Semi-online scheduling with known partial information about job sizes on two identical machines

Qian Caoa, Zhaohui Liub, T.C.E. Chengc,*

a Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China
b Department of Mathematics, East China University of Science and Technology, Shanghai, China
c Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

\textbf{A B S T R A C T}

In this paper we consider the semi-online scheduling problem with known partial information about job sizes on two identical machines, where all the jobs have processing times in the interval \([p, tp]\) (\(p > 0, t \geq 1\)) and the maximum job size \(p_{\text{max}}\) is \(tp\). The objective is to minimize the makespan. For \(1 \leq t < \frac{4}{3}\) and \(t \geq 2\), we obtain lower bounds \(\frac{t}{2} + \frac{1}{2}\) and \(\frac{4}{3}t\), respectively, which match the upper bounds given by He and Zhang (1999) in [2]. For \(\frac{4}{3} \leq t < 2\), we prove that a lower bound on the optimal solution is \(\max\{\frac{4t+4}{3t+4}, \frac{2t}{t+1}\}\) and design an algorithm with a competitive ratio equal to this lower bound.

\textcopyright 2011 Elsevier B.V. All rights reserved.

\textbf{1. Introduction}

In the classical online scheduling problem, it is assumed that jobs arrive one by one and the current job must be scheduled irrevocably before the next job emerges. In contrast, in the offline version, we have full information about the jobs before they arrive. However, practical scheduling problems are between these two extreme cases. Such problems are known as the semi-online scheduling problem, where partial information about future jobs is available.

In this paper we consider the semi-online scheduling problem with known partial information about job sizes, i.e., we know in advance that all the jobs have sizes in the interval \([p, tp]\) (\(p > 0, t \geq 1\)) and the maximum job size \(p_{\text{max}}\) is \(tp\). In fact, this problem is a combination of the semi-online scheduling problems with bounded job sizes and with known maximum job size. For the problem under study, a list \(L = (j_1, j_2, \ldots, j_n)\) of \(n\) jobs that are to be assigned to two identical machines \(M_1\) and \(M_2\) is given. Each job \(j_i\) is associated with a size \(p_i\). For notational convenience, we also use \(p_i\) to represent job \(j_i\). Our goal is to construct a schedule that minimizes the makespan, \(C_{\text{max}}\), i.e., the maximum of the job completion times on \(M_1\) and \(M_2\). Without loss of generality, we suppose that \(p = 1\) and denote the problem by \(P2|1 \leq p_j \leq p_{\text{max}} = t|C_{\text{max}}\).

As for the online version, we measure the performance of a semi-online algorithm \(\mathcal{H}\) by its competitive ratio with respect to an optimal offline algorithm. Let \(C_{\text{max}}^\text{opt}\) denote the makespan of the schedule produced by a semi-online algorithm and \(C_{\text{max}}\) denote the optimal makespan of an offline schedule. Then the competitive ratio of algorithm \(\mathcal{H}\) is defined as

\[r_\mathcal{H} = \inf\{r \geq 1 | C_{\text{max}}^\text{opt} \leq rC_{\text{max}}\}. \]

We call \(c\) a lower bound on the optimal solution for the problem if there is no semi-online algorithm with a competitive ratio less than \(c\). Accordingly, algorithm \(\mathcal{H}\) is called optimal if its competitive ratio is equal to some lower bound.

* Corresponding author. Tel.: +852 2766 5216; fax: +852 2364 5245.
E-mail addresses: caoqiansh@gmail.com (Q. Cao), zhliu@ecust.edu.cn (Z. Liu), lgtcheng@polyu.edu.hk (T.C.E. Cheng).

0304-3975/$ – see front matter \textcopyright 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.03.032
To treat the online version of the scheduling problem under study, we can use a simple algorithm— the list scheduling (LS) algorithm—that assigns the current job to the machine with a smaller current workload. Graham [3] first considers using the list scheduling algorithm to solve scheduling problems. Faigle et al. [4] prove that the LS algorithm has a competitive ratio \(\frac{2}{3} \), and is optimal. This provides an upper bound for the semi-online scheduling problem on two identical machines. Furthermore, He and Zhang [2] study two semi-online scheduling problems on two identical machines. The first one is a semi-online problem with bounded job sizes, in which all the jobs have processing times between \(p \) and \(tp \) (\(p > 0, t \geq 1 \)), but it is possible that no jobs with sizes between \(p \) and \(tp \) come up. They show that the LS algorithm has a competitive ratio \(\min\left\{ \frac{t+1}{2}, \frac{1}{2} \right\} \), which provides an upper bound for our problem. The second one is a semi-online problem with known maximum job size, where the maximum size of all the jobs \(p_{\max} \) is known in advance. They propose an optimal algorithm \(PLS \) with a competitive ratio \(\frac{2}{3} \), which provides another upper bound for our problem.

Researchers have studied different cases of the semi-online scheduling problem with partial information about job sizes on two identical machines to minimize the makespan. Kellner et al. [7] consider the case where the total size of all the jobs is known in advance. They design an optimal algorithm with a competitive ratio \(\frac{4}{3} \). Seiden et al. [8] study the case where the jobs arrive in decreasing order of sizes. They prove that the LS algorithm is optimal and has a competitive ratio \(\frac{7}{8} \). Tan and He [1] consider the case where the maximum job size is between \(p \) and \(tp \) (\(p > 0, t \geq 1 \)). They present an algorithm with a competitive ratio \(\frac{4t+2}{3t+2} \) for \(1 \leq t \leq 2 \). Tan et al. [5] consider two cases of combined semi-online scheduling problems on two identical machines. One case is where the total size of all the jobs is known in advance and the jobs arrive in decreasing order of sizes. The other case is where both the total size of all the jobs and the maximum job size are known in advance. They give optimal algorithms for the two cases with competitive ratios \(\frac{10}{9} \) and \(\frac{6}{5} \), respectively. Epstein [6] considers the case with combined information, where the optimal solution value is known and the jobs arrive in decreasing order of sizes, and provides an optimal algorithm with a competitive ratio \(\frac{10}{9} \).

This paper is organized as follows: In Section 2 we obtain the following lower bounds on the optimal solution of the problem under study

\[
\begin{align*}
&\begin{cases}
\frac{t+1}{2}, & 1 \leq t < \frac{4}{3} \\
\frac{4t+4}{3t+4}, & \frac{4}{3} \leq t < \sqrt{2} \\
\frac{2t}{t+1}, & \sqrt{2} \leq t < 2 \\
\frac{4}{3}, & t \geq 2
\end{cases}
\end{align*}
\]

For \(1 \leq t < \frac{4}{3} \) and \(t \geq 2 \), the respective lower bounds \(\frac{t+1}{2} \) and \(\frac{4}{3} \) match the upper bounds given in [2]. In Section 3, for \(1 \leq t \leq 2 \), we design an algorithm \(PL^2S \) with a competitive ratio \(\max\left\{ \frac{4t+4}{3t+4}, \frac{2t}{t+1} \right\} \), which is optimal for \(\frac{4}{3} \leq t \leq 2 \).

2. Lower bounds

Theorem 1. For the problem \(P2|1 \leq p_j \leq p_{\max} = t|C_{\max} \), the competitive ratio of an arbitrary semi-online algorithm is not less than

\[
\min\left\{ \frac{2t}{t+1} \cdot \frac{4}{3} \right\} = \begin{cases}
\frac{4}{3}, & 1 \leq t < 2 \\
\frac{2t}{t+1}, & t \geq 2.
\end{cases}
\]

Proof. Case 1. \(1 \leq t < 2 \).

Let \(p_1 = t \) and \(p_2 = 1 \). If both \(p_1 \) and \(p_2 \) are assigned to the same machine, we have \(C_{\max} = t + 1 \) and \(C_{\max}^{*} = t \). Therefore

\[
\frac{C_{\max}}{C_{\max}^{*}} = \frac{t + 1}{t} \geq \frac{2t}{t + 1},
\]

where the last inequality holds for \(t < 2 < 1 + \sqrt{2} \). Next we only need to consider the case where \(p_1 \) and \(p_2 \) are assigned to different machines. Without loss of generality, assume that \(p_1 \) is assigned to \(M_1 \) and \(p_2 \) is assigned to \(M_2 \). A new job \(p_3 = 1 \) arrives. If \(p_3 \) is assigned to \(M_1 \), then no other jobs arrive. Since \(C_{\max} = t + 1 \) and \(C_{\max}^{*} = 2 \), we have

\[
\frac{C_{\max}}{C_{\max}^{*}} = \frac{t + 1}{2} \geq \frac{2t}{t + 1}.
\]
where the last inequality holds for $t \geq 1$. If p_3 is assigned to M_2, then the last job $p_4 = t$ arrives. Then $C_{\text{max}} \geq \min\{2t, t+2\} = 2t$ and $C_{\text{max}}^* = t + 1$. Therefore

$$\frac{C_{\text{max}}}{C_{\text{max}}^*} \geq \frac{2t}{t + 1}.$$

Case 2. $t \geq 2$.

Let $p_1 = t$ and $p_2 = \frac{t}{2} \geq 1$. If both p_1 and p_2 are assigned to the same machine, we have $C_{\text{max}} = t + \frac{t}{2} = \frac{3t}{2}$ and $C_{\text{max}}^* = t$. Therefore,

$$\frac{C_{\text{max}}}{C_{\text{max}}^*} = \frac{3}{2} > \frac{3}{t}.$$

As in the proof of Case 1, we assume that p_1 is assigned to M_1 and p_2 is assigned to M_2. A new job $p_3 = \frac{t}{2}$ arrives. If p_3 is assigned to M_1, then no other jobs arrive. Since $C_{\text{max}} = \frac{3t}{2}$ and $C_{\text{max}}^* = t$, it holds that

$$\frac{C_{\text{max}}}{C_{\text{max}}^*} = \frac{3}{2} > \frac{3}{t}.$$

If p_3 is assigned to M_2, the last job $p_4 = t$ arrives. Then $C_{\text{max}} = 2t$ and $C_{\text{max}}^* = t + \frac{t}{2} = \frac{3t}{2}$. Therefore

$$\frac{C_{\text{max}}}{C_{\text{max}}^*} \geq \frac{4}{3}. \quad \Box$$

Theorem 2. For the problem $P2|1 \leq p_j \leq \max|C_{\text{max}}|$, the competitive ratio of an arbitrary semi-online algorithm is not less than $\frac{1 + \sqrt{7}}{2}$ for $1 \leq t \leq \frac{4}{3}$.

Proof. Let $p_1 = p_2 = t$. If both p_1 and p_2 are assigned to the same machine, we have $C_{\text{max}} = 2t$ and $C_{\text{max}}^* = t$. Therefore

$$\frac{C_{\text{max}}}{C_{\text{max}}^*} = \frac{2t}{t} = \frac{t + 1}{2}.$$

Next we only need to consider the case where p_1 and p_2 are assigned to different machines.

Four new jobs $p_3 = p_4 = p_5 = p_6 = 1$ arrive. If at least three of the jobs in $\{p_3, p_4, p_5, p_6\}$ are assigned to the same machine, we have $C_{\text{max}} \geq t + 3$ and $C_{\text{max}}^* = t + 2$. Therefore,

$$\frac{C_{\text{max}}}{C_{\text{max}}^*} \geq \frac{t + 3}{t + 2} \geq \frac{t + 1}{2},$$

where the last inequality holds for $t \leq \frac{4}{3} < \frac{1 + \sqrt{7}}{2}$. Otherwise, the last job $p_7 = t$ arrives. Since $C_{\text{max}} = 2t + 2$ and

$$C_{\text{max}}^* \leq \max\{4, 3t\} = 4,$$

it holds that

$$\frac{C_{\text{max}}}{C_{\text{max}}^*} \geq \frac{t + 1}{2}. \quad \Box$$

Theorem 3. For the problem $P2|1 \leq p_j \leq \max|C_{\text{max}}|$, the competitive ratio of an arbitrary semi-online algorithm is not less than $\frac{4t + 4}{3t + 4}$ for $\frac{t}{4} \leq t \leq \sqrt{2}$.

Proof. Let $p_1 = t$ and $p_2 = 1$. If both p_1 and p_2 are assigned to the same machine, we have $C_{\text{max}} = t + 1$ and $C_{\text{max}}^* = t$. Therefore,

$$\frac{C_{\text{max}}}{C_{\text{max}}^*} = \frac{t + 1}{t} \geq \frac{4t + 4}{3t + 4},$$

where the last inequality holds for $t \leq \sqrt{2} < 4$. Without loss of generality, we assume that p_1 is assigned to M_1 and p_2 is assigned to M_2 in the following.

A new job $p_3 = \frac{5t}{2} - 1$ arrives. Note that $1 \leq p_3 \leq t$ for $\frac{4}{3} \leq t \leq 2$. If p_3 is assigned to M_1, then no other jobs arrive. Since $C_{\text{max}} \geq p_1 + p_3 = \frac{5t}{2} - 1$ and $C_{\text{max}}^* \leq \max\{p_1, p_2 + p_3\} = \frac{3t}{2}$, we have

$$\frac{C_{\text{max}}}{C_{\text{max}}^*} \geq \frac{5t - 2}{3} \geq \frac{4t + 4}{3t + 4},$$

where the last inequality holds for $t \geq \frac{4}{3}$.
If p_3 is assigned to M_2, then a job $p_4 = 1$ arrives. If p_4 is assigned to M_2, then no other jobs arrive. Hence $C_{\text{max}} \geq p_2 + p_3 + p_4 = \frac{3t}{2} + 1$, but
\[
C_{\ast} \leq \max\{p_1 + p_4, p_2 + p_3\} = \max\left\{ t + 1, \frac{3t}{2}\right\} = t + 1,
\]
where the last inequality holds for $t \leq \sqrt{2} < 2$. Therefore
\[
\frac{C_{\text{max}}}{C_{\ast}} \geq \frac{3t + 2}{2t + 2} \geq \frac{4t + 4}{3t + 4},
\]
where the last inequality holds for an arbitrary t.

If p_4 is assigned to M_1, then a job $p_5 = 2 - \frac{t}{2}$ arrives. Note that $1 \leq p_5 \leq t$ for $\frac{t}{4} \leq t \leq 2$. If p_5 is assigned to M_1, then no other jobs arrive. Hence $C_{\text{max}} \geq p_1 + p_4 + p_5 = \frac{t}{2} + 3$, but
\[
C_{\ast} \leq \max\{p_1 + p_5, p_2 + p_3 + p_4\} = \max\left\{ \frac{t}{2} + 2, \frac{3t}{2} + 1\right\} = \frac{3t}{2} + 1.
\]
Therefore,
\[
\frac{C_{\text{max}}}{C_{\ast}} \geq \frac{t + 6}{3t + 2} \geq \frac{4t + 4}{3t + 4},
\]
where the last inequality holds for $t \leq \sqrt{2} < \frac{1 + \sqrt{105}}{9} \simeq 1.449$.

If p_5 is assigned to M_2, then a job $p_6 = 1$ arrives. If p_6 is assigned to M_2, then no other jobs arrive. Since $C_{\text{max}} \geq p_2 + p_3 + p_5 + p_6 = t + 3$ and
\[
C_{\ast} \leq \max\{p_1 + p_4 + p_6, p_2 + p_3 + p_5\} = p_1 + p_4 + p_6 = p_2 + p_3 + p_5 = t + 2,
\]
it holds that
\[
\frac{C_{\text{max}}}{C_{\ast}} \geq \frac{t + 3}{t + 2} \geq \frac{4t + 4}{3t + 4},
\]
where the last inequality holds for $t \leq \sqrt{2} < \frac{1 + \sqrt{107}}{2} \simeq 2.562$.

If p_6 is assigned to M_1, then the last job $p_7 = t$ arrives. No matter how we assign job p_7, it holds that
\[
C_{\text{max}} = p_2 + p_3 + p_5 + p_7 = p_1 + p_4 + p_6 + p_7 = 2t + 2
\]
and
\[
C_{\ast} = p_2 + p_3 + p_4 + p_6 = p_1 + p_5 + p_7 = \frac{3t}{2} + 2.
\]
Therefore,
\[
\frac{C_{\text{max}}}{C_{\ast}} \geq \frac{2t + 2}{\frac{3t}{2} + 2} = \frac{4t + 4}{3t + 4},
\]
\[
\Box
\]

In summary, we obtain the following lower bounds
\[
\begin{cases}
\frac{t + 1}{2}, & 1 \leq t < \frac{4}{3} \\
\frac{4t + 4}{3t + 4}, & \frac{4}{3} \leq t < \sqrt{2} \\
\frac{2t}{t + 1}, & \sqrt{2} \leq t < 2 \\
\frac{4}{3}, & t \geq 2
\end{cases}
\]

by Theorems 1–3. As mentioned in Section 1, He and Zhang [2] give an upper bound $\min\{\frac{t+1}{t}, \frac{4}{3}\}$ for our problem, so we only need to use the LS algorithm with a competitive ratio $\frac{t + 1}{t}$ for $1 \leq t \leq \frac{4}{3}$ to match our lower bound in Theorem 2 and the PLS algorithm with a competitive ratio $\frac{4}{3}$ for $t \geq 2$ to match our lower bound in Theorem 1. In the next section we solve the case where $\frac{4}{3} \leq t \leq 2$, which completes the analysis of the problem.
3. Algorithm

In this section, for $1 \leq t \leq 2$, we design an algorithm PIJS with a competitive ratio $r_{\text{PIJS}} = \max(4t^2 + 4, \frac{2t}{t+1})$, which is optimal for $\frac{4}{3} \leq t \leq 2$ by Theorems 1 and 3. For the problem $P2\mid p_j \leq p_{\max} = t\mid C_{\max}$, we know that a job of size $p_{\max} = t$ will arrive, so it is possible to schedule such a job in advance. Applying this idea, we schedule a job of size p_{\max} in advance on M_2 and the remaining jobs on M_1 unless the workload of M_1 exceeds $r_{\text{PIJS}} C_{\max}$. Since C_{\max}^* is unknown, we replace it by its lower bound. Next we introduce some notation. We denote the workload of M_i ($i = 1, 2$) before the assignment of $p_j (j = 1, 2, \ldots, n)$ by M^i_j. Let $q_{i, j}^{(i)}$ be the ith smallest job when p_j appears, i.e., $\{q_{1, j}^{(i)}, q_{2, j}^{(i)}, \ldots, q_{n, j}^{(i)}\} = \{p_1, p_2, \ldots, p_j\}$, where $q_{i, j}^{(i)} \leq q_{(i+1), j}^{(i)} \leq \cdots \leq q_{n, j}^{(i)}$ and $j = 1, 2, \ldots, n$. Because there are at least $\lceil \frac{n}{2} \rceil$ jobs that are assigned to one of the two machines by an optimal offline algorithm, we have $C_{\max}^* \geq q_{1, j}^{(i)} + q_{2, j}^{(i)} + \cdots + q_{\lceil \frac{n}{2} \rceil, j}^{(i)}$. We also use M_i to denote the final workload of machine M_i, so $C_{\max}^* \geq \frac{M_1 + M_2}{2}$. Let $C_{\max}^*(j)$ be the optimal makespan of an offline schedule for p_1, p_2, \ldots, p_j. Therefore, if p_j appears before the first p_{\max}, we have

$$C_{\max}^*(j) \geq \max \left\{ q_{1, j}^{(i)} + q_{2, j}^{(i)} + \cdots + q_{\lceil \frac{n}{2} \rceil, j}^{(i)}, \frac{M^1_j + M^2_j + p_j + p_{\max}}{2} \right\} ;$$

otherwise

$$C_{\max}^*(j) \geq \max \left\{ q_{1, j}^{(i)} + q_{2, j}^{(i)} + \cdots + q_{\lceil \frac{n}{2} \rceil, j}^{(i)}, \frac{M^1_j + M^2_j + p_j}{2} \right\} .$$

Algorithm PIJS

Step 1. Schedule the current job p_j using the following rule:

- if $M^1_j + p_j \leq r_{\text{PIJS}} \cdot \max \left\{ q_{1, j}^{(i)} + q_{2, j}^{(i)} + \cdots + q_{\lceil \frac{n}{2} \rceil, j}^{(i)}, \frac{M^1_j + M^2_j + p_j + p_{\max}}{2} \right\}$
 - then $p_j \rightarrow M_1$
 - else $p_j \rightarrow M_2$.

until the first p_{\max} emerges.

Step 2. Schedule the first p_{\max} on M_2.

Step 3. Schedule the remaining jobs using the following rule:

- if $M^1_j + p_j \leq r_{\text{PIJS}} \cdot \max \left\{ q_{1, j}^{(i)} + q_{2, j}^{(i)} + \cdots + q_{\lceil \frac{n}{2} \rceil, j}^{(i)}, \frac{M^1_j + M^2_j + p_j}{2} \right\}$
 - then $p_j \rightarrow M_1$
 - else $p_j \rightarrow M_2$.

Note that $r_{\text{PIJS}} = r = \max\{\frac{4t^2 + 4}{3t + 1}, \frac{2t}{t+1}\}$ in algorithm PIJS. In fact, we can assume that p_1 is the first largest job p_{\max}. Otherwise, let $p_m (m = 2, 3, \ldots, n)$ be the first largest job p_{\max}. We obtain a new job list $L' = (p_m, p_1, \ldots, p_{m-1}, p_{m+1}, \ldots, p_n)$ by transposing job p_m to the first position while leaving all the other jobs in their original positions. Under the new job list L', the assignment of each job to a machine is not changed by algorithm PIJS.

Since $C_{\max}^* \geq p_{\max}$, algorithm PIJS is optimal for $n = 1$ and $n = 2$. (For $n = 2$, the first largest job $p_1 = p_{\max}$ is assigned to M_2 and the other job p_2 is assigned to M_1 by algorithm PIJS.) Next we only need to consider the case where $n \geq 3$. Without loss of generality, we suppose that p_1 is determined by p_n, i.e., p_n is the last finished job.

Lemma 1. If p_n is assigned to M_1, then $\frac{C_{\text{PIJS}}}{C_{\max}^*} \leq t$.

Proof. Since p_n is not the first largest job p_{\max} and it is assigned by Step 3 of algorithm PIJS, we have

$$C_{\text{PIJS}} = M_1 = \frac{M_1 + p_n}{2} \leq \max \left\{ q_{1, n}^{(n)} + q_{2, n}^{(n)} + \cdots + q_{\lceil \frac{n}{2} \rceil, n}^{(n)}, \frac{M_1 + M_2}{2} \right\} \leq r C_{\max}^*. \Box$$

Lemma 2. If p_n is assigned to M_2 and at least $\lceil \frac{n}{2} \rceil$ jobs are assigned to M_1, then $\frac{C_{\text{PIJS}}}{C_{\max}^*} \leq t$.

Proof. Since $1 \leq p_j \leq t$ for $1 \leq j \leq n$, it holds that

$$\frac{M_1}{M_2} \geq \frac{\lceil \frac{n}{2} \rceil}{(n - \lceil \frac{n}{2} \rceil) t} \geq \frac{1}{t}. \Box$$

Therefore,

$$\frac{C_{\text{PIJS}}}{C_{\max}^*} \leq \frac{M_2}{M_1 + M_2} = \frac{2}{\frac{M_1}{M_2} + 1} \leq \frac{2}{\frac{1}{t} + 1} = \frac{2t}{t + 1} \leq r. \Box$$
Corollary 1. For $n = 3$, if p_n is assigned to M_2, then $\frac{C_{\text{PIJS}}}{C_{\text{max}}} \leq r$.

Proof. It is clear that job $p_1 = p_{\text{max}}$ is assigned to M_2. Since $p_2 \leq \frac{p_1 + p_2}{2} \leq r$, $p_1 + p_2$ and $p_2 + p_3 = q_1(5) + q_2(5) \leq r \cdot (q_1(3) + q_2(3))$, algorithm PIJS assigns both jobs p_2 and p_3 to M_1. So the conclusion holds by Lemma 2. □

Lemma 3. If p_n is assigned to M_2 and at most $\lceil \frac{n}{2} \rceil - 1$ jobs are assigned to M_1, then $\frac{C_{\text{PIJS}}}{C_{\text{max}}} \leq r$ for $1 \leq t \leq 2$.

Proof. It is clear that at least $n - (\lceil \frac{n}{2} \rceil - 1) = n + 1 - \lceil \frac{n}{2} \rceil$ jobs are assigned to M_2. We perform a case-by-case analysis in the following.

Case 1. $n = 4$.

We know that at least three jobs are assigned to M_2 and at most one job is assigned to M_1. Note that p_n is not the first largest job p_{max}, so it holds that $M_1^n + p_n \leq M_1 + p_n \leq 2t \leq t(p_{\text{max}} + 1) \leq tM_2^n$. Thus

$$M_1^n + p_n \leq \frac{2t}{t+1} \cdot \frac{M_1^n + M_2^n + p_n}{2} \leq r \cdot \frac{M_1^n + M_2^n + p_n}{2}$$

and p_n is assigned to M_1 by algorithm PIJS, a contradiction.

Case 2. $n = 5$.

Note that $C_{\text{max}} \geq q_1(5) + q_2(5) + q_3(5)$. If at most one job is assigned to M_1 by algorithm PIJS, then $M_1 + p_n \leq 2t \leq \frac{6r}{t+1} \leq \frac{2}{t+1}(q_1(5) + q_2(5) + q_3(5)) \leq r(q_1(5) + q_2(5) + q_3(5))$. So p_n is assigned to M_1 by algorithm PIJS, a contradiction. We only need to consider the case where two jobs are assigned to M_1 and three jobs are assigned to M_2 by algorithm PIJS. If there are at least two common jobs between the jobs assigned to M_2 and $(q_1(5), q_2(5), q_3(5))$, then

$$\frac{C_{\text{PIJS}}}{C_{\text{max}}} \leq \frac{M_2}{q_1(5) + q_2(5) + q_3(5)} \leq 1 + \frac{t - 1}{3} = \frac{t + 2}{3} \leq \frac{2t}{t+1} \leq r,$$

where the second last inequality holds for $1 \leq t \leq 2$. Otherwise,

$$\frac{M_1 + p_n}{q_1(5) + q_2(5) + q_3(5)} \leq 1 + \frac{t - 1}{3} = \frac{t + 2}{3} \leq \frac{2t}{t+1} \leq r.$$

So p_n is assigned to M_1 by algorithm PIJS, a contradiction.

Case 3. $n = 6$.

We know that at least four jobs are assigned to M_2 and at most two jobs are assigned to M_1. Note that p_n is not the first largest job p_{max}, so it holds that $M_1^n + p_n \leq M_1 + p_n \leq 3t \leq t(p_{\text{max}} + 2) \leq tM_2^n$. Thus

$$M_1^n + p_n \leq \frac{2t}{t+1} \cdot \frac{M_1^n + M_2^n + p_n}{2} \leq r \cdot \frac{M_1^n + M_2^n + p_n}{2}$$

and p_n is assigned to M_1 by algorithm PIJS, a contradiction.

Case 4. $n \geq 7$.

Note that there must be at least four jobs assigned to M_2. Since p_n is not the first largest job p_{max} and it is assigned by Step 3 of algorithm PIJS, we have

$$M_1^n + p_n > r \cdot \frac{M_1^n + M_2^n + p_n}{2}.$$

Then $M_1 + p_n \geq M_1^n + p_n > \frac{r}{2-r} \cdot M_2^n = \frac{r}{2-r}(M_2 - p_n)$. Hence

$$\frac{M_1}{M_2} \geq \frac{r}{2-r} - \left(\frac{r}{2-r} + 1 \right) \frac{p_n}{M_2} \geq \frac{r}{2-r} - \left(\frac{r}{2-r} + 1 \right) \frac{p_n}{t+2 + p_n} \geq \frac{r}{2-r} - \left(\frac{r}{2-r} + 1 \right) \frac{t}{2t + 2}.$$

Therefore, we have

$$\frac{C_{\text{PIJS}}}{C_{\text{max}}} \leq \frac{M_2}{M_1 + M_2} \leq \frac{2}{M_2 + 1} \leq \frac{2}{r + (\frac{r}{2-r} + 1) \frac{t}{2t + 2} + 1} = \frac{2}{1 - \frac{t}{2t + 2} + 1} \geq \frac{2}{\frac{t}{2t + 2} \cdot \frac{2}{2-r}} = \frac{2(t + 1)(2 - r)}{t + 2} \leq r,$$

where the last inequality holds for $r \geq \frac{4t + 4}{3t + 4}$. □
Theorem 4. For $1 \leq t \leq 2$, we have

$$\frac{C_{\text{PIJS}}}{C_{\text{max}}} \leq r = \max \left\{ \frac{4t + 4}{3t + 4}, \frac{2t}{t + 1} \right\} = \begin{cases} \frac{4t + 4}{3t + 4}, & 1 \leq t < \sqrt{2} \\ \frac{2t}{t + 1}, & \sqrt{2} \leq t \leq 2. \end{cases}$$

Proof. See Lemmas 1–3. □

Acknowledgements

We are grateful to an anonymous referee for his/her thoughtful comments and suggestions on an earlier version of our paper. Cheng was supported in part by The Hong Kong Polytechnic University under grant number G-U720.

References