonnegative diagonal matrix follows immediately.

Theorem 1.7. If A ∈ IM and D ∈ D, then A + D ∈ IM.

For two IM matrices that result from inversion of comparable IM matrices, there is a natural

inequality that results from multiplication on the left (right) by the nonnegative matrix A−1(B−1).

Theorem 1.8. If A ≥ B areMmatrices, then for the IM matrices B−1 and A−1, we have

B−1 ≥ A−1.

When A and B are IM matrices, the corresponding statement is not generally valid.

2. Partitioned IM matrices

If A is square and A[α] is invertible, the Schur complement of A[α] in A, denoted A/A[α], is defined
by

A/A[α] = A[αc] − A[αc, α]A[α]−1A[α, αc].
Let α = {1, . . . , k}. (Due to theorem 1.2.1, there is no difference between α = {1, . . . , k} and a

general α.) It was shown in [8] that if A/A[α] = B = (bij), then, for k + 1 ≤ i, j ≤ n,

bij = det A[α + i, α + j]
det A[α] = sij

det A[α] ,
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in which S = (sij) is Sylvester’s matrix of “bordered" minors [24], i.e.,

sij = det

⎡
⎣ A[α] A[α, j]
A[i, α] aij

⎤
⎦ .

Thus, S = (det A[α])(A/A[α]).
We shall make use of the Schur complement form of the inverse [29] given in the following form.

Let the square matrix A be partitioned as

A =
⎡
⎣ A[α] A[α, αc]
A[αc, α] A[αc]

⎤
⎦ (2.1)

in which A, A[α], and A[αc] are all invertible. Then

A−1 =
⎡
⎣ (A/A[αc])−1 −A[α]−1A[α, αc](A/A[α])−1

−(A/A[α])−1A[αc, α]A[α]−1 (A/A[α])−1

⎤
⎦

=
⎡
⎣ (A/A[αc])−1 −(A/A[αc])−1A[α, αc]A[αc]−1

−A[αc]−1A[αc, α](A/A[αc])−1 (A/A[α])−1

⎤
⎦ .

(2.2)

We nowmake use of the fact thatM-matrices are closed under extraction of principal submatrices

and under extraction of Schur complements (Schur complementation) [47].

Theorem 2.3. Let A ≥ 0 be partitioned as A =
⎡
⎣A11 A12

A21 A22

⎤
⎦. Then, A ∈ IM if and only if

(i) A/A11 ∈ IM;

(ii) A/A22 ∈ IM;

(iii) (A11)
−1A12(A/A11)

−1 ≥ 0;

(iv) (A/A11)
−1A21(A11)

−1 ≥ 0;

(v) (A22)
−1A21(A/A22)

−1 ≥ 0;

(vi) (A/A22)
−1A12(A22)

−1 ≥ 0.

Proof. For necessity, suppose A ∈ IM and consider the Schur complement form of its inverse.

Since A−1 ∈ M and M-matrices are closed under extraction of principal submatrices, (A/A11)
−1

and (A/A22)
−1 are in M and (i) and (ii) follow. Statements (iii)–(vi) follow since A−1 ∈ Z .

For sufficiency, observe that (i) and (ii) and either (iii) and (iv) or (v) and (vi) ensure that A−1 ∈ Z .

This completes the proof. �

Corollary 2.3.1. IM matrices are closed under extraction of Schur complements.

Corollary 2.3.2. IM matrices are closed under extraction of principal submatrices.

These follow from theorem 2.3 and the Schur complement form of (A−1)−1, respectively. In turn,

corollary 2.3.2 implies that

Corollary 2.3.3. IM matrices have positive principal minors.

Notice also that theorem 2.3 allows us to zero out any row or column of an IM matrix off the

diagonal and remain IM, i.e., if A =
⎡
⎣a11 A12

A21 A22

⎤
⎦ ∈ IM and B =

⎡
⎣a11 A12

0 A22

⎤
⎦, then B−1 =
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⎡
⎣(a11)

−1 −(a11)
−1A12(A22)

−1

0 (A22)
−1

⎤
⎦ ∈ Z since a11, A12(A22)

−1 ≥ 0. This fact can also be shown by

applying theorem 1.2.3 and theorem 1.7, i.e., multiply the first column of A by some t, 0 < t < 1, then

add a11 − ta11 > 0 to the (1, 1) entry to obtain the IM matrix A(t) =
⎡
⎣ a11 A12

tA21 A22

⎤
⎦. By continuity,

⎡
⎣a11 A12

0 A22

⎤
⎦

−1

=
⎡
⎣(a11)

−1 −(a11)
−1A12(A22)

−1

0 (A22)
−1

⎤
⎦ ∈ IM.

We also have

Theorem 2.4. Let A ≥ 0 be partitioned as A =
⎡
⎣A11 A12

A21 A22

⎤
⎦. Then, if A ∈ IM,

(i) A11 ∈ IM;

(ii) A/A11 ∈ IM;

(iii) A22 ∈ IM;

(iv) A/A22 ∈ IM;

(v) (A11)
−1A12 ≥ 0;

(vi) A21(A11)
−1 ≥ 0;

(vii) (A22)
−1A21 ≥ 0;

(viii) A12(A22)
−1 ≥ 0.

(ix) A12(A/A11)
−1 ≥ 0;

(x) (A/A11)
−1A21 ≥ 0;

(xi) A21(A/A22)
−1 ≥ 0;

(xii) (A/A22)
−1A12 ≥ 0.

Proof. Observe that (i)–(iv) follow from the preceding remarks. Then, (v)–(xii) follow from (iii) to (vi)

of theorem2.3 uponmultiplying by the appropriate choice ofA/A11,A/A22,A11, orA22 which completes

the proof. �

For IM matrices of order 2 or 3, it is obvious from the remarks preceding theorem 2.4 that we

can zero out any reducing block (given a block matrix A =
⎡
⎣ B C

D E

⎤
⎦ . the block C, respectively, D, is a

reducing block providedA, B, E are square) or zero out either triangular part and remain IM. However,

these properties do not hold in general.

Example 2.5. Consider the IM matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

20 8 11 5

19 20 19 12

17 8 20 5

14 9 14 20

⎤
⎥⎥⎥⎥⎥⎦

.

Neither B =

⎡
⎢⎢⎢⎢⎢⎣

20 8 0 0

19 20 0 0

17 8 20 5

14 9 14 20

⎤
⎥⎥⎥⎥⎥⎦

nor C =

⎡
⎢⎢⎢⎢⎢⎣

20 0 0 0

19 20 0 0

17 8 20 0

14 9 14 20

⎤
⎥⎥⎥⎥⎥⎦

is in IM since the (4, 1) entry of the

inverse of each is positive.
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We will utilize Schur’s formula [29], which states that

det A = (detA[α])(det A/A[α])
provided A[α] is nonsingular.

We will also need a special case of Sylvester’s identity for determinants. Let A be an n-by-nmatrix,

α ⊆ N, and suppose |α| = k. Define the (n − k)-by-(n − k) matrix B = (bij) by setting bij =
det A[α + i, α + j], for every i, j ∈ αc . Then Sylvester’s identity for determinants (see [29]) states that

for each δ, γ ⊆ αc , with |δ| = |γ | = m,

det B[δ, γ ] = (det A[α])m−1det A[α ∪ δ, α ∪ γ ]. (2.6)

We will utilize the following special case of this identity: let A be an n-by-n matrix partitioned as

follows :

A =

⎡
⎢⎢⎢⎣
a11 aT12 a13

a21 A22 a23

a31 aT32 a33

⎤
⎥⎥⎥⎦ , (2.7)

in which A22 is (n − 2)-by-(n − 2) and a11, a33 are scalars. Define the matrices

B =
⎡
⎣a11 aT12

a21 A22

⎤
⎦ , C =

⎡
⎣aT12 a13

A22 a23

⎤
⎦ ,D =

⎡
⎣a21 A22

a31 aT32

⎤
⎦ , E =

⎡
⎣A22 a23

aT32 a33

⎤
⎦ .

If we let b = det B, c = det C, d = det D, and e = det E, then, by equation (2.6), it follows that

det

⎡
⎣b c

d e

⎤
⎦ = det A22 det A. Hence, provided det A22 �= 0, we have

det A = det B det E − det C det D

det A22

. (2.8)

With certain nonnegativity/positivity assumptions IM matrices can be characterized in terms of

Schur complements [46].

Theorem2.9. Let A ≥ 0. ThenA ∈ IM if and only if A has positive diagonal entries, all Schur complements

are nonnegative, and all Schur complements of order 1 are positive.

In fact, these conditions can be somewhat relaxed.

Theorem 2.9.1. Let A ≥ 0. Then A ∈ IM if and only if

(i) A has at least one positive diagonal entry,

(ii) all Schur complements of order 2 are nonnegative, and

(iii) all Schur complements of order 1 are positive.

Proof. For necessity, assume thatA ∈ IM. ThenAhas positive diagonal entries and, since IMmatrices

are closed under extraction of Schur complements, each Schur complement is nonnegative. So we just

need to show those of order 1 are positive. But this follows from Schur’s formula since A has positive

principal minors.

For sufficiency, suppose (i), (ii), and (iii) hold, say aii > 0. Observe that (by considering all Schur

complements A[{i, j}]/aii in which j �= i), (iii) implies that A has positive diagonal entries.
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Claim. All principal minors of A are positive.

Proof of Claim. If A is 1-by-1, then the claim certainly holds. So, inductively, assume the claim holds

for all matrices of order < n satisfying (i), (ii), and (iii) and let A =
⎡
⎣a11 A12

A21 A22

⎤
⎦. Thus, all principal

submatrices of order < n have positive determinant and it suffices to prove that det A > 0. By Schur’s

formula, det A = (det A22)(a11 − A12(A22)
−1A21). The inductive hypothesis implies det A22 > 0 and

thus the positivity of det A follows from (iii), completing the proof of the claim.

Now let A−1 = B = (bij) and consider bij , i �= j, and assume, without loss of generality, that i < j.

Define the sequences

α = 〈1, . . . , i − 1, i + 1, . . . , j − 1, j + 1, . . . , n〉,
α1 = 〈1, . . . , i − 1, i + 1, . . . , j − 1, j + 1, . . . , n, i〉,

and

α2 = 〈1, . . . , i − 1, i + 1, . . . , j − 1, j + 1, . . . , n, j > .

Then,

bij = (−1)i+j det A(j, i)

det A

= (−1)i+j(−1)n−i−1(−1)n−j det A[α1, α2]
det A

= −
(
aij − A[i, α](A[α])−1A[α, j]

) det A[α]
det A

≤ 0.

The latter inequality holds since A/A[α] is a Schur complement of order 2 and hence is nonnegative.

Thus, A−1 ∈ Z which implies A ∈ IM and completes the proof. �

Fromthe latterpartof theproofof theorem2.9.1weobtainanother characterizationofIMmatrices.

Theorem 2.9.2. Let A ≥ 0. Then A ∈ IM if and only if

(i) det A > 0 and

(ii) for each principal submatrix B of order n − 2, det B > 0 and A/B ≥ 0.

As noted in corollary 2.3.1 and corollary 2.3.2, IM matrices are closed under extraction of Schur

complements and under extraction of principal submatrices. Conversely, if A ≥ 0 with principal

submatrix B and both B and A/B are IM, then A is not necessarily IM. A counterexamplewas provided

in [32] as well as added restrictions on A and B so as to ensure that A is IM.

3. Submatrices

An almost principal minor (APM) of a square matrix A = (aij) is the determinant of an (almost

principal) submatrix A[α, β] in which |α| = |β| and β differs from α in exactly one index; i.e.,

|α ∩ β| = |α| − 1. Of course, a k-by-k almost principal submatrix of A is a maximal non-principal

submatrix of a (k + 1)-by-(k + 1) principal submatrix of A, since A[α, β] sits in A[α ∪ β]. Since
the maximal proper principal minors and the maximal APM’s of a square, invertible matrix are the

numerators of the inverse entries via the co-factor representation of the inverse, the APM’s of an IM
matrix have a special sign structure, because of theorem 1.2 and theorem 2.4/theorem 1.2.1.We record

these facts and further results here. Recall that if A is n-by-n IMmatrix and α is a proper subset of N,

then A[α] is IM.
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IfA is ann-by-n IMmatrix, then theAPM det A(i, j) is 0 or has sign (−1)i+j+1, according to theorem

1.2. If det A[α, β] is an APM in A, then it is also an APM in A[α ∪ β]. We then have

Theorem 3.1. Let A be an n-by-n IM matrix and α, β, γ ⊆ N in which α = γ − i, β = γ − j (i �= j)
so that γ = α ∪ β . Then, det A[α, β] is a APM in A and either equals 0 or has sign (−1)r+s+1 in which r

(resp. s) is the number of indices in α (resp. β) less than or equal to i (resp. j).

(We note that an analogous statement to theorem 3.1 can bemade concerning the APM A[α + i, α + j]
and that analogous statements can be made about M-matrices upon replacing r + s + 1 with r + s.)

For an individual minor of an IMmatrix that is neither principal nor an APM, there is no constraint

upon the sign.

Example 3.2. Consider the IM matrices

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

200 50 25 12

50 200 50 25

25 50 200 50

12 25 50 200

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

200 50 25 13

50 200 50 25

25 50 200 50

13 25 50 200

⎤
⎥⎥⎥⎥⎥⎥⎦

.

det A[{1, 2}, {3, 4}] is positive while det B[{1, 2}, {3, 4}] is negative.
APM’s in IMmatrices can be 0, but the pattern of 0’s is far from arbitrary. An essentially complete

description of the possibilities is given in [47], whichwe summarize here. There are also corresponding

inequalities involving minors that we mention. First, we note that “small" vanishing APM’s imply that

“larger" ones also vanish.

Theorem 3.3. If φ �= α ⊆ β ⊆ N − {i, j} and A is an n-by-n IM matrix such that the APM det A[α +
i, α + j] = 0, then the APM det A[β + i, β + j] = 0.

There are also relationships among vanishing APM’s of the same“size".

Theorem 3.4. If n ≥ 3 and A is an n-by-n IMmatrix, let i, j, k be distinct indices in N. Ifα ⊆ N−{i, j, k},
then, if det A[α + i, α + j] = 0, either

(i) det A[α + i, α + k] = 0 or

(ii) det A[α + k, α + j] = 0.

Related inequalities include the following.

Theorem 3.5. If A is IM and φ �= α ⊆ N, then

(i)
(
A−1[α]

)−1 ≤ A[α]; and
(ii) A[α]−1 ≤ A−1[α].
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Forparticularminorsofdifferent sizes inanormalizedIMmatrix, thereare inequalitiesgeneralizing

theorem 3.5.

Theorem 3.6. If A is an n-by-n, normalized IMmatrix and φ �= α ⊆ β ⊆ N − {i, j}, then
(i) det A[β] ≤ det A[α]; and
(ii) |det A[β + i, β + j]| ≤ | det A[α + i, α + j]|.

Thus, generally,“smaller"PM’s orAPM’s arebigger (havea largerdeterminant) in anIMmatrix.Hereto-

fore there does not seem to have been any work on nontrivial inequalities involving nonprincipal

minors of IM matrices like those for APM’s in theorem 3.6(ii) above.

Another way in which vanishing minors are related in an IM matrix is the following.

Theorem 3.7. Suppose that A is an n-by-n IM matrix and that γ = N − i. If A[γ ]−1[α, β] = 0, then

either A−1[α, β + i] = 0 or A−1[α + i, β] = 0. Thus, if A[γ ]−1 has a p-by-q, off-diagonal 0 block, then

A−1 must have one of size (p + 1)-by-q or p-by-(q + 1).

4. The path product property

Let A = (aij) be an n-by-n nonnegative matrix with positive diagonal entries. We call A a path

product (PP) matrix if, for any triple of indices i, j, k ∈ N,

aijajk

ajj
≤ aik (4.1)

a strict path product (SPP) matrix if there is strict inequality whenever i �= j and k = i [46]. In [46] it

was noted that any IMmatrix is SPP and that for n ≤ 3 (but not greater) the two classes are the same.

See also [77]. If aii = 1, i = 1, . . . , n, we call a PP (resp. SPP) matrix A normalized.

For a PP matrix A and any path i1 → i2 → · · · → ik−1 → ik in the complete graph Kn on n

vertices, we have

ai1i2ai2i3 · · · aik−1ik

ai2i2ai3i3 · · · aik−1ik−1

≤ ai1ik (4.2)

and, if in addition,A is SPP, then the inequality is strict.We call inequality (4.2) the path product inequal-

ities and, if i1 = ik in inequality (4.2), the cycle product inequalities. We call a product ai1i2ai2i3 · · · aik−1ik
an (i1, ik) path product (of length k − 1) and, if ik = i1, an (i1, ik) cycle product (of length k − 1).

In inequality (4.2), if ik = i1, we see that the product of entries around any cycle is no more than

the corresponding diagonal product, i.e.,

ai1i2ai2i3 · · · aik−1i1 ≤ ai1i1ai2i2 · · · aik−1ik−1
. (4.3)

It follows that in a normalized PP matrix no cycle product is more than 1 and that in a strictly

normalized PP matrix all cycles of length two ormore have product less than 1. From this we have [46].

Theorem 4.4. If A is a normalized PP (resp. normalized SPP) matrix, then there is a normalized PP

(resp. normalized SPP) matrix Â diagonally similar to A in which all (resp. off-diagonal) entries are ≤
(resp. < ) 1.

PP matrices are closed under: extraction of principal submatrices, permutation similarity,

Hadamard (entry-wise) multiplication, left (right) multiplication by a positive diagonal matrix (and

hencepositivediagonal congruence), andpositivediagonal similarity but not under Schur complemen-

tation, addition, or ordinary multiplication [46]. Moreover, a PP matrix remains PP upon the addition

of a nonnegative diagonal matrix.
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There is a strong connection between IM matrices and SPP matrices as the next several results

from [46] illustrate.

Theorem 4.5. Every IM matrix is SPP.

Theorem 4.6. If A is an n-by-n SPP matrix, n ≤ 3, then A is IM.

For n ≥ 4, sufficiency no longer holds.

Example 4.7. The SPP-matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0.10 0.40 0.30

0.40 1 0.40 0.65

0.10 0.20 1 0.60

0.15 0.30 0.60 1

⎤
⎥⎥⎥⎥⎥⎦

is not IM, as the (2, 3) entry of A−1 is positive.

Given an n-by-nmatrix A,G(A), the (directed) graph of A, is the graphwith verticesN and satisfying:

(i, j) is an edge ofG(A) if and only if aij �= 0. PPmatrices can be used to deduce the following important

facts about IM matrices [46], some of which we will use later.

Theorem 4.8

(i) If an IM matrix has a 0 entry, then it is reducible.

(ii) An IM matrix has a transitive graph.

(iii) An IMmatrix can be scaled by positive diagonal matrices D, E so that DAE has all diagonal entries

equal to 1 and all off-diagonal entries less than 1.

(iv) Every IM matrix satisfies the strict cycle product inequalities

ai1i2ai2i3 · · · aik−1i1 < ai1i1ai2i2 · · · aik−1ik−1
. (4.9)

In fact, it follows from theorem 4.8(i) that every 0 entry of an IM matrix lies in an off diagonal

reducing block. The known fact (see [34] and references) that the 0-pattern of an IMmatrix is power-

invariant also follows from this discussion. Each is simply part of a reducing 0-block.

A P-matrix is a real n-by-nmatrix whose principal minors are all positive. In [46] it was shown that

SPP matrices are not necessarily P-matrices in contrast toM- and IMmatrices.

A path product ai1i2ai2i3 · · · aik−1ik is called an (i1, ik) path product and we say it is even (odd) if the

path i1 → i2 → · · · → ik−1 → ik in G(A) has even (odd) length (equivalently, if k is odd(even)).

Note that if A ≥ 0, then the (i, j) entry of Ak , k = 1, 2, . . . , equals the sum of the (i, j) path products

of length k.

Theorem 4.10 Let A be an n-by-n triangular normalized SPP matrix. Then, A ∈ IM if and only if the sum

of the even length (i, j) path products is at most the sum of the odd length (i, j) path products for all i and

j with i �= j.

Proof. Let A = I + T be an n-by-n triangular normalized SPP matrix. Then,

A−1 = (I + T)−1

= I − T + T2 − · · · ± Tn−1

= I − ∑
k odd

Tk + ∑
k even

Tk.
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Thus, we see that, for all i and j with i �= j, the (i, j) entry of A−1 is the sum of the even (i, j) path

products minus the sum of the odd (i, j) path products. Hence, A−1 ∈ M if and only if the sum of the

even (i, j) path products is at most the sum of the odd (i, j) path products for all i and j with i �= j. �
We identify the case inwhich no path product equalities occur, i.e., all inequalities inequalities (4.1)

are strict, and call such SPP matrices totally strict path product (TSPP) [51]. Observe that TSPP matrices

are necessarily positive, but may not be IM and that IM matrices may not be TSPP.

Example 4.11 The TSPP matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.50 0.35 0.40

0.50 1 0.50 0.26

0.35 0.50 1 0.50

0.40 0.26 0.50 1

⎤
⎥⎥⎥⎥⎥⎥⎦

is not IM since the (2, 4) entry of the inverse is positive while the IMmatrix

B =

⎡
⎢⎢⎢⎣

1 0.50 0.25

0.50 1 0.50

0.25 0.50 1

⎤
⎥⎥⎥⎦

is not TSPP.

Consider the following condition on the collection of path product inequalities: for all distinct

indices i, j, k ∈ N and, for all m ∈ N − {i, j, k},
aik = aijajk implies that either aim = aijajm or amk = amjajk. (4.12)

If implication (4.12) is satisfied by an SPP matrix, we say that A is purely strict path product (PSPP) [51].

Wewill see (Section 8) that, in PSPP matrices, path product equalities force certain cofactors to vanish.

We note that PSPP and SPP coincide (vacuously) when n ≤ 3 and that generally the TSPP matrices

are contained in the PSPP matrices (vacuously). Also observe that, if A is TSPP (PSPP), then so is any

normalization of A. Lastly, we note that an IMmatrix is necessarily PSPP (this was proved for positive

normalized IMmatrices in [51] and the same proof applies in the general case), but the converse does

not hold (by example 4.11, for instance).

Theorem 4.13 Any normalized IM matrix is PSPP.

Proof. Let A = (aij) be a normalized IM matrix. By theorem 4.5, A is SPP. If n ≤ 3, then A is PSPP

vacuously. So we may assume that n ≥ 4. Also, assume that aik = aijajk for the distinct indices i, j, k
of N and let m ∈ N − {i, j, k} and consider the principal submatrix

A[{m, j, k, i}] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 amj amk ami

ajm 1 ajk aji

akm akj 1 aki

aim aij aik 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This submatrix is IM by inheritance. So (via equation 2.8, for instance) the k, i cofactor cki = (amk −
amjajk)(aim − aikakm) ≤ 0. Hence, by inequalities (4.1), either amk = amjajk or aim = aijajm. Thus, A is

PSPP. �
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5. Triangular factorization

PP matrices do not necessarily admit an LU-factorization in which the factors are PP.

Example 5.1 The PP matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1

1 1 1 1

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

has LU factorization

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1

0 1 1 0

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

but U = (uij) is not PP since u23u34 �≤ u24.

However,M-matrices andIMmatriceshave LU- (UL-) factorizationswithin their respective classes.

To see this, first suppose that A ∈ M. If A is 1-by-1, A trivially factors as LU in which L,U > 0. So

assume n > 1. SinceM-matrices are closed under extraction of principal submatrices, wemay assume

(inductively) that A =
⎡
⎣A11 A12

A21 A22

⎤
⎦ in which A11 = L11U11 with L11 (U11) being an (n − 1)-by-(n − 1)

lower- (upper-) triangular M-matrix. Therefore, since A has positive principal minors A = LU =⎡
⎣L11 0

L21 1

⎤
⎦

⎡
⎣U11 U12

0 unn

⎤
⎦ =

⎡
⎣L11U11 L11U12

L21U11 L21U12 + unn

⎤
⎦ in which unn = A/A11 > 0 (by Schur’s formula). Thus,

L11U12, L21U11 ≤ 0. Since L
−1
11 ,U−1

11 ≥ 0, it follows that U12, L21 ≤ 0. Thus, L,U ∈ Z. And since

L−1 =
⎡
⎣ L

−1
11 0

−L21L
−1
11 1

⎤
⎦ and U−1 =

⎡
⎣U

−1
11 − 1

unn
U

−1
11 U12

0 1
unn

⎤
⎦

arebothnonnegative, L,U ∈ M. Similarly, it canbe shown thatAhas aUL-factorizationwithin the class

of M-matrices. Observe that if A = LU (UL) in which L,U ∈ M, then A−1 = U−1L−1 (L−1U−1) with

L−1,U−1 ∈ IM. Thus, IM matrices also have LU- and UL-factorizations within their class. However,

it is not the case that if L,U are, respectively, lower- and upper-triangular IMmatrices, then LU and/or

UL is IM.

Example 5.2 Consider the IM matrices

L =

⎡
⎢⎢⎢⎣
1 0 0

1 1 0

4 1 1

⎤
⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎣
1 1 4

0 1 4

0 0 1

⎤
⎥⎥⎥⎦ .

Neither LU nor UL is IM since the inverse of the former is positive in the (2, 1) entry and the inverse

of the latter is positive in the (3, 2) entry.
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6. Sums, products, and closure

Suppose that A, B, . . ., and C are n-by-n IM matrices, throughout this section. It is natural to ask

about closure under a variety of operations. Neither the sum A+B (see corollary 1.1.2) nor the product

AB (see example 1.1.4) need generally be in IM. In addition, the conventional powersAt , t ∈ R and> 1

are nonnegative and need not be in IM for n > 3. Recall that At , when t is not an integer, is defined

naturally for an M-matrix, via power series, and thus for an IM-matrix, as in [34], or, equivalently, via

principal powers, as in [30].

Example 6.1 Consider the IMmatrix

A =

⎡
⎢⎢⎢⎢⎢⎣

90 59 44 71

56 96 48 88

64 60 88 84

42 43 36 95

⎤
⎥⎥⎥⎥⎥⎦

.

Since the inverse of A3 has a positive 1, 4 entry, A3 is not an IMmatrix.

For m-by-n matrices A = (aij) and B = (bij), the Hadamard (entry-wise) product A ◦ B is defined by

A ◦ B = (aijbij). The Hadamard product, A ◦ B need not be IM for n > 3 (see the example from [78]

in Section 8).

However, in each of these cases, there is an aesthetic condition for the result to be IM, even when

the number of summands or factors is more than two. Note that, since A, B, . . . , and C ≥ 0 (entry-

wise), necessarily A+ B+ · · · + C, AB · · · C, and A ◦ B ◦ · · · ◦ C ≥ 0. The second of these is necessarily

invertible, while the first and third need not be. But, invertibility plus nonnegativity mean that the

result is IM if and only if the inverse has nonpositive off-diagonal entries. This gives

Theorem 6.2 If A, B, . . . , C are n-by-n IMmatrices, then AB · · · C (resp. A+B+· · ·+C, A◦B◦ · · · ◦C,

if they are invertible) is IM if and only if the off-diagonal entries of its inverse are nonpositive.

Also,

Theorem 6.3 If t > 1 is an integer, then At is IM if and only if the off-diagonal entries of the inverse of

At are nonpositive.

The above discussion leaves powers At , 0 ≤ t < 1, for consideration and Hadamard powers A(t),

t > 1 and 0 < t < 1. The Hadamard powers A(t), t > 1, are discussed in Section 8 and interestingly,

are always IM! For n > 2 and 0 < t < 1, Hadamard powers A(t) need not be IM.

Example 6.4 Consider the IM matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0.001 0.064 0.027

0.064 1 0.064 0.274625

0.001 0.008 1 0.216

0.003375 0.027 0.216 1

⎤
⎥⎥⎥⎥⎥⎦

.

The Hadamard cube root of A, given by

A(1/3) =

⎡
⎢⎢⎢⎢⎢⎣

1 0.1 0.4 0.3

0.4 1 0.4 0.65

0.1 0.2 1 0.6

0.15 0.3 0.6 1

⎤
⎥⎥⎥⎥⎥⎦

,
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is not IM since the 2, 3 entry of its inverse is positive.

The remaining issue of “conventional" powers (roots) At , 0 < t < 1 has an interesting resolution.

Based upon a power series argument given in [34], the M-matrix B = A−1 always has a kth root B1/k ,

k = 1, 2, . . . , such that (B1/k)k = B, that is an M-matrix. The same argument or continuity gives a

natural Bt = (A−1)t , 0 ≤ t < 1, that is an M-matrix. As the laws of exponents are valid, this means

Theorem 6.5 If A is IM, then for each t, 0 ≤ t < 1, there is a natural At such that At is IM. If t = p/q,
with p and q positive integers and 0 ≤ p ≤ q, then

(At)q = Ap.

7. Spectral structure

Let A ∈ IM and let σ(A) denote the spectrum of A. It follows from Perron–Frobenius theory that

|λ| ≤ ρ(A) for all λ ∈ σ(A) – the spectrum of A – with equality only for λ = ρ(A) and that the

M-matrix B = A−1 = αI − P in which P ≥ 0 and α > ρ(P). Thus, q(B) = 1
ρ(A)

= α − ρ(P) is the

eigenvalue of B with minimummodulus, σ(B) is contained in the disc {z ∈ C : |z − α| ≤ ρ(P)}, and
Re(λ) ≥ q(B) for all λ ∈ σ(B) with equality only for λ = q(B). Moreover, σ(B) is contained in the

open wedge

Wn ≡
{
z = reiθ : r > 0, |θ | <

π

2
− π

n

}

in the right half-plane if n > 2, and in (0, ∞) if n = 2 [30]. So σ(A) is contained in the wedge

Wn if n > 2 and in (0, ∞) if n = 2. Under the transformation f (z) = 1
z
, circles are mapped to

circles and lines to lines (see [60] for details). This in turn implies that σ(A) is contained in the disc

{z ∈ C : |z − β| ≤ R} in which β = α
α2−(ρ(P))2

and R = ρ(P)

α2−(ρ(P))2
.

It was noted in [33,23] that if A and B are M-matrices, then the Hadamard product A ◦ B−1 is also

an M-matrix. A real n-by-n matrix A is diagonally symmetrizable if there exists a diagonal matrix D

with positive diagonal entries such that DA is symmetric. In [33] it was shown that if the M-matrix A

is diagonally symmetrizable, then q(A ◦ A−1) = 1.

For an M-matrix A, there has been a great deal of interest in bounds for q(A ◦ A−1). For instance,
q(A ◦ A−1) ≤ 1 was proved in [17] and, moreover, it was asked whether q(A ◦ A−1) ≥ 1

n
. This latter

question was answered affirmatively in [18] and the authors conjectured that q(A ◦ A−1) ≥ 2
n
. Lower

bounds were also studies in [57]. Also, for M-matrices A and B, a lower bound for q(A ◦ B−1) was

determined. The conjecture in [18] was later established independently in [74,79,7].

8. Hadamard products and powers

Many facts about the Hadamard (entry-wise) product may be found in [27,34].

Since n-by-n IMmatrices A and B are entry-wise nonnegative, it is natural to ask whether A ◦ B is

again IM. For n ≤ 3, this is so, as IM is equivalent to SPP for n = 3 (Section 3) and the Hadamard

product of SPP matrices is SPP; and for n = 1, 2, the claim is immediate. It has long been known that

such a Hadamard product is not always IM. Examples for n = 6 (and hence for larger n) may be found

in [30,36] and more recently, it was noted in [78] that the two 4-by-4 symmetric matrices

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4

⎤
⎥⎥⎥⎥⎥⎥⎦
and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 2 1 3

2 2 1 2

1 1 1 1

3 2 1 4

⎤
⎥⎥⎥⎥⎥⎥⎦
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are IM, whileA◦B is not. This entirely resolves the question of dimensions inwhich there isHadamard

product closure.

Theorem 8.1 The n-by-n IM matrices are closed under Hadamard product if and only if n ≤ 3.

This leaves the question ofwhich pairs of IMmatrices have an IMHadamard product. Counterex-

amples seem not so common, in part because the Hadamard product is SPP, but also because the ideas

in [50] indicate that a bounded multiple of I (at worst) need be added to make the Hadamard product

IM. Nonetheless, better descriptions of such pairs would be of interest. In [9,50] the dual of the IM
matrices was defined to be

IM(D) = {A ∈ Mn(R) : A ◦ B ∈ IM for all B ∈ IM}.
It is not hard to see that IM(D) ⊆ IM, but an effective characterization of IM(D) would be of interest.

For A = (aij) ∈ IM, another (more special) natural question is whether A(2) ≡ A ◦ A ∈ IM also

[70]. This was also conjectured elsewhere. More generally, is A(k) = A ◦ A ◦ · · · ◦ A ∈ IM for all

positive integers k, and, if so, is A(t) = (atij) ∈ IM for all t ≥ 1 where for each real number t, the tth

Hadamard power of A is defined by A(t) ≡ (atij). A constructive proof for A(2) when n = 4 was given

by the authors. Then, the following was shown in [4].

Theorem 8.2 All positive integer Hadamard powers of an IM matrix are IM.

In [78], as well as elsewhere, it was conjectured that, for an IMmatrix A, the tth Hadamard power

of A is IM for all real t ≥ 1. This was recently proven in [5].

Theorem 8.3 If A is an IMmatrix and t ≥ 1, A(t) is IM.

The question of which IM matrices satisfy A(t) is IM for all t > 0 is still open.

The strong results about Hadamard powers remaining IM, raises a question about which (non-

negative) matrices become IM via Hadamard powering. We call an n-by-n A ≥ 0 eventually inverse M

(EIM) if there exists a T > 0 such that A(T) is IM. Of course, then A(t) is IM for all t ≥ T . Since, for

any t > 0, A(t) is SPP if and only if A is SPP, the property SPP is necessary for EIM, but it is not quite

sufficient.

Example 8.4 Consider the normalized SPP matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.5 0.7 0.4

0.5 1 0.5 0.25

0.7 0.5 1 0.5

0.4 0.25 0.5 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since the 2, 4 cofactor of A(t) is c
(t)
24 = [(0.5)t − (0.35)t][(0.4)t − (0.35)t] which is positive for all

t > 0, we see that A is not EIM.

The following result was proved for positive matrices in [51]. Here, we extend it to the general

(nonnegative) case.

Theorem 8.5 Let A be an n-by-n SPP matrix. Then there exists T > 0 such that det A(t) > 0 for all t > T.

Proof. Without loss of generality, letAbe ann-by-nnormalized SPPmatrix and letmaxi �=jaij = M < 1.

Denote the set of permutations of N by Sn and the identity permutation by id. Then,
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det A(t) = ∑
τ∈Sn

sgn(τ )at1,τ (1)a
t
2,τ (2) . . . atn,τ (n)

= 1 + ∑
τ∈Sn
τ �=id

sgn(τ )at1,τ (1)a
t
2,τ (2) . . . atn,τ (n)

≥ 1 − ∑
τ∈Sn
τ �=id

at1,τ (1)a
t
2,τ (2) . . . atn,τ (n)

≥ 1 − (n! − 1)Mnt .

It is clear that there exists T > 0 such that for all t > T , 1− (n!−1)Mnt > 0, completing the proof. �

By applying theorem 8.5, we obtain [51].

Theorem 8.6 If A is an TSPP matrix, A is EIM.

Recall that TSPP matrices are necessarily positive. While the condition TSPP is sufficient for EIM,

positive EIM matrices are not necessarily TSPP (see example 4.11). Rather, the correct necessary and

sufficient condition, PSPP (see Section 4), was given in [51] for positivematrices. The general (nonneg-

ative) case follows by the same argument and we have

Theorem 8.7 Let A be a nonnegative n-by-n matrix. A is EIM if and only if A is PSPP.

It follows from theorem 4.13 and theorem 8.7 that

Theorem 8.8 If A is an IM matrix, then there exists T > 0 such that A(t) ∈ IM for all t > T.

Putting these ideas together we have the following complete result.

Theorem 8.9 For an n-by-n nonnegative matrix A, either

(i) there is no t > 0 such that A(t) is IM or

(ii) there is a critical value T > 0 such that A(t) is IM for all t > T and A(t) is not IM for all 0 ≤ t < T.

The situation for IMmatrices (which includes the symmetric ones) should be contrastedwith dou-

bly nonnegative (DN)matrices, i.e., thosematrices that are symmetric positive semi-definite and entry-

wise nonnegative. Note that a symmetric IMmatrix isDN. For the n-by-n DN matrices as a class, there

is a critical exponent T such that A ∈ DN implies A(t) ∈ DN for all t ≥ T and T is aminimumover allDN

matrices [30]. That critical exponent isn−2 [28,30]. All positive integerHadamardpowers ofDNmatri-

ces are DN (because the positive semi-definite matrices are closed under Hadamard product), but it is

possible fornon-integerpowers to leave theclass, until thepower increases ton−2. This, curiously, can-

not happen for (symmetric) IMmatrices, as the “critical exponent" for the entire IM class is simply 1.

As mentioned, a positive matrix (certainly) need not be SPP and SPP matrices need not be IM.

However, it is worth noting that addition of a multiple of the identity can “fix" both of these failures.

If A > 0 is n-by-n, it is shown in [50] that there is an α ≥ 0 such that αI + A is SPP; in addition, either

A is already SPP or a value β > 0 may be calculated such that αI + A is SPP for all α > β . Moreover, if

A ≥ 0 is n-by-n and SPP, then there is a minimal β ≥ 0 such that αI + A is IM for all α > β . In fact,

if A is normalized SPP, which may always be arranged (Section 4), then β ≤ n − 2. This means that

if we consider A ◦ B with both A and B IM, then either A ◦ B will be IM (if, for example, one of the

matrices is already of the form: a large multiple of I plus an IM) or may be made IM by the addition

of a positive diagonal matrix (that is not too big).

9. Perturbation of IM-matrices

How may a given IM matrix be altered so as to remain IM? And how may a non-IM matrix be

changed so as to become IM. As mentioned theorem 1.8, addition of a nonnegative diagonal matrix to
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an IM matrix results in an IM matrix. We add that some nonnegative matrices that are not IM may

be made IM via a nonnegative diagonal addition.

If A is the inverse of anM-matrix that has no zerominors, then each entry (column or row) of Amay

be changed, at least a little, so as to remain IM. By linearity of the determinant, the set of possibilities

for a particular entry (column or row) is an interval (convex set), which suggests the question of

determination of this interval (convex set).

We begin by discussing positive, rank 1 perturbation of a given IM matrix. There is a nice result,

found in [37].

Theorem 9.1 Let A be an IM matrix, let p and qT be arbitrary nonnegative vectors, and for t ≥ 0, define

x = Ap,

yT = qTA,

and

s = 1 + tqTAp.

We then have

(i) (A + txyT )−1 = A−1 − 1
s
pqT is an M-matrix;

(ii) (A + txyT )−1x = 1
s
p ≥ 0 and yT (A + txyT )−1 = 1

s
qT ≥ 0;

(iii) yT (A + txyT )−1x = 1
s
qTAp < 1

t
.

The perturbation result may be used to show very simply that so called strictly ultrametric (SU)

matrices [13] are IM (see Section 12).

Ifwe consider a particular columnof an IMmatrix, then the set of replacements of that column that

result in an IM matrix is a convex set. This convex set may be viewed as the intersection of n2 − n+ 2

half-spaces via theorem 1.2. Without loss of generality, we may assume the column is the last, so that,

partitioned by columns,

A(x) = [a1a2 · · · an−1x],
with a1, a2, . . . , an−1 ≥ 0. Then the half-spaces are given by the linear constraints

x ≥ 0,

(−1)i+j+1 det A(x)(i, j) ≥ 0, 1 ≤ i ≤ n, 1 ≤ j < n, i �= j,

and

det A(x) > 0.

A similar analysis may be given for a single off-diagonal entry. It may be taken to be the 1, n entry,

so that

A(x) =
⎡
⎣ a11 x

A21 A22

⎤
⎦

with x a scalar. Now the interval for x is determined by the inequalities

(−1)i+j+1 det A(x)(i, j) ≥ 0, 1 < i ≤ n, 1 ≤ j < n, i �= j,

and

det A(x) > 0.
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In [41] conditions are given on

A = [a1a2 · · · an−1]
such that there exist an x ≥ 0 so that

A(x) = [a1a2 · · · an−1x]
is IM. If A is re-partitioned as

A =
⎡
⎣ A11

a21

⎤
⎦

in which A11 is square, the conditions are the following subset of those in theorem 2.4:

(i) A11 is IM;

(ii) a21 ≥ 0;

(iii) a21A
−1
11 ≥ 0.

What about diagonal perturbation? By theorem 1.8, if D ∈ D, then A + D is IM whenever A is. So

what if A is not IM? If A is irreducible, we need to assume that A > 0. Is anything else necessary to

make A + D IM for some D ∈ D? Interestingly, the answer is no. An A > 0 may always be made PP

and SPP by a sufficiently large diagonal addition. In [50] it is shown that

Theorem 9.2 If A is an n-by-n normalized SPP matrix, then A + sI is IM for s ≥ n − 3.

Furthermore, the n− 3 is best possible. Thus, for any A > 0, there is diagonal matrix D such that A+ E

is IM for all diagonal E ≥ D.

Another perturbation question, posed by J. Garloff [25], is whether an “interval" defined by two IM

matrices is contained in the IM matrices. If A, B ∈ Rn×n, the interval from A to B, denoted by I(A,B)

is the set of matrices C = (cij) ∈ Rn×n satisfying min {aij, bij} ≤ cij ≤ max {aij, bij} for all i and j,

while the set of vertices (vertex matrices) derived from A and B, denoted V(A,B), is the set of matrices

C = (cij) ∈ Rn×n such that cij = aij or bij for all i and j. If C = (cij) in which cij = min{aij, bij}
(cij = max{aij, bij}), i, j = 1, . . . , n, then C is called the left endpoint matrix (right endpoint matrix).

Note that there are at most 2n
2

distinct vertex matrices. We were motivated by a question raised in

[24]: given two IMmatrices A and B, when is I(A, B) ⊆ IM? Thiswas answered fully in [49] as follows.

We note first that I(A, B) ⊆ IM does not hold in general.

Example 9.3 Consider the IM matrices

A =

⎡
⎢⎢⎢⎣
1 .4 .3

.6 1 .6

.4 .6 1

⎤
⎥⎥⎥⎦ ≤ B =

⎡
⎢⎢⎢⎣
1 .9 .6

.6 1 .6

.4 .6 1

⎤
⎥⎥⎥⎦ .

The matrix C =

⎡
⎢⎢⎢⎣
1 .6 .3

.6 1 .6

.4 .6 1

⎤
⎥⎥⎥⎦ satisfies A ≤ C ≤ B (entrywise), yet C is not an IM matrix since

(C−1)13 > 0.

A line in a matrix is a single row or column. In [49] it was proved
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Theorem 9.4 Suppose that A = (aij) and B = (bij) ∈ IM, and that aij = bij except perhaps for the

entries in one line. Then, for 0 ≤ t ≤ 1, tA + (1 − t)B ∈ IM.

An immediate consequence is

Theorem 9.5 Suppose that A = (aij) and B = (bij) ∈ IM, and that aij = bij for (i, j) �= (r, s), i.e., A and

B differ in at most the r, s entry. Then, tA + (1 − t)B ∈ IM for 0 ≤ t ≤ 1.

Theorem 9.4 does not necessarily hold if two matrices differ in more than a line.

Example 9.6 Consider the IM matrices

A =

⎡
⎢⎢⎢⎣
1 0 0

.6 1 .6

.4 .6 1

⎤
⎥⎥⎥⎦ ≤ B =

⎡
⎢⎢⎢⎣
1 .6 0

.6 1 0

.4 .6 1

⎤
⎥⎥⎥⎦ .

For 0 < t < 1,

tA + (1 − t)B =

⎡
⎢⎢⎢⎣
1 .6(1 − t) 0

.6 1 .6t

.4 .6 1

⎤
⎥⎥⎥⎦

cannot possibly be IM since it is irreducible, but contains a zero entry (see theorem 4.8).

The theorem [49] below characterizes those IM matrices A, B such that I(A, B) ⊆ IM.

Theorem 9.7 Let A, B ∈ R
n×n. Then I(A, B) ⊆ IM if and only if V(A, B) ⊆ IM.

10. Determinantal inequalities

Classical determinantal inequalities associated with the names of Hadamard, Fischer, Koteljanskii,

and Szasz have long been known for M-matrices. Because of Jacobi’s determinantal identity, it is an

easy exercise to show that it follows that these also hold for IM matrices. The most general of these,

associated with the name Koteljanskii, is

Theorem 10.1 If J, K are index sets contained in N and A ∈ IM is n-by-n, then

det A[J ∪ K] det A[J ∩ K] ≤ det A[J] det A[K].
Proof. As in the work of Koteljanskii, this may be proven using Sylvester’s determinantal inequality,

permutationsimilarity invarianceofIM andthe fact that symmetricallyplacedalmostprincipalminors

of A ∈ IM are weakly of the same sign. �

The inequalities of Hadamard, Fischer, and Szaszmay be deduced from theorem 10.1 and are stated

below.

Corollary 10.1.1 (Hadamard) If A ∈ IM, then det A ≤ ∏n
i=1 aii.

Corollary 10.1.2 (Fischer) If A ∈ IM and J ⊆ N, then det A ≤ det A[J] det A[Jc].
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Corollary 10.1.3 (Szasz) If A ∈ IM and 
k denotes the product of all the
(
n

k

)
principal minors of A of size

k-by-k, then


1 ≥ (
2)

1

(n−1
1 ) ≥ (
3)

1

(n−1
2 ) ≥ · · · ≥ 
n

in which
(
n

i

)
denotes the ith binomial coefficient, i = 0, 1, . . . , n.

Thereare inequalities amongproductsofprincipalminorsof anyA ∈ IM besides10.1and its chordal

generalizations. Recently, all such inequalities have been characterized [11]. In order to understand

this result, consider two collections α = {α1, . . . , αp} and β = {β1, . . . , βp} of index sets, αi, βj ⊆
N, i, j ∈ {1, . . . , p}. For any index set J ⊆ N and any collection α, define the two functions

fα(J) ≡ the number of sets αi such that J ⊆ αi

and

Fα(J) ≡ the number of sets αi such thatαi ⊆ J.

For the two collections α, β , the following two set-theoretic axioms are important:

fα({i}) = fβ({i}), i = 1, . . . , n (ST0)

and

Fα(J) ≥ Fβ(J), for all J ⊆ N. (ST2)

A third axiom (ST1) arises only in the characterization of determinantal inequalities forM-matrices.

The result for IM is then

Theorem 10.2 The following statements about two collections α, β of index sets are equivalent:

(i)
∏p

i=1 det A[αi]∏p
i=1 det A[βi] is bounded over all A ∈ IM;

(ii)
∏p

i=1 det A[αi] ≤ ∏p
i=1 det A[βi] for all A ∈ IM; and

(iii) the pair of collections α, β satisfy (ST0) and (ST2).

The proof is given in [11].

The above results leave only the question of whether there are inequalities involving some non-

principal minors in a matrix A ∈ IM. Because IM matrices are P-matrices, there are some obvious

inequalities, e.g.

det A[α + i, α + j] det A[α + j, α + i] ≤ det A[α + i] det A[α + j]
whenever i, j /∈ α. There is also a family of nontrivial inequalities involving almost principal minors

of IM matrices that extend those of theorem 3.6. These inequalities exhibit a form of monotonicity

already known for principal minors. Recall that if α ⊆ β ⊆ N, then

det A[β] ≤ det A[α]
⎛
⎝ ∏

k∈β−α

akk

⎞
⎠ for A ∈ IM.

This just follows from det A[β] ≤ det A[α] det A[β −α] and Hadamard’s inequality (both are special

cases of theorem 10.1). If A were normalized, the product of diagonal entries associated with β − α
would disappear and the above inequality could be paraphrased “biggerminors are smaller". The same

holds for our new inequalities which generalize those given in theorem 3.6.
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Theorem10.3 Letα ⊆ β ⊆ N andsuppose thatA = (aij) ∈ IM isn-by-n. Then, ifdet A[α+i, α+j] �= 0,

|A[β + i, β + j]|
|A[α + i, α + j]| ≤ A[β ∪ {i, j}]

A[α ∪ {i, j}] ≤ det A[β − α] ≤ ∏
i∈β−α

aii

whenever i �= j, i, j /∈ β . If det A[α+ i, α+ j] = 0, then det A[β+ i, β+ j] = 0, also, for i �= j, i, j /∈ β .

We note that other determinantal inequalities for IM matrices were given in [6].

11. Completion theory

A partial matrix is an array with some entries specified, and the other, unspecified, entries free to be

chosen. A completion of a partial matrix is the conventional matrix resulting from a particular choice

of values for the unspecified entries. Ref. [35] is a good reference on matrix completion problems.

One topic of interest is the completion of partial PP (SPP) matrices, i.e., nonnegative matrices such

that every specifiedpath satisfies the PP (SPP) conditions 4.1 [46].Wemake the assumption throughout

that all diagonal entries are 1’s since PP matrices are invariant under positive diagonal scaling.

The SPP matrix completion problem is fundamental in considering the (difficult) IM-matrix com-

pletion problem [44]. Here, a partial IM-matrix is a partial nonnegative matrix in which each fully

specified principal submatrix is IM and we wish to determine whether a given partial IM matrix can

be completed to IM. Since every IM matrix is SPP, for such a completion to exist it is necessary for

the partial IM matrix to be partial SPP and for any IM matrix completion to be SPP. Thus, the set of

SPP completions (if they exist) of a partial IM matrix is a place to start in the search for an IM matrix

completion and it represents a narrowing of the superset of possible completions. From [46] we have

Theorem 11.1 Every partial PP (SPP) matrix has a PP (SPP) matrix completion.

Partial IM-matrices are not necessarily partial PP as shown by the following example.

Example 11.2 Consider the partial IM matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
2

? 1
9

1
2

1 1
2

?

? 1
2

1 1
2

1
9

? 1
2

1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

A is not partial PP since a12a23a34 = 1
8

> 1
9

= a14 . Thus, A cannot be completed to a PP matrix and,

since every IM matrix is PP, no IM matrix completion exists.

In fact, even if a partial IM matrix is partial SPP, it may not have an IM matrix completion. For

instance, if in example 4.7, we let the (1, 4) and (4, 1) entries be unspecified, it can be shown [44] that

no IM matrix completion exists.

A chordal graph [26] is k-chordal if no twodistinctmaximal cliques intersect inmore than k vertices.

In [45] the symmetric IM (SIM) completion problem was studied and it was shown that, for partial

SIM matrices, 1-chordal graphs guarantee SIM completion.

Theorem 11.3 Let G be a 1-chordal graph on n vertices. Then every n-by-n partial SIM matrix A, the graph

of whose specified entries is G, has a SIM completion. Moreover, there is a unique SIM completion A1 of A

whose inverse entries are 0 in every unspecified position of A, and A1 is the unique determinant maximizing

SIM completion of A.
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However, this is not true for chordal graphs in general. Consider the partial SIM matrix (which has

a 3-chordal graph with two maximal cliques)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 9
40

1
5

2
5

x

9
40

1 3
10

1
2

3
8

noalign 1
5

3
10

1 1
5

3
4

2
5

1
2

1
5

1 1
4

x 3
8

3
4

1
4

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In [45], using equation 2.8 and the cofactor form of the inverse, it was shown that no value of x yields

a SIM completion.

Cycle conditions are derived that are necessary for the general IM completion problem. Further,

these conditions are shown to be necessary and sufficient for completability of a partial symmetric

IM matrix, the graph of whose specified entries is a cycle.

Theorem 11.4 Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 an

b1 1 a2 ?

a2 ·
· · ·

· · ·
? · · an−1

an an−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

be an n-by-n partial SIM matrix, n ≥ 4. Then A has a SIM completion if and only if the cycle conditions∏
j �=i

aj ≤ ai, i = 1, . . . , n

are satisfied.

A block graph is a graph built from cliques and (simple) cycles as follows: starting with a clique or

cycle, sequentially articulate the “next" clique or simple cycle at nomore than one vertex of the current

graph. A completability criterion for partial SIM matrices with block graphs is as follows.

Theorem 11.5 Let A be an n-by-n partial SIM matrix, the graph of whose specified entries is a block graph.

Then A has a SIM completion if and only if all minimal cycles in G satisfy the cycle conditions.

In addition, other graphs for which partial SIM matrices have SIM completions are discussed. SIM

matrices were also studies in [14].

12. Miscellaneous topics

12.1. Connections between IM, totally nonnegative, and Jacobi matrices

Let A ≥ 0. A is totally nonnegative (totally positive) if all minors of all orders of A are nonnegative

(positive); further, A is oscillatory if A is totally nonnegative and a power of A is totally positive [24].

In [59] a class of totally nonnegative matrices whose inverses are M-matrices are characterized as

follows.
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Theorem 12.1 Suppose A is a nonsingular, totally nonnegative matrix. Then A−1 is an M-matrix if and

only if det A(i, j) = 0 for i + j = 2k, in which k is a positive integer, and i �= j.

A special class of oscillatory matrices that are IM is also investigated.

A is a Jacobimatrix if aij = 0 for |i − j| > 1 and a Jacobi matrix of order n is a normal Jacobi matrix

if ai,i+1, ai+1,i < 0 for i = 1, 2, . . . , n − 1 [55]. In [55] the results in [59] are extended as follows.

Theorem 12.2 Let A be a matrix. Consider the following three conditions.

(i) A−1 is totally nonnegative.

(ii) A is an M-matrix.

(iii) A is a Jacobi matrix.

Then any two of the three conditions imply the third.

Theorem 12.3 Let A be a matrix. Consider the following three conditions.

(i) A−1 is oscillatory.

(ii) A is an M-matrix.

(iii) A is a normal Jacobi matrix.

Then any two of the three conditions imply the third.

Theorem 12.4 Let A be an M-matrix. Then A−1 is totally nonnegative if and only if A is a Jacobi matrix,

and A−1 is oscillatory if and only if A is a normal Jacobi matrix.

In [73] the class of totally nonnegative matrices that are IM are fully characterized as follows.

Theorem 12.5 Let A be a nonsingular totally nonnegative n-by-n matrix. Then the following properties

are equivalent.

(i) A−1 is an M-matrix.

(ii) det A(i, j) = 0 if |i − j| = 2 .

(iii) A−1 is a tridiagonal matrix.

(iv) For any k ∈ {1, 2, . . . , n − 1}, det A([i1, . . . , ik], [j1, . . . , jk]) = 0 if |i1 − jl| > 1 for some

l ∈ {1, . . . , k}.

We have the following characterization of IM matrices that are totally positive [73].

Theorem 12.6 Let A be a nonsingular n-by-n M-matrix. Then the following properties are equivalent.

(i) A−1 is a totally positive matrix.

(ii) A is a tridiagonal matrix.

12.2. Graph theoretic characterizations of IM matrices

In [58] graph theoretic characterizations of (0, 1)-matrices that are IM matrices were obtained.

A matrix A ∈ R
n×n is essentially triangular if for some permutation matrix P, P−1AP is a triangular

matrix. Let A be a n-by-n matrix and G(A) = (V(A) = N, E(A)) be its associated (adjacency) graph,

i.e., (i, j) ∈ E(A) if and only if aij �= 0where V(A) is its set of vertices and E(A) is its set of edges. A path

from vertex i to vertex j is called an (i,j)-path; a path of length k, k being the number of directed edges

in the path, is called an k-path; and a path of length k from i to j is called(i,j | k)-path. Let H denote
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the join of the (disjoint) graphs G1 and G2 in which G1 consists of a single vertex and G2 consists of a

2-path. (H is called a buckle.) Then

Theorem12.7 Anessentially triangular (0, 1)-matrix A isIM if andonly if the associated graph is a partial

order and, for every i, j, k, if an (i, j|k)-path in G(A) is a maximal (i, j)-path, then it is a unique k-path.

Theorem 12.8 A (0, 1)-matrix A is IM if and only if G(A) induces a partial order on its vertices that

contains no buckles as induced subgraphs.

A directed graph Gwith vertex set V(G) and edge set E(G) is transitive if (i, j), (j, k) ∈ E(G) implies

(i, k) ∈ E(G). For an n-by-n matrix A, we say A is transitive if G(A) is transitive. In [53] we have the

following result that relates the zero pattern of a transitive invertible matrix and that of its inverse.

Theorem 12.9 Suppose that A = (aij) is an n-by-n (0, 1) invertible transitive matrix with B = (bij) =
A−1. If i �= j and aij = 0, then bij = 0.

For a matrix B, let BIM denote the set

BIM = {α ∈ R : αI + B ∈ IM}.
BIM is a (possibly empty) ray on the real line, bounded from below and is nonempty if and only if B is

nonnegative and transitive. Then,

Theorem 12.10 Let B be an n-by-n nonnegative transitive matrix. Then the ray BIM is closed, i.e., BIM =
[α0, ∞), if and only if there exists β0 ∈ R such that

(i) B + β0I /∈ IM,

(ii) B + β0I is positive stable and so are its principal submatrices of order n − 1.

The authors express the infimum of BIM as a maximal root of a polynomial which depends on the

matrix B, differentiating between the cases in which BIM is open or closed. Lastly, they apply these

results to give a different proof of 12.6.

In [56] 12.8 was generalized as follows. Consider a nonnegative square matrix A = (aij) and its

associated adjacency graph G(A) = (V(A), E(A)). The weight of an edge (i, j) of G(A) is then aij . The

weight of a directed path is the product of theweights of its edges. Theweight of a set of paths is the sum

of the weights of its paths. For esssentially triangular IM matrices, the following result was proved.

Theorem 12.11 Let A be an essentially triangular nonnegative nonsingular matrix, and let A1 be its nor-

malized matrix. Then A1 ∈ IM if and only if G(A1) is a partial order and the weight of the collection of

even paths between any two vertices in G(A) does not exceed the weight of its collection of odd paths.

Let A be an n-by-nmatrix and let γ be a subgraph of G(A) and let A(γ ) denote the principal minor

of A defined by the set of vertices of G which are not in γ .

Let A be a square matrix and let p be a simple path in G(A). If W(p) is the weight of p, then the

generalized weight of p is defined by w(p) ≡ W(p)A(p).
A graph-theoretic characterization of general IM matrices was then given.

Theorem 12.12 A nonnegative square matrix A is IM if and only if

(i) For every two distinct vertices i and j in G(A), the sum of the even (i, j)-paths does not exceed that

of the odd (i, j)-paths.
(ii) All principal minors of A are positive.

A special class of inverse IM matrices was also characterized.
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12.3. Linear interpolation problems

The linear interpolation problem for a class of matrices C asks for which vectors x, y there exists

a matrix A ∈ C such that Ax = y. In [48] the linear interpolation problem is solved for several

important classes of matrices, one of which is M (and hence it is solved for IM also). In addition, a

transformational characterization is given forM-matrices that refines the known such characterization

for P-matrices.

12.4. Newton matrices

For an n-by-n real matrix A with eigenvalues λ1, λ2, . . . , λn let

Sk = ∑
i1<···<ik

λi1 · · · λik

and ck = 1

(nk)
Sk , with c0 = 1. Thematrix A is a Newton matrix [40] if c2k ≥ ck−1ck+1, k = 1, . . . , n− 1.

If each ck > 0, A is called p-Newton. Using the immanantal results of [39], it was observed in [27] that

M-matrices are p-Newton. Since p-Newton matrices are closed under inversion [40], it follows that

IM matrices are also p-Newton.

12.5. Perron complements of IM matrices

In [61,62] thenotionof Perron complementswas introduced. Specifically, for ann-by-nnonnegative

irreducible matrix A, β ⊂ N, and α = N − β , the Perron complement of A[β] in A is defined to be

P(A/A[β]) = A[α] + A[α, β](ρ(A)I − A[β])−1A[β, α].
Among other things, it was shown thatρ(P(A/A[β])) = ρ(A) and that if A is row stochastic, then so is

P(A/A[β]). These resultswere applied toobtain analgorithmfor computing the stationarydistribution

vector for a Markov chain.

In [52] the following question was investigated: when are Perron complements primitive or just

irreducible? Their answer settled some questions posed in [61,62].

In [67] it is established that if A is an irreducible IM matrix, then its Perron complements are also

IM. In fact,

Theorem12.13 Let A be an irreducible IMmatrix ,β ⊂ N, andα = N−β . Then, for any t ∈ [ρ(A), ∞),
the matrix

Pt(A/A[β]) = A[α] − A[α, β](tI − A[β])−1A[β, α]
is invertible and is an IM matrix. In particular, the Perron complement P(A/A[β]) (= P1(A/A[β])) is IM.

Also, for irreducible IM matrices whose inverses are tridiagonal, the following result was proved.

Theorem 12.14 Let A ∈ IM with A−1 irreducible and tridiagonal. Then, for any subsets β ⊂ N and

α = N − β , the Perron complement

P(A/A[β]) = A[α] + A[α, β](I − A[β])−1A[β, α]
is an IM matrix whose inverse is irreducible and tridiagonal and hence is (also) totally nonnegative, i.e.,

all minors are nonnegative.

Further, itwas shown that for ann-by-nIMmatrixA, the inverseof associatedprincipal submatrices

of A are sandwiched between the inverses of the Perron complements of A and the inverses of the

corresponding Schur complements of A. Lastly, directed graphs of inverses of Perron complements of

irreducible IM matrices were investigated.
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12.6. Products of IM matrices

Let A ∈ R
n×n. In [21] the following question is investigated: when is the matrix A a product of M-

matrices (IMmatrices)? Let
 denote the set of IMmatrices that are finite products of IMmatrices.

They prove that A ∈ 
 if and only if A = (L1U1)(L2U2) · · · (LkUk) in which Li (Ui) is a lower (upper)

triangular IM matrix, i = 1, . . . , n if and only if A is a product of elementary matrices that are IM.

LetR(A) = det A∏n
i=1 aii

and let
R denote the set of A ∈ IMwithR(A) = 1. A necessary and sufficient

combinatorial condition is given for a matrix to be in 
R. Toeplitz IM matrices are also studied.

More detailed analysis of products of IMmatrices and ofM-matrices, from a different perspective,

is found in [43] which followed in [42].

12.7. Topological closure of IM matrices

A matrix A belongs to the closure of the IM matrices if A is the limit of a convergent sequence of

IMmatrices. If so, we write A ∈ IM. The following theorem was proved in [16].

Theorem 12.15 Let A be a p-by-p IMmatrix, and let Q be a p-by-n nonnegative matrix with exactly one

nonzero entry in each column. Then

QTAQ + D

is an IM matrix for any n-by-n positive diagonal matrix D.

Several important facts about IM matrices follow as special cases.

The following characterization of IMwas obtained in [16].

Theorem 12.16 Suppose A is a nonnegative n-by-n matrix. Then the folowing statements are equivalent:

(i) A ∈ IM,

(ii) (A + D)−1 ≤ D−1 for each positive diagonal matrix D,

(iii) (A + D)−1 belongs to M for each positive diagonal matrix D,

(iv) (A + αI)−1 belongs to M for all α > 0,

(v) (A + D)−1A ≥ 0 for each positive diagonal matrix D,

(vi) (I + cA)−1 ≤ I for all c > 0, and

(vii) cA2(I + cA)−1 ≤ A for alll c > 0.

The theorem allows the authors to characterize nilpotent matrices on the boundary of IM.

Denote by Lrn the set of all nonnegative r-by-nmatrices, r ≤ n, which contain exactly one nonzero

entry in each column. If the dimensions are not specified, write simply L. In [19] a matrix A belonging

to IM was shown to have an explicit form. Specifically, they prove

Theorem 12.17 An n-by-n matrix A is in IM if and only if there exists a permutation matrix P, a diagonal

matrix Dwith positive diagonal entries, amatrix B ∈ IM, and amatrix Q ∈ Lwithout a zero row such that

D−1PAPTD =

⎡
⎢⎢⎢⎣
0 UBQ UBV + W

0 QTBQ QTBV

0 0 0

⎤
⎥⎥⎥⎦

for some nonnegative matrices U, V, and W.

In the partitioning, any one or two of the three block rows (and their corresponding block columns) can

be void.

The above theorem allows the characterization of singular matrices in IM.



980 C.R. Johnson, R.L. Smith / Linear Algebra and its Applications 435 (2011) 953–983

If A is a square matrix, the smallest integer k for which rank (Ak) = rank (Ak+1) is called the index of

A, denoted by index (A) = k. The Drazin inverse of A is the unique matrix AD such that

(i) Ak+1AD = Ak;

(ii) ADAAD = AD;

(iii) AAD = ADA.

In [20] the Drazin inverse of a matrix belonging to IM is determined and, for such a matrix A, the

arrangement of the nonzero entries of the powers A2, A3, . . . is shown to be invariant.

12.8. Tridiagonal, triangular, and reducible IM Matrices

In [31] IM matrices whose nonzero entries have particular patterns were studied. Firstly, tridiag-

onal IM matrices were characterized as follows.

Theorem 12.18 Let A be a nonnegative, nonsingular, tridiagonal n-by-n matrix. Then the following state-

ments are equivalent:

(i) A is an IM matrix.

(ii) All principal minors of A are positive, and A is the direct sum of matrices of the following types: (a)

diagonal matrices, (b) 2-by-2 positive matrices, or (c) matrices of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 a1 0 · · · · · · · 0

0 d2 0 0 ·
0 b1 d3 a2 0 ·
· 0 0 d4 0 0 ·
· 0 b2 d5 a3 0 ·
· 0 0 d6 0 · ·
· · · · · · ·
· · · · · · ·
· · · · · 0

· · · · at

0 · · · · · · · 0 bu ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where at = 0 and u = s−1
s

when s is odd, and bu = 0 and t = s
2
when s is even.

A nonempty subset K ofRn which is closed under addition and nonnegative scalarmultiplication is

calleda (convex) cone inR
n. If a coneK is also closed topologically, has anonempty interior, and satisfies

K ∩ (−K) = φ, then K is called a proper cone. If A is a real matrix, then the set K(A) = {Ax : x ≥ 0} is a
polyhedral cone, i.e., a set ofnonnegative linear combinationsof afinite set S of vectors inR

n. Using these

notions, the following geometric characterization of upper triangular IM matrices was given [31].

Theorem 12.19 Let A be a nonnegative upper triangular n-by-n matrix with 1’s along the diagonal. Then

the following statements are equivalent.

(i) A is an IM matrix.

(ii) Aek − ek ∈ K(Ae1, Ae2, . . . , Aek−1) for k = 2, . . . , n.
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Also, for certain types of reducible matrices, both necessary conditions and sufficient conditions

for the reducible matrix to be IM are provided.

12.9. Ultrametric matrices

A = (aij) is a strictly ultrametricmatrix [63] if A is real symmetric and (entrywise) nonnegative and

satisfies

(i) aik ≥ min(aij, ajk) for all i, j, k; and
(ii) aii > maxk �=i aik for all i.

In [63] it was shown that if A = (aij) is strictly ultrametric, then A is nonsingular and A−1 = (αij)
is a strictly diagonally dominant Stieltjes matrix satisfying αij = 0 if and only if aij = 0. The proof

utilized tools from topology and real analysis. Then, a simpler proof that relied on tools from linear

algebra was given in [68]. Such statements, and some following, also follow easily from Theorem 9.1,

giving a yet simpler proof.

In [13] newcharacterizations ofmatriceswhose inverse is aweakly diagonally dominant symmetric

M-matrix are obtained. The result in [63] is shown to follow as a corollary. In [13] connections between

ultrametric matrices and Euclidean point spaces are explored. See also [12].

There has been a great deal of work devoted to generalizations of ultrametric matrices. In [69,64],

nonsymmetric ultrametric (called generalized ultrametric) matrices were independently defined and

characterized. Necessary and sufficient conditions are given for regularity and, in the case of regularity,

the inverse is shown to be a row and column diagonally dominant M-matrix. In [65] nonnegative

matrices whose inverses are M-matrices with unipathic graphs (a digraph is unipathic if there is at

most one simple path from any vertex i to any vertex k) are characterized. A symmetric ultrametric

matrix A is special [15] if, for all i,

aii = max
k �=i

aik.

In [15] graphical characterizations of special ultrametricmatrices are obtained. In [66], by using dyadic

trees, a new class of nonnegative matrices is introduced and it is shown that their inverses are column

diagonally dominant M-matrices.

In [75] a polynomial time spectral decomposition algorithm to determine whether a specified, real

symmetric matrix is a member of several closely related classes is obtained. One of these classes is the

class of strictly ultrametric matrices.

In [76] it is shown that a classical inequality due to Hardy can be interpreted in terms of symmetric

ultrametric matrices and then a generalization of this inequality can be derived for a particular case.

Remark. Other papers that investigate IM matrices are [2,3,10,54,72].
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