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Pervaporation experiments with PDMS membrane have been performed in a plate and frame module to
investigate its ability to concentrate volatile compounds identified in an industrial soluble coffee solu-
tion. Eight compounds were chosen to depict key aroma of soluble coffee. The effect of feed flow rate,
temperature and permeate pressure on the pervaporation performance has been analyzed.
Concentration polarization phenomena was not identified in the feed flow rate studied. The temperature
effect showed a good agreement with the nonlinear Arrhenius equation. The permeate pressure followed
the solution–diffusion model behavior. Results showed that pervaporation is a promising alternative to
concentrate aroma compounds from soluble coffee.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Coffee is a major commodity in the world economy, behind only
to petroleum, involving twenty-five million farmers and coffee
workers in over fifty countries around the world (Global
Exchange, 2014). Coffee beverage aroma is very enjoyable and con-
sumer attractive, with more than 800 volatile compounds (Maarse
and Visscher, 1996) in a wide range of functional groups (Sarrazin
et al., 2000; Fisk et al., 2012). Nevertheless, a delicate balance in
the composition of volatiles is necessary to produce the desirable
smell in coffee (Borreli et al., 2002).

Nowadays, coffee is industrially produced in roasted, ground
and instant ways. The soluble coffee processing requires more
technology and, consequently, greater investment that the produc-
tion of roasted and ground coffee. Its industrial process consists of
cleaning the beans, roasting and grinding to proceed to the extrac-
tion step. The following steps are the concentration, typically by
thermal evaporation, freeze drying and spray drying. After the
atomization, the coffee passes through the sintering process to be
packaged (Clarke and Vitzthum, 2001). During the processing of
soluble coffee, transformations and aromatic losses occur, which
quantitatively and qualitatively changes the fraction of volatile
compounds. Some of these transformations exert negative impact
on flavor and aroma of soluble coffee when compared to conven-
tionally roasted coffee (Flament, 2002).

An alternative that could be adopted to increase the aromatic
perception of instant coffee would be add natural volatile com-
pounds recovered in some stage of its processing. It is known that
processes used to recover coffee aromas in industries (Herrera
et al., 1970; Nestec and Liu, 1986), boil down to wetting roast
and ground coffee, but present the drawbacks of high-energy
spending and the possibility of degradation of the compounds
involved. Other alternatives for the recovery of coffee aroma have
been investigated as adsorption (Canteli et al., 2014; Carpiné et al.,
2013; Sacano et al, 1996, 1999; Zuim et al., 2011), supercritical
extraction (Lucas and Cocero, 2006; Lucas et al., 2004), wet grind-
ing (Baggenstoss et al., 2010), nanofiltration (Vincze and Vatai,
2004; Pan et al., 2013) and other membrane processes (Brazinha
et al., 2015).

Although pervaporation has been successfully used in aroma
recovery from fruits and juices, alcoholic drinks, dairy flavors and
seafood, most researchers have utilized synthetic solutions to
represent real systems ( Rafia et al., 2011; Peng and Liu, 2003;
Isci et al., 2006; She and Hwang, 2006a,b; Pereira et al., 2006;
García et al., 2008; Diban et al., 2008; Olsson and Tragardh,
1999; Borjesson et al., 1996; Rajagopalan and Cheryan, 1995;
Karlsson et al., 1995; Overington et al., 2008, 2011; Martínez
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et al., 2011, 2013; Bourseau et al., 2014). Only a few researchers
have already worked with real matrices such as Zhang and
Matsuura (1991), Alvarez et al. (2000), Cassano et al. (2006),
Aroujalian and Raisi (2007), Raisi et al. (2008), Catarino et al.
(2009), Olmo et al. (2014).

Pervaporation has become quite attractive for the food industry
due to no need of chemical compounds addition and its low tem-
perature operation, which prevents the degradation of ther-
mosensitive compounds and reduces energy costs. Despite these
advantages, few works in the literature were found on the use of
this process in the recovery of coffee aromas (Oliveira et al.,
2014; Bizzo et al., 2008). However, no systematic investigation of
the pervaporation process performance was carried out by these
authors.

In this context, the aim of this study was to investigate the
feasibility of pervaporation process in the recovery of aromatic
compounds of soluble coffee from a real solution obtained after
the industrial extraction step. The influence of feed flow rate,
temperature and pressure was evaluated in order to assess perva-
poration performance.

2. Theory

In a pervaporation process, the solution–diffusion model can be
used to describe the transport of permeating components through
the membrane. The flux of component i through the polymeric
membrane is proportional to the difference in partial vapor pres-
sure at both sides of the membrane and can be described by Eq.
(1) (Blume et al., 1990):

Ji ¼ QOV;iðxic1i psat
i � yippÞ ð1Þ

where Ji is the partial flux of each component i in the model solution
(mol/m2 s); c1i is the activity coefficient at infinite dilution of
component i; QOV;i is the pressure-normalized permeation flux (per-
meance) (mol/m2 s Pa); xi is the mole fraction of component i in the
feed side; yi is the mole fraction of component i in the permeate
side, pp is the permeate pressure (Pa) and psat

i is the saturation vapor
pressure of component i (Pa).

According to the resistance-in-series model (Liu et al., 1996),
assuming that the resistance at permeate side is negligible, the
mass transfer through the membrane can be described by:

1
Q OV;i

¼ 1
QM;i

þ 1
Q L;i

ð2Þ

where QL;i is the mass transfer coefficient of component i with driv-
ing force of partial vapor pressure at feed side (mol/m2 Pa s) and
QM;i is the mass transfer coefficient of component i with driving
force of partial vapor pressure in membrane (mol/m2 Pa s). The
parameter QL;i is related to the feed hydrodynamic conditions and
can be more conveniently expressed as follow:

Q L;i ¼
qkbl;i

cip
sat
i

ð3Þ

where kbl;i is the liquid boundary layer mass transfer coefficient
(m/s) and q is the total mass volume concentration of feed (g/m3).
The kbl;i value can be quantified for laminar flow regime, Reynolds
number (Re) lower than 2300, by Lévêque correlation for a plate-
and-frame module (Lipnizki et al., 2002; Trifunovíc et al., 2006;
García et al., 2008):

Sh ¼ dhkbl;i

Di
¼ 1:62 Re Sc

dh

L

� �1=3

ð4Þ

where Sh and Sc are the Sherwood and Schmidt numbers, respec-
tively, dh is the hydraulic diameter (m), L is the membrane length
(m) and Di is the diffusivity coefficient of the component i in the liq-
uid phase (m2/s). The value of Di can be estimated using the Wilke–
Chang correlation (Poling et al., 2001).

To describe the separation performance of a pervaporation
membrane in dilute aqueous solutions, the enrichment factor is
commonly used. It is defined as the ratio between the concentra-
tion in the permeate and in the feed for a determined component
i (Martínez et al., 2013):

bi ¼ wi;p=wi;f ð5Þ

where bi is the enrichment factor of component i, wi;p is its concen-
tration in the permeate side and wi;f is its concentration in the feed
side of membrane.

The effect of feed temperature can normally be described by an
Arrhenius type equation, as shown in Eq. (6):

Ji ¼ Ji;0 exp �Ea;i

RT

� �
ð6Þ

where Ea;i is the apparent activation energy of permeation (kJ/mol);
Ji;0 is the pre-exponential factor (mol/m2 s), R is the gas constant
and T is the absolute temperature. The apparent activation energy
parameter describes the overall temperature dependence of the
permeation flux and thus includes the temperature dependence of
the driving force (Olsson and Tragardh, 1999). In the literature,
Ea;i has been evaluated through the linear slope in the lnJ vs 1=T plot
(Feng and Huang, 1996). However, as shown by Schwaab and Pinto
(2007), the use of the so-called linear form of the Arrhenius equa-
tion is very controversial and should be avoided. According to these
authors, the intrinsic mathematical structure of this equation intro-
duces a very strong dependence between the pre-exponential and
activation energy parameters, turning the estimation of the correct
values of these parameters very hard. In order to overcome this dif-
ficulty, the reparameterization of the Arrhenius equation was sug-
gested by introducing a reference temperature in the form
(Schwaab et al., 2008):

Ji ¼ Ji;ref exp � Ea;i

R
1
T
� 1

Tref

� �� �
ð7Þ

where Ji;ref is the specific permeation flux at the reference tempera-
ture Tref . The reference temperature is usually defined as a suitable
average temperature of the analyzed experimental data. For
instance, Veglio et al. (2001) suggested the use of the inverse
average:

1
Tref
¼ 1

NE

XNE

i¼1

1
Ti

ð8Þ

where NE is the number of experimental temperature values and Ti

is the temperature for individual experiments. According to
Schwaab and Pinto (2007), proper definition of reference tempera-
ture allows the elimination of parameter correlation improving
parameter estimates precision. Taking these considerations into
account, in the present work, the parameter estimation of the
Arrhenius equation was carried out without any linearization, mini-
mizing the least square function in the Statistica software
(StatSoft):

F ¼
XNE

i¼1

Ji;exp � Ji;pred

� �2 ð9Þ

where Ji,exp and Ji,pred are the experimental and predicted partial
fluxes of a volatile compound.
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3. Experimental

3.1. Feed solution

Real feed solution was provided by a soluble coffee industry
(Cia. Café Iguaçú). Coffee aromatic solution was obtained in the
concentration step in the soluble coffee production. It is important
emphasize that soluble coffee feed solution was a very dilute solu-
tion with no particles in suspension, presenting physical chemical
characteristics similar to pure water. Feed solution was cooled and
kept at �18 �C until the pervaporation experiments, in order to
retain the aromatic compounds in the coffee solution. More than
88 aromatic compounds could be identified using a headspace-
solid phase dynamic extraction–gas chromatography/mass spec-
trometry (HS-SPDE–GC/MS). Among them, eight compounds were
selected to describe the industrial aqueous solution of soluble cof-
fee: two ketones (2,3-butanedione (CAS 431-03-8) and 2,3-pen-
tanedione (CAS 600-14-6)), three aldehydes (3-methylbutanal
(CAS 590-86-3), benzaldehyde (CAS 100-52-7) and acetaldehyde
(CAS 75-07-0)), two furans (furfural (CAS 98-01-1) and 5-methyl
furfural (CAS 620-02-0)) and one pyrazine(2,5-dimethyl pyrazine
(CAS 123-32-0)). The aromatic compounds furfural and acetalde-
hyde confer negative characteristics in the coffee and the other
six aroma afford positive characteristics (Flament, 2002).

Table 1 shows the concentration in feed solution, organoleptic
characteristic and odor threshold values (OTV) in water of the
selected volatile aroma compounds. The odor threshold value is
the lowest concentration of an odor compound that is perceivable
by the human sense of smell. Although some compounds pre-
sented their initial concentration, lower than their OTV values,
the eight chosen compounds were the volatile aromas with the
highest concentration identified in the feed solution. As it can be
seen in this Table, concentration of the key flavor compounds in
feed solution is lower than 3 ppm (mass of organic in mass of
water), corresponding to a dilute aqueous solution. Also, it can be
verified in Table 1, that chosen compounds present different
organoleptic characteristic.

Physical properties of selected compounds are listed in Table 2.
The liquid molar volume for all aromatic compounds was esti-
mated by Tyn and Calus method and Vetere relationship (Poling
Table 1
Selected aroma compounds in the industrial soluble coffee solution (Flamen

Aromatic compound Initial concentration (ppb) Organ

2,3-Butanedione 52.54 Swee
2,3-Pentanedione 102.32 Swee
3-Methylbutanal 327.90 Chee
Benzaldehyde 278.33 Swee
Acetaldehyde 1148.93 Purge
Furfural 2552.69 Vege
2,5-Dimethylpirazine 219.14 Nutty
5-Methyl furfural 1398.30 Swee

Table 2
Physical properties of soluble coffee aroma compounds studied in this work.

Compound MW BP (�C) ps
20�C (Pa)

2,3-Butanedione 86.09 88.0 8303.8
2,3-Pentanedione 100.11 108.0 2918.5
3-Methylbutanal 86.13 92.5 6574.1
Benzaldehyde 106.12 178.8 181.0
Acetaldehyde 44.05 20.2 128522.7
Furfural 96.08 161.0 297.3
2,5-Dimethylpirazine 108.14 154.0 530.6
5-Methyl furfural 110.11 187.0 255.9

⁄MW: molecular weight, BP: boiling point, ps
20�C: vapor pressure at 20 �C; c120�C: activity co

law constant at 20 �C.
et al., 2001). Vapor pressure was obtained or predicted by using
the software Chemcad 6 (2008) except for 2,3-pentanedione that
was obtained from Martínez et al. (2013) and 5-methyl furfural
that was obtained from Lomba et al. (2014). Activity coefficients
at infinite dilution in water were estimated using the predictive
method UNIFAC-Dortmund, except for 2,3-pentanedione, 3-methyl
butanal and benzaldehyde which were obtained from the literature
(Martínez et al., 2012). Henry law constants were obtained from
Yaws (1999) and by the multiplication of activity coefficient at infi-
nite dilution and the vapor pressure, according to Martínez et al.
(2012).

3.2. Membrane

A commercial flat-sheet polymer hydrophobic membrane pro-
vided by Pervatech BV (The Netherlands) was used in the experi-
ments. The membrane has a polydimethylsiloxane (PDMS)
functional layer and a polyethylene terephthalate (PET) support
layer material and was cut into a round shape with a diameter of
8 cm to reach the effective membrane area of 50 cm2 in the perva-
poration module.

3.3. Pervaporation experiments

Fig. 1 shows the stainless steel pervaporation unit used in all
experiments. The feed was recirculated through the membrane
and back into the jacketed feed tank of 4 L using a diaphragm
pump (Bomax, Brazil). Temperature was controlled by recirculat-
ing water from a temperature-controlled water bath (Quimis,
Brazil). The permeate pressure was measured just downstream of
the membrane, using a digital vacuum pressure gauge (model
VDR-920, Instrutherm, Brazil) and was controlled by adjusting
the needle valves upstream of the cold traps. A circular plate and
frame membrane module, built in stainless steel with 50 and
350 mm of height in permeate and feed sides, respectively, housed
the circular membrane. Vacuum on permeate side of the system
was maintained with a vacuum pump (model RV12, Edwards,
West Sussex, UK).

New membranes were conditioned before the pervaporation
experiments, by recirculating approximately 500 mL of distilled
t, 2002).

oleptic characteristic OTV (ppb)

t, buttery, creamy and milky 15
t buttery, creamy, slightly toasted dairy 30
sy, sweaty and fruity 1000
t, oily, almond and cherry 160
nt 15

table, burnt astringent nuance 175,000
-like 1000
t, spicy, warm odor with a sweet, caramel-like 0.4

c120�C VMBP (cm3/mol) H20�C � 10�4(Pa)

1 13.0 88.8 10.0
4 282.0 121.0 38.8
3 164.0 118.9 89.3
0 273.0 122.6 13.8
6 4.0 58.8 47.1

60.6 83.9 1.8
2 35.8 108.4 1.9
7 324.0 99.4 8.3

efficient at infinite dilution; VMBP: liquid molar volume at boiling point; H20�C: Henry



Fig. 1. Schematic diagram of experimental pervaporation apparatus. 1 – temperature control bath; 2 – feed tank; 3 – diaphragm pump; 4 – membrane module; 5 – liquid N2

cold traps; 6 – flowmeter; 7 – vacuum pump; 8 – temperature indicator; 9 – digital pressure indicator.

Fig. 2. Effect of temperature on water and industrial solution permeation fluxes
and fitted model to water flux (pp = 300 Pa, feed flow rate = 1.5 L/min).
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water at 30 �C through the pervaporation apparatus for 12 h, and
under high vacuum (300 Pa) in the permeate side. It was assumed
that 12 h was sufficient to pre-swell the membrane to allow steady
state operation. Original condition of the membrane was evaluated
between the experiments, through a verification procedure that
consisted in measuring total flux using water as feed solution
under standard conditions (300 Pa and 20 �C).

The feed tank was fully empty; this way, due to small amount of
permeate product, volatile compounds concentration in the feed
tank was kept approximately constant along operation. Each per-
vaporation run was carried out over six hours. Retentate samples
were collected at the beginning and the end of the experiment.
Permeate samples were collected every 2 h, after thawing and
weighting of the whole permeate. Permeate samples were col-
lected in glass cold traps cooled with liquid nitrogen. Only one of
the two parallel cold traps was used at a time, and the active cold
trap was changed every hour to enable permeate samples to be
removed during each pervaporation run. Samples were kept at
�18 �C prior to analysis.

Temperature, permeate pressure and feed flow rate effects were
investigated in the range of 10–40 �C, 300–2200 Pa and 1 L/min to
3 L/min, respectively. PDMS membrane behavior was also investi-
gated through pure water experiments in the same temperature
and permeate pressure condition used with real solution
experiments.

3.4. Sample analysis

Quantitative analysis of aroma compounds for all samples was
carried out in triplicate using the method described in Viegas
and Bassoli (2007). Coffee volatile compounds were sampled with
solid phase microextraction (SPME) at 70 �C during 30 min using a
PDMS (Supelco, Switzerland) fiber. GC-MS analysis of aroma
compounds was carried out on an Agilent 6890 N gas chro-
matograph (GMI, United States) coupled to a quadrupole mass
spectrometer. The SPME fiber was desorbed in the split/splitness
injector at 250 �C. Aroma compounds were then separated on a
60 m � 320 lm � 0.25 lm polar HP-Innowax capillarity column
(Agilent, United States) with the following temperature program:
40 �C (5 min); 40–60 �C, 4 �C/min (5 min); 60–250 �C, 8 �C/min
(3 min). Helium was used as a carrier gas at a feed flow rate of
1.2 mL/min. The mass spectrometer was operated in the following
conditions: ionization potential of 70 eV; interface temperature of
280 �C; quadrupole temperature of 150 �C and ion source tempera-
ture of 230 �C. The generated data was interpreted by MSD
Chemstation software coupled with the NIST/2002 mass spectrum
library.
4. Results and discussion

4.1. Pure water as feed solution

In order to verify the behavior of the PDMS membrane, the
effect of temperature and pressure was studied using pure water
as feed solution. Temperature and permeate pressure were chan-
ged in the same range for the volatile aroma compounds. Fig. 2
shows the influence of temperature in water and organic fluxes.
It is possible to observe that water and organic fluxes increase
exponentially with temperature. This behavior allows to express
the water flux dependence with temperature with an Arrhenius-
type relationship. An apparent activation energy for water of
40.92 kJ/mol was estimated by nonlinear regression with a correla-
tion coefficient equal to 0.996. The organic flux presented in this
figure was added only in order the compare both water an organic
fluxes.

Fig. 3 presents the effect of permeate pressure on water per-
meation and industrial solution fluxes. It can be seen in this figure
that water permeation flux follows the trend of solution–diffusion
model of pervaporation (Eq. (1)). In other words, by increasing the
permeate pressure, water permeation flux decreases as a conse-
quence of partial pressure gradient decreasing. This behavior
affirms that the both water and industrial solution are governed
by the solution–diffusion model. A similar behavior was obtained



Fig. 3. Effect of permeate pressure on water and industrial solution permeation
fluxes (T = 20 �C, feed flow rate = 1.5 L/min).
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by Martínez et al. (2011) for a polyoctylmethylsiloxane (POMS)
membrane, by She and Hwang (2004) for a PDMS composite mem-
brane and by García et al. (2008) for a PDMS membrane. In the pre-
sent work, water permeance for PDMS membrane was calculated
from the flux data and driving force and was constant for the range
of both temperature and pressure investigated (4.2 � 10�7 mol
m�2 s�1 Pa�1).

4.2. Influence of feed flow rate

The influence of feed flow rate on the permeation flux of soluble
coffee aroma compounds through the membrane is shown in Fig. 4.
The boundary layer effect was studied in the multicomponent per-
vaporation system in a feed flow rate range between 1 L/min and
3 L/min, corresponding to a Reynolds number of 2400 and 7150
respectively, for the apparatus and module configuration used in
this work. Usually hydrophobic membranes, as PDMS, are signifi-
cantly more permeable to dissolved organic compounds than to
water, causing a depletion of the former compounds in a liquid
boundary layer. Therefore, the concentration polarization phe-
nomenon occurs. According to resistance-in-series model, when
the boundary layer resistance is dominant, mass transfer across
the membrane increases with feed flow rate due to a reduction
in the boundary layer thickness. However, if hydrodynamics condi-
tions are optimized, membrane resistance could be the rate-
Fig. 4. Water and individual organic compounds permeation fluxes at different
Reynolds number (pp = 300 Pa; T = 20 �C).
limiting step in the pervaporation separation process (García
et al., 2008).

As shown in Fig. 4, water and individual organic fluxes were not
affected by the feed flow rate increase. This fact implies that the
mass transfer resistance of these aroma compounds is governed
by the resistance exerted by the membrane. In order to confirm
this hypothesis, the apparent dominant influence of the membrane
resistance was investigated calculating the boundary layer mass
transfer coefficient kbl according to Sherwood correlation. No rela-
tive significance of the boundary layer mass transfer resistance
was observed, since kbl values lower than 1% of the total resistance
were computed. According to Lipnizki et al. (2002), a Reynolds
number higher than 2300 for plate and frame modules character-
izes a turbulent behavior, where the concentration polarization
phenomenon can be negligencied. Besides, Martínez et al. (2011)
affirm that the mass transfer coefficient of the liquid boundary
layer obtained through the Sherwood correlation could be over-
estimated, and a necessary attention is recommended. This state-
ment also confirms that membrane resistance is dominant in the
pervaporation process of this work. For all other experiments,
involving the effect of temperature and pressure, an intermediate
feed flow rate of 1.5 L/min was fixed.
4.3. Influence of temperature

Temperature is an important operating variable since it affects
the feed/membrane characteristics and the driving force of the pro-
cess. The compounds properties, both in the feed solution (diffusiv-
ity and viscosity) and in the membrane (permeability) are affected
by the temperature increase. In addition, in pervaporation, the
permeating molecules diffuse through the free volumes of the
membrane, produced randomly by the thermal motion of the poly-
mer chain in the amorphous regions. As the temperature increases,
frequency and amplitude of the polymer chain jumping increase.
As a result, the free volume in the membrane raises. Thus, the dif-
fusion rate of individual permeating molecules increases, leading
to a high permeation flux as the temperature increases (Isci
et al., 2006). Fig. 5(a) and (b) shows the effect of temperature on
volatile compounds permeation flux and the Arrhenius equation
fit. The experiments were carried out at a fixed permeate pressure
(300 Pa). For all organic compounds, permeation flux increases
with temperature. It can also be seen in this figure, the good
adjustment of the Arrhenius equation to experimental data.

Fig. 6 shows the predicted and observed values for the nonlin-
ear estimation of apparent activity energies. The result in this fig-
ure corroborates the good adjustment of the Arrhenius equation in
its non linear form, to describe the individual flux dependence with
the temperature.

Table 3 reports the estimated apparent activation energies for
permeation of coffee aroma compounds and water with their
respective correlation coefficient values. A higher value of apparent
activation energy indicates a more sensitive behavior toward tem-
perature changes (Martínez et al., 2013). It can be observed from
Table 3 that for the most of the organic compounds, Ea;i is higher
than water Ea;i, except for 2,3-butanedione, benzaldehyde and fur-
fural. However, in these cases, these differences are not so high.
Similar results were found in Martínez et al. (2013) for 2,3-pen-
tanedione (66.3), 3-methyl butanal (54.4) and benzaldehyde
(37.5), however, these authors used a synthetic aroma compounds
in the multicomponent model solution.

According to Olsson and Tragardh (1999), the permeation acti-
vation energy Ep;i describes the effect of temperature on the
membrane permeability, and can be estimated by subtracting
the vaporization enthalpy DHv from the calculated apparent acti-
vation energy. Also, Ep;i can be expressed as the activation energy



Fig. 5. Effect of temperature on volatile compound permeation flux (pp = 300 Pa,
feed flow rate = 1.5 L/min): (a) 2,3-Butanedione, 2,3-Pentanedione, Benzaldehyde
and 2,5-Dimethyl Pirazine, (b) 3-Methylbutanal, Acetaldehyde, 5-Methyl Furfural
and Furfural.

Fig. 6. Observed vs predicted individual aroma compounds permeation fluxes in
complete scale (a) and in an amplified scale (b) for better visualization.

Table 3
Apparent activation energy estimated of aroma compounds for PDMS membrane and
correlation coefficient (R) values.

Compound Ea (kJ/mol) R

2,3-Butanedione 37.32 0.997
2,3-Pentanedione 66.87 0.998
3-Methylbutanal 48.07 0.995
Benzaldehyde 34.31 0.985
Acetaldehyde 54.66 0.998
Furfural 34.28 0.991
2,5-Dimethylpirazine 66.34 0.998
5-Methyl furfural 42.45 0.997
Water 40.92 0.996
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of permeating compounds to diffuse through the membrane, ED,
plus the enthalpy of dissolution, DHs (Feng and Huang, 1997).
For the organic compounds of this work,
activation energy was calculated subtracting DHv and followed
the order: Ep;benzaldehydeð�10:71 kJ=molÞ < Ep;5-methyl furfural

ð�7:29 kJ=molÞ < Ep;furfuralð�5:55 kJ=molÞ < Ep;2;3-butanedioneð4:51
kJ=molÞ < Ep;3-methyl butanalð14:75 kJ=molÞ < Ep;2;5-dimethyl pirazine

ð18:78 kJ=molÞ < Ep;acetaldehydeð28:92 kJ=molÞ < Ep;2;3-pentanedione

(32.19 kJ/mol). Negative values of Ep;i indicate that membrane’s
permeability decreases with temperature. The level of con-
tribution from the enthalpy of dissolution and diffusion coeffi-
cient can lead positive or negative values of Ep;i. This behavior,
for benzaldehyde, 5-methyl furfural and furfural, where the value
of Ep;i is negative, indicates that for these aroma compounds the
temperature has grater effects on sorption in membrane
permeability. However, for the other coffee aroma compounds,
the effect of temperature, in the PDMS membrane permeability
studied, has greater influence on diffusion than on sorption.
These results disagreed with the behavior observed by Martínez
et al. (2013) and She and Hwang (2004) for PDMS membranes.
However, different chemical class compounds were studied in
these reports, which can change the general behavior of the per-
vaporative membrane. In addition, a real solution involving other
aromatic compounds, even if in low concentration, can promote
changes in the thermodynamic behavior of the feed solution with
the pervaporative membrane studied.
Fig. 7 shows the enrichment factor at four temperatures studied
in this work for volatile compounds. According to this Figure, it
cannot be generalized for PDMS hydrophobic membrane that
enrichment factors of volatile coffee compounds increase with
temperature. For almost all aroma compounds, the temperature
of 10 �C presented the lowest enrichment factor. The 2,3-butane-
dione and 2,5-dimethyl pirazine presented the highest enrichment
factor in a temperature of 20 �C. Furfural and 5-methyl furfural
compounds, from furfural chemical group, did not show per-
ceptible changes in the temperature range studied. The effect of
temperature on selectivity depends on sorption changes of organic
compound, their diffusion through the membrane and chemical



Fig. 7. Effect of temperature on the enrichment factor of the volatile compounds
(pp = 300 Pa, feed flow rate = 1.5 L/min) for PDMS membrane.
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affinity with the membrane polymer. Therefore, differences, as
shown in Fig. 7, are common and reported in the literature
(Aroujalian and Raisi, 2007; Trifunovíc et al., 2006; Lipnizki et al,
2002) when several different compounds compose the solution.
Fig. 8. Effect of permeate pressure on partial permeation flux of (a) furfural and 3-met
pentanedione and (d) 2,5-dimethyl pyrazine (left y axis) and acetaldehyde (right y axis)
4.4. Influence of permeate pressure

Permeate pressure is one of the most important process
parameters which, with the operating temperature, determines
the driving force of the whole process (Rafia et al., 2011). It was
varied in the range of 300–2200 Pa at fixed feed temperature
(20 �C). Changes in pressure directly affect the chemical potential
gradient through the membrane, thus the flux is influenced by
the downstream pressure (Isci et al., 2006). According to Eq. (1),
as the permeate pressure increases, driving force for the permea-
tion through the membrane decrease, resulting in a reduction in
the permeation flux. Fig. 8 illustrates this fact where organic per-
meation fluxes have been plotted as a function of partial pressure.
The pressure-normalized permeation flux (permeance) QOV;i was
calculated from the plot of the organic flux Ji versus the partial
pressure by linear regression and it is shown in Table 4.

As shown in Fig. 8, the effect of permeate pressure on the 5-
methyl furfural flux was almost negligible in comparison to the
other aromatic compounds. She and Hwang (2004) observed a
similar behavior for ethyl butyrate. This result allows affirming
that there would be an optimum permeate pressure based on the
balance of organic flux and operating cost, since a relatively low
vacuum for industrial application is preferred to a high vacuum
system that is more expensive. It can be seen in Fig. 8 that a good
adjustment was obtained for all volatile compounds, which is cor-
roborated by the correlation coefficient values shown in Table 4.
hyl butanal, (b) benzaldehyde and 5-methyl furfural, (c) 2,3-butanedione and 2,3-
for PDMS membrane (Tfeed = 20 �C; feed flow rate = 1.5 L/min).



Fig. 9. Effect of permeate pressure on the enrichment factors of volatile compounds
for PDMS membrane (Tfeed = 20 �C, feed flow rate = 1.5 L/min).

Table 4
Estimated permeances for the coffee aroma compounds and correlation coefficient
(Tfeed = 20 �C).

Compound QOV;i � 107 (mol/m2 s Pa) R2

2,3-Butanedione 11.10 0.93
2,3-Pentanedione 1.05 0.97
3-Methylbutanal 3.73 0.97
Benzaldehyde 15.70 0.99
Acetaldehyde 42.80 0.98
Furfural 29.30 0.99
2,5-Dimethylpirazine 8.82 0.99
5-Methyl furfural 0.58 0.96
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Fig. 9 presents the effect of permeate pressure on the enrich-
ment factor for volatile compounds. For furfural and 5-methyl fur-
fural, with low values of Henry’s law constant, the enrichment
factors have been found to remain constant with permeate pres-
sure. On the other hand, for 2,3-butanedione and 2,5-dimethyl pir-
azine, an increase on enrichment factors with permeate pressure is
remarkable. In addition, the highest enrichment factor for these
compounds was obtained in an intermediate permeate pressure.
This fact was appointed by Wijimans et al. (1996) that shows a
unique characteristic for pervaporation, since separation can be
improved by decreasing the driving force of the process. For the
compounds acetaldehyde and 3-methyl butanal, with high values
of Henry’s law constant, the enrichment factor also increases with
permeate pressure, but in a smother manner and except for the
2200 Pa pressure. Benzaldehyde and 2,3-pentanedione compounds
present enrichment factors without great changes with permeate
pressure. Benzaldehyde behavior differs from the literature (She
and Hwang, 2004; Martínez et al., 2013, 2011), however it must
be pointed out that this result refers to an industrial solution and
that the presence of other aroma compounds even in low concen-
tration can change the thermodynamic properties of the feed
solution.
5. Conclusions

In this work, recovery of volatile compounds from an industrial
solution of soluble coffee was performed by pervaporation process
with a polymeric PDMS membrane. Membrane has been found to
be effective to recover some key aroma compounds studied.
Results showed that liquid boundary layer resistance was negligi-
ble in the feed flow rate range investigated.

The effect of pervaporation temperature and permeate pressure
on pervaporation performance has been analyzed. For all organic
compounds, permeation flux increased with temperature and
could be well described by Arrhenius type relationship, through a
non linear regression. As a general trend, results also indicated that
aroma compound fluxes decreased with partial pressure, except for
5-methyl furfural. Regarding enrichment factors obtained in differ-
ent pressure values, a distinct behavior among aroma compounds
studied was observed. Among volatile compounds investigated,
2,3-butanedione and 2,5-dimethyl pirazine presented the highest
enrichment factors in the experimental conditions evaluated in
this work. For industrial purposes, an optimization should be
recommended in order to concentrate aroma compounds accord-
ing to desired aroma profile for soluble coffee.
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