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a b s t r a c t

We study classical and quantum dynamics on the Euclidean Taub–NUT geometry coupled
to an abelian gauge field with self-dual curvature and show that, even though Taub–NUT
has neither bounded orbits nor quantum bound states, the magnetic binding via the gauge
field produces both. The conservedRunge–Lenz vector of Taub–NUTdynamics survives, in a
modified form, in the gauged model and allows for an essentially algebraic computation of
classical trajectories and energies of quantum bound states. We also compute scattering
cross sections and find a surprising electric–magnetic duality. Finally, we exhibit the
dynamical symmetry behind the conserved Runge–Lenz and angular momentum vectors
in terms of a twistorial formulation of phase space.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Euclidean Taub–NUT (TN) geometry has been studied extensively and from several different points of view. It is
interesting as a particularly simple example of a gravitational instanton, it can be viewed as a Kaluza–Klein geometrisation
of the Dirac monopole and it arises in the context of monopole moduli spaces, either directly, or, in its ‘negative mass’ form,
as an asymptotic limit. In each of these contexts it plays a role akin to that of the hydrogen atom in atomic physics, both in
the general sense of being the simplest example and in the technical sense of sharing simplifying featureswith the hydrogen
atom, like a Runge–Lenz type conserved quantity.

The four-dimensional Maxwell equations on TN space have a simple source-free solution which is intimately connected
to the TN geometry. This was first pointed out by Pope [1,2] who went on to show that the index of the Dirac operator
minimally coupled to this Maxwell field is non-trivial. The index and the properties of zero-modes of this gauged Dirac
operator were recently studied in detail in our paper [3] from which the current paper evolved.

TheMaxwell field first consideredbyPopehas played an important role in various contexts. Its field strength is a harmonic
two-form which is self-dual for an appropriate choice of orientation and also square-integrable. It is exact, with a globally
defined gauge potential which is, however, not square-integrable. In other words, the harmonic two-form generates the
non-trivial L2-cohomology in themiddle dimension of TN space. This is the reasonwhy it was important in tests of S-duality
on monopole moduli spaces [4,5].

One can relate the self-dual two-form directly to the TN geometry by noting that, with a suitable normalisation, it is the
Poincaré dual of the CP1 which compactifies TN to CP2 [6]. More generally, one can understand the L2-cohomology of TN
and its multi-centre generalisation in terms of the ordinary cohomology of a suitable compactification [7].

For all of these reasons, it is not surprising that the inclusion of the self-dual gauge field in the dynamics on TN space
turns out to be mathematically natural. In this paper, we consider the geodesic motion on TN coupled to the self-dual gauge
field as ourmodel for the classical dynamics and the Dirac and Laplace operators on TN, alsominimally coupled to the gauge
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field, as quantum models. We show that all the interesting algebraic features of ordinary TN dynamics carry over to the
gauged case, and that, moreover, bounded motions and quantum bound states, neither of which are possible on (regular,
‘positive mass’) TN alone, occur in the gauged dynamics.

In general qualitative and semi-quantitative terms, the classical and quantum dynamics on TN space is strikingly similar
to the Kepler problem and the non-relativistic hydrogen atom. The basic reason why the four-dimensional TN geometry can
model the three-dimensional motion of a charged particle is the fact that TN is a Kaluza–Klein geometrisation of the Dirac
monopole in three dimensions [8,9]. The more detailed similarities are related to the conserved Runge–Lenz vector in both
cases. In this sense, one can view our inclusion of the magnetic field in the TN dynamics as analogous to the inclusion of a
magnetic monopole field in the much studied extension of the Kepler problem to the MICZ Kepler problem [10,11].

From the Kaluza–Klein point of view, the magnetic field of the monopole is already encoded in the geometry, and the
name ‘magnetic field’ for an additional abelian gauge field on TN is potentially confusing. We adopt it here because it is
justified from the four-dimensional point of view. As we shall see, the magnetic field leads to magnetic binding akin to
that responsible for Landau levels in planar systems. In fact, in a limit where TN becomes flat Euclidean four-space, the
four-dimensional magnetic field is constant, and the bound states that we find become ordinary Landau levels. This picture
of magnetic binding also provides a qualitative explanation of the index found by Pope and of the form of the zero-modes
discussed in [3].

We have organised our presentation to proceed from themost direct tomore abstract treatments of gauged TN dynamics.
We begin in Section 2 with a brief general discussion of how a magnetic field on a two-dimensional Riemannian manifold
can produce bound states. In Section 3, we collect conventions for describing the TN geometry and the associated Dirac
and Laplace operators coupled to a magnetic field. We turn to the classical dynamics in Section 4, discuss the conserved
Runge–Lenz and angular momentum vectors of the gauged geodesic motion on TN and describe the classical trajectories.
Section 5 contains a direct solution of the eigenvalue problem for the gauged Laplace operator on TN space through
separation of variables. We exhibit the promised bound states, give their energies and degeneracies and compute scattering
cross sections. In Section 6, we solve the quantum problem algebraically, using a quantum version of the Runge–Lenz vector.
In Section 7, we exhibit the symmetry underlying the conservation of angular momentum and the Runge–Lenz vectors from
a twistorial description of phase space. Our final Section 8 contains a brief discussion, our conclusions and an outlook onto
open problems.

2. A toy model: motion on a surface with magnetic field

We can gain a qualitative understanding of bound states on TN coupled to a Maxwell field by considering a two-
dimensionalmodel, consisting of a two-dimensionalmanifoldwithmetric andmagnetic field.Wewill encounter amanifold
and metric of the same kind in our study of TN as a geodesic submanifold, and the magnetic field as the restriction of the
Maxwell field to the geodesic submanifold. However, here we study the two-dimensional model in its own right.

Consider a two-dimensional manifold diffeomorphic to an open disk Dwith U(1)-invariant metric of the form

ds2 = dR2
+ c2(R)dγ 2. (2.1)

For consistency with our later discussion of the TN geometry we take the angular coordinate γ in the interval [0, 4π), so
that 4πc is the length of a U(1) orbit. The radial coordinate R is the proper radial distance from the origin and has range
[0, ∞), and we assume a form of c near R = 0 to ensure that the metric is smooth there. We are interested in two kinds of
behaviour of the function c .

The first case captures what happens in the regular TN geometry. The function c has the finite range [0, L) for some
positive real number L so that the length of the U(1) orbits remain bounded. Moreover we assume that c(0) = 0 and
that c is strictly monotonic, so that one can picture the metric as being induced on a cigar-shaped surface of revolution in
three-dimensional Euclidean space, as shown in Fig. 1. The qualitative behaviour of geodesics on such a surface is well
known and follows from Clairaut’s relation. Generic geodesics spiral on the cigar. Geodesics spiralling towards the tip will
be reflected at some point and spiral out. All geodesics ultimately move arbitrarily far away from the tip and there are no
geodesics which remain in a region bounded by a finite value of R.

The second case captures what happens in the singular or ‘negative mass’ TN. The function c diverges at R = 0, has the
range (L, ∞) and is monotonically decreasing. As an embedded surface, this is a funnel, with the opening at R = 0 and the
tip at R = ∞ as shown in Fig. 1. Generic geodesics again spiral on this surface, but now there are two kinds of behaviour.
Geodesics which travel straight down the funnel or spiral only slowly may escape to R = ∞. However, geodesics travelling
into the funnel with sufficiently high angularmomentum relative to their speedwill bounce back and remain inside a region
bounded by some finite value of R.

We now return to the first case with monotonically increasing c ∈ [0, L) and consider the inclusion of a magnetic field
of a specific type given by the two-form

B = d

pc2

2L2
dγ


=
p
L2

c dc ∧ dγ , (2.2)
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Fig. 1. The cigar-shaped surface for positive L (left) and the funnel-shaped surface for negative L (right).

for some real constant p which controls the strength of the magnetic field, and is proportional to its flux:

1
2π


D
B = p. (2.3)

The Lagrangian governing themotion of a particle on the surfacewithmetric (2.1), minimally coupled to the gauge potential
for B is, for a suitably chosen mass parameter,

L =
1
4


Ṙ2

+ c2γ̇ 2
−

pc2

2L2
γ̇ . (2.4)

With the momenta conjugate to R and γ

pR =
∂L

∂ Ṙ
=

1
2
Ṙ q =

∂L

∂γ̇
=

1
2
c2γ̇ −

pc2

2L2
, (2.5)

the Hamiltonian is

H = p2R +

q
c

+
pc
2L2

2
. (2.6)

Since q is conserved and p constant, this is effectively the Hamiltonian for one-dimensional motion on the half-line in the
potential

W =

q
c

+
pc
2L2

2
, (2.7)

which is plotted in Fig. 2.
We would like to know if there are bounded trajectories in the potential (2.7). As a potential, W should be viewed as a

function of R, but with our assumption that dc/dR > 0 we can study its minima by looking atW as a function of c. It is easy
to check that W (c) has a unique minimum at cm > 0 satisfying

c2m
L2

=

2qp
 . (2.8)

However, for cm to be in the range [0, L) we require

|q| <

p
2

 , (2.9)

and this is a necessary and sufficient condition forW to have a minimum. The value at the minimum is

W (cm) =


0 if pq < 0
2pq
L2

if pq ≥ 0.
(2.10)

The qualitative form of the potential is similar in the two cases. We also note that the inequality (2.10) implies the bound

L2W ≥


0 if pq < 0
2pq if pq ≥ 0, (2.11)

which will play an important role in our discussion.
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Fig. 2. Plots of the potential (2.7) for L = 1 and c ∈ [0, 1) for q = 3 and p = −8 (left) and q = 3 and p = 8 (right).

We conclude that a magnetic field on a cigar-shaped surface can lead to bounded trajectories even though the geometry
of the cigar does not support any bounded geodesics. In the presence of themagnetic field (2.2), all trajectories with angular
momentum q of magnitude less than |p/2| remain in a bounded region.

3. Classical and quantum geometry of the Taub–NUT space

3.1. The Taub–NUT geometry

We use the conventions of [3] for the description of the TN geometry, and refer the reader to that paper for details.
Here we summarise essential background and notation. The TN space MTN is a non-compact four-dimensional Riemannian
manifold with a self-dual Riemann tensor and U(2) isometry. As a manifold it is diffeomorphic to R4, and the metric can be
written as

ds2 = f 2dr2 + a2σ 2
1 + b2σ 2

2 + c2σ 2
3 , (3.1)

where σj are the left-invariant one-forms on SU(2) ≃ S3. They are defined in terms of h ∈ SU(2) via

h−1dh = σ1t1 + σ2t2 + σ3t3, (3.2)

where we use su(2) generators which are given in terms of the Pauli matrices τj as tj = −
i
2τj.

The quantities a, b, c, f are functions of a radial coordinate r transverse to the SU(2) orbits. The self-duality of the
Riemann curvature is then equivalent to

2bc
f

da
dr

= (b − c)2 − a2, +cycl., (3.3)

and the solution which gives rise to the TN metric is

a = b = r
√
V , c =

L
√
V

, f = −
b
r
, V = ϵ +

L
r
. (3.4)

Here ϵ and L are parameters which are required to be positive for a smooth metric. As discussed in [12], the parameter ϵ
is relevant for taking the Landau limit of our model, and can be used to introduce time-dependence in an interesting way.
However, we shall set ϵ = 1 for most of the text and work with the potential

V = 1 +
L
r
, (3.5)

unless stated otherwise. The TN space with L < 0 arises as the asymptotic form of the two monopole moduli space [13] but
has a singularity at r = −L. We will assume L > 0 in the following.

For the discussion of symmetries and the definition of natural differential operators associated to the TN geometry, we
require the vector fields Xj which are dual to the left-invariant forms σj (so σj(Xi) = δij) and which generate right-actions
on h ∈ SU(2),

Xj : h → htj. (3.6)
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We will also need the vector fields Zj which generate the left-action,

Zj : h → −tjh. (3.7)

It follows from these definitions that, as vector fields on S3,

[Xi, Xj] = ϵijkXk, [Zi, Zj] = ϵijkZk, [Xi, Zj] = 0, (3.8)

where summation over repeated indices is assumed. By definition, the Lie derivative of the one-forms σi with respect to the
Zj vanishes.

There are several natural ways to parametrise SU(2) and hence to write the one-forms and vector fields on it. For the
purposes of this paper we need both a parametrisation in terms of Euler angles and another in terms of two complex
numbers. Continuing with the conventions of [3] we therefore introduce complex numbers z1, z2, constrained to satisfy
|z1|2 + |z2|2 = 1, and write elements of SU(2) as

h =


z1 −z̄2
z2 z̄1


. (3.9)

In some calculations it is more convenient to work with Euler angles β ∈ [0, π], α ∈ [0, 2π), γ ∈ [0, 4π) defined via

z1 = e−
i
2 (α+γ ) cos

β

2
, z2 = e

i
2 (α−γ ) sin

β

2
. (3.10)

Then the left-invariant one-forms can be expressed in terms of Euler angles as

σ1 = sin γ dβ − cos γ sinβdα,

σ2 = cos γ dβ + sin γ sinβdα,

σ3 = dγ + cosβdα, (3.11)

and the dual vector fields are

X1 = cotβ cos γ ∂γ + sin γ ∂β −
cos γ

sinβ
∂α,

X2 = − cotβ sin γ ∂γ + cos γ ∂β +
sin γ

sinβ
∂α,

X3 = ∂γ . (3.12)

In terms of complex coordinates we have

X1 =
i
2
(z̄2∂1 − z̄1∂2 − z2∂̄1 + z1∂̄2),

X2 =
1
2
(−z̄2∂1 + z̄1∂2 − z2∂̄1 + z1∂̄2),

X3 =
i
2
(−z1∂1 − z2∂2 + z̄1∂̄1 + z̄2∂̄2), (3.13)

and

Z1 =
i
2
(−z2∂1 − z1∂2 + z̄2∂̄1 + z̄1∂̄2),

Z2 =
1
2
(−z2∂1 + z1∂2 − z̄2∂̄1 + z̄1∂̄2),

Z3 =
i
2
(z1∂1 − z2∂2 − z̄1∂̄1 + z̄2∂̄2). (3.14)

It follows from general arguments, but can also be checked explicitly, that the Laplace operator on S3 ≃ SU(2) can bewritten
as

∆S3 = Z2
1 + Z2

2 + Z2
3 = X2

1 + X2
2 + X2

3 . (3.15)

The magnetic field on TN referred to in the title and discussed in the Introduction can be written as the exterior derivative
of the abelian gauge field

A =
pc2

2L2
σ3 =

p
2

r
r + L

σ3, (3.16)
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where p is a real parameter which will play an important role in our discussions. The magnetic field

F = dA =
p
L2


cdc ∧ σ3 +

c2

2
σ2 ∧ σ1


, (3.17)

is (up to a multiplicative constant) the unique harmonic, normalisable and U(2)-invariant two-form on TN.
Note that the gauge we have chosen preserves the U(2) symmetry of the TN geometry. However, the magnetic field

inevitably breaks the discrete symmetry

β → π − β, α → π + α, γ → −γ , (3.18)

which maps

σ1 → σ1, σ2 → −σ2, σ3 → −σ3, (3.19)

and therefore preserves themetric (3.1) but neither the gauge field (3.16) nor its curvature. Aswewill see, this has interesting
consequences in the dynamics.

TN without the point r = 0 (the NUT) is a circle bundle over R3
\ {0}. As reviewed in [12], for each direction (β, α) in

the base there is a geodesic submanifold parametrised by (r, γ ). Each of these geodesic submanifolds is of the general cigar-
shape of our toy model in Section 2, and the flux of the magnetic field (3.17) through this submanifold is 2πp. Thinking of
TN as a two-sphere’s worth of such cigar-shaped surfaces threaded bymagnetic flux will prove very helpful for a qualitative
understanding of our results.

3.2. The gauged Dirac and Laplace operators

The most fundamental operator associated to the metric (3.1) and the connection (3.16) is the Dirac operator on TN
minimally coupled to the connection. As shown in [14] for the ungauged case, the spectrum of the Dirac operator and the
Laplace operator are closely related. The arguments in [14] are essentially a reflection of an underlying supersymmetry. It
is not difficult to adapt them to the gauged case, as we shall now show.

The gauged Dirac operator on TN has the following form [3]

/Dp =


0 T Ď

p
Tp 0


, (3.20)

where

T Ď
p =

i
√
V


−∂r −

1
r

−
V
2L

+ τ3


p
2L

−
iV
L
X3


−

i
r
(τ1X1 + τ2X2)


,

Tp =
i

√
V


−∂r −

1
r

+
V
2L

+
L

2r2V
+ τ3


iV
L
X3 −

p
2L


+

i
r
(τ1X1 + τ2X2)


. (3.21)

As shown in [1,2] and elaborated in [3], the kernel of T Ď
p is trivial but that of Tp has dimension 1

2 [|p|]([|p|] + 1), where [x] is
the largest integer strictly smaller than the positive real number x. It follows that

H− = TpT Ď
p (3.22)

is a strictly positive operator, and that

H+ = T Ď
p Tp (3.23)

is positive, but not strictly positive. Restricting to the orthogonal complement of the kernel of Tp, we can define the unitary
operator

U =
1

√
H−

Tp, (3.24)

with inverse U−1
= T Ď

p /
√
H−, and use it to relate H+ and H− via

H+ = U−1H−U . (3.25)

It follows from this unitary equivalence that, as in the ungauged case [14], H+ has the same spectrum as H− apart from the
zero eigenvalue of H−. In other words if Ψ is a two-component eigenspinor of H− with eigenvalue E ≠ 0 then U−1Ψ is an
eigenspinor of H+ with the same eigenvalue.

Combining these results, we obtain eigenstates of the Dirac operator with non-zero eigenvalues from eigenstates of H−

as follows. Suppose that Ψ is an eigenstate of H− with eigenvalue E > 0. Then

/D

U−1Ψ

±Ψ


= ±

√
E

U−1Ψ

±Ψ


. (3.26)
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Inserting the expressions for the TN profile functions, we find

H− = TpT Ď
p = −

1
r2V

∂r(r2∂r) −
1

r2V


(X1 + t1)2 + (X2 + t2)2


−

V
L2


X3 +

ip
2V

+ t3

2

. (3.27)

It is convenient to change gauge by observing from (3.6) that

Xih−1
= −tih−1 (3.28)

and that therefore, as an operator identity,

h(Xi + ti)h−1
= h(Xih−1) + hh−1Xi + htih−1

= Xi. (3.29)

Employing this, we obtain

hH−h−1
= Hpτ0, (3.30)

where τ0 is the 2 × 2 identity matrix and

Hp = −
1

r2V
∂r(r2∂r) −

1
r2V

(X2
1 + X2

2 ) −
V
L2


X3 +

ip
2V

2

(3.31)

is the Laplace operator associated to the metric (3.1) and minimally coupled to the gauge field (3.16). This is the operator
whose spectrum we shall study in the remainder of this paper.

4. Dynamical symmetries in classical Taub–NUT dynamics

4.1. Canonical procedure

We now turn our attention to the classical dynamics in TN in the gauged case. We discuss the conserved angular mo-
mentum and Runge–Lenz vectors, and use them to describe the classical trajectories. Our treatment is an extension of the
discussion in [13] and [15] of the (ungauged) motion on TN space.

As reviewed in Section 3, the TN space (3.1) can be parametrised by a coordinate r and the Euler angles α, β and γ . In
these coordinates the Lagrangian for geodesic motion on TN takes the form

L =
1
4
(f 2 ṙ2 + a2ω2

1 + b2ω2
2 + c2ω2

3), (4.1)

where ωi are the components of the body fixed angular velocity,

ω1 = sin γ β̇ − cos γ sinβ α̇,

ω2 = cos γ β̇ + sin γ sinβ α̇,

ω3 = γ̇ + cosβ α̇, (4.2)

and we have chosen an overall factor of 1/4 for convenience.
Inserting the angular velocities in the Lagrangian and recalling that a = b = r

√
V , c = L/

√
V , f = −b/r we obtain

L =
1
4


V (ṙ2 + r2β̇2

+ r2 sin2 βα̇2) + L2V−1(γ̇ + cosβα̇)2

. (4.3)

In terms of Cartesian coordinates

r⃗ = (x1, x2, x3) = (r sinβ cosα, r sinβ sinα, r cosβ), (4.4)

the Lagrangian takes the more familiar form

L =
1
4
(V |˙⃗r|2 + L2V−1(γ̇ + A⃗ · ˙⃗r)2), (4.5)

where A⃗ is a gauge potential for the Dirac monopole

A1 = −
x3x2

r(r2 − x23)
, A2 =

x3x1
r(r2 − x23)

, A3 = 0, (4.6)

which satisfies

∂lAm − ∂mAl = −ϵklm
xk
r3

for r ≠ 0, (4.7)
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as well as

A⃗ · dr⃗ = cosβ dα. (4.8)

We now minimally couple the motion on TN to the gauge potential (3.16) via the Lagrangian

Lp =
V
4

|˙⃗r|2 +
L2

4V
(γ̇ + A⃗ · ˙⃗r)2 −

p
2V

(γ̇ + A⃗ · ˙⃗r). (4.9)

Clearly, the momentum q conjugate to the cyclic coordinate γ ,

q =
∂Lp

∂γ̇
=

L2

2V
(γ̇ + A⃗ · ˙⃗r) −

p
2V

, (4.10)

is conserved. The canonical momentum π⃗ conjugate to r⃗ is

π⃗ =
∂

∂ ˙⃗r
Lp =

1
2
V ˙⃗r +

L2

2V
(γ̇ + A⃗ · ˙⃗r)A⃗ −

p
2V

A⃗ = p⃗ + qA⃗, (4.11)

where

p⃗ =
1
2
V ˙⃗r (4.12)

is called the mechanical momentum [13].
The canonical symplectic structure on the phase space T ∗MTN,

dxl ∧ dπl + dγ ∧ dq, (4.13)

is invariant under the U(1) action which maps γ → γ + δ. The moment map for this action is the charge q, viewed as a
map T ∗MTN → R, and the symplectic quotient by this U(1) action

Mq = T ∗MTN//U(1) (4.14)

is, by definition, the pre-image of any real constant under the map q divided by the U(1) action. The position vector r⃗ and
the canonical momentum vector π⃗ provide natural coordinates in terms of which the symplectic structure on Mq takes the
form

ω = dxl ∧ dπl = dxl ∧ dpl +
q
2r3

ϵilnxndxi ∧ dxl. (4.15)

The associated Poisson brackets are

{A, B} =
∂A
∂xl

∂B
∂πl

−
∂A
∂πl

∂B
∂xl

, (4.16)

so that the mechanical momentum p⃗ = π⃗ − qA⃗ satisfies

{pi, pj} = −qϵijk
xk
r3

, {pi, f (r⃗)} = −∂if (r⃗), (4.17)

where f is any function of r⃗ .
We now rewrite the Lagrangian in terms of p⃗ and q,

Lp =
1
V

|p⃗|2 +
q2

L2
V −

p2

4L2V
, (4.18)

and perform the Legendre transformation to obtain the gauged Hamiltonian,

Hp = ˙⃗r · π⃗ + γ̇ q − Lp

=
1
V

|p⃗|2 +
q2

L2
V +

pq
L2

+
p2

4L2V
= H + ∆H. (4.19)

Here H is the Hamiltonian for p = 0 and ∆H the contribution of the gauge potential:

H =
1
V

|p⃗|2 +
q2

L2
V , ∆H =

pq
L2

+
p2

4L2V
. (4.20)
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Recalling that the profile function c appearing in the TN metric is c = L/
√
V , we note that

Hp =
1
V

|p⃗|2 +

q
c

+
pc
2L2

2
≥

q
c

+
pc
2L2

2
≥


0 if pq < 0
2pq if pq ≥ 0. (4.21)

For the last step we observed that the second term in the first line is the potential (2.7) of the toy model of Section 2, and
used the bound (2.11).

There is a conserved angular momentum [13] of H given by

J⃗ = r⃗ × p⃗ + qr̂, (4.22)

which, by virtue of (4.17), satisfies the relations

{Jk, pl} = ϵklmpm. (4.23)

It also follows that

{Jk, Jl} = ϵklmJm. (4.24)

Relation (4.23) can be employed to check that J⃗ Poisson commutes with the Hamiltonian H . Since ∆H is spherically
symmetric, J⃗ also commutes with Hp = H + ∆H .

In their study of the geodesic motion on the negative mass TN space in [13], Gibbons and Manton showed that there is a
conserved vector quantity analogous to the Runge–Lenz vector of the Kepler problem which takes the form

M⃗ = p⃗ × J⃗ −
r̂
2L


L2H − 2q2


. (4.25)

One checks that it satisfies

{Jk,Ml} = ϵklmMm, (4.26)

and commutes with the TN Hamiltonian H for any value (positive or negative) of L. However, it fails to commute with our
gauged Hamiltonian Hp since

{∆H,Mk} = −
p2

4LrV 2
pk +

p2

4Lr3V 3
xk(r⃗ · p⃗). (4.27)

By trial and error we find that the vector-valued function

f⃗ =
p2 r⃗
8LrV

, (4.28)

satisfies {Hp, fk} = {∆H,Mk}. Hence the components of the gauged Runge–Lenz vector

M⃗p
= M⃗ − f⃗ = p⃗ × J⃗ −

r̂
2L


L2Hp − 2q2 − pq


, (4.29)

commute with Hp. The Poisson brackets between the components of J⃗ and M⃗p turn out to be

{Ji,M
p
j } = ϵijkM

p
k ,

{Mp
i ,M

p
j } =


1
L2


q +

p
2

2
− Hp


ϵijkJk. (4.30)

We will study their Lie-algebraic interpretation in detail in Sections 6 and 7.

4.2. Classical trajectories

The conserved quantities discussed above can be used to determine the classical trajectories on TN in the gauged
situation, i.e., the solutions of the Euler–Lagrange equations of (4.9) or Hamilton equations of (4.19) with Poisson brackets
(4.16). Considering first the simpler case where q = 0, we deduce from (4.22) and (4.29) that

J⃗ · r̂ = 0, J⃗ · M⃗p
= 0, M⃗p

· r⃗ = J2 −
1
2
LEr, (4.31)
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Fig. 3. The conic sections determined by the conserved vectors J⃗ and N⃗ .

where E denotes the (constant) value of Hp and J = |⃗J|. The first and second equations show that the movement is in a plane
orthogonal to J⃗ and that M⃗p is in this plane. Using polar coordinates (r, φ) to parametrise the plane with M⃗p in the direction
determined by φ = 0, we deduce, from the third equation,

r =
J2

|M⃗p| cosφ +
1
2 LE

. (4.32)

This is the equation of a conic section. Finally taking into account the relation

|M⃗p
| =


E −

p2

4L2


J2 +

1
4
L2E2, (4.33)

we obtain the following types of orbit: the conic section is an ellipse for L2E <
p2

4 , a parabola for L2E =
p2

4 and a hyperbola

for L2E >
p2

4 .
In the general case q ≠ 0, the expression (4.22) implies

J⃗ · r̂ = q, (4.34)

which shows that r⃗ lies on a cone whose axis of symmetry is along J⃗ and whose vertex is at the origin. The opening angle
2θ ∈ (0, π) of the cone relative to the direction of J⃗ as shown in Fig. 3 is determined by

cos θ =
|q|
J

. (4.35)

For q > 0, the cone is in the ‘positive’ half-space determined by J⃗ · r⃗ > 0, while for q < 0 it is in the ‘negative’ half-space
determined by J⃗ · r⃗ < 0.

Furthermore, Eqs. (4.22) and (4.29) imply

J⃗ · M⃗p
= −

q
2L


L2E − 2q2 − pq


, M⃗p

· r⃗ = J2 − q2 −
r
2L


L2E − 2q2 − pq


. (4.36)

To interpret them, we define the vector

N⃗ = qM⃗p
+

1
2L


L2E − 2q2 − pq


J⃗. (4.37)

As a linear combination of conserved vectorswith conserved coefficients, this vector is also conserved. In terms of this vector,
the second equation in (4.36) is equivalent to

N⃗ · r⃗ = q(J2 − q2), (4.38)
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which shows that themotion is also in a plane perpendicular to the vector N⃗ . With the notation l = |r⃗× p⃗| for themagnitude
of the orbital angular momentum, we note

J2 = l2 + q2, (4.39)

so that

N⃗ · r⃗ = ql2. (4.40)

The classical trajectories in the case q ≠ 0 are thus intersections of the cone defined by (4.34) and the plane defined by
(4.40). From classical geometry we know that these are ellipses (including the degenerate case of a point), parabolae or
hyperbolae (including the degenerate case of a line). The nature of the orbit depends on the energy E and on the relative size
of q and p; as we shall see, the details are quite subtle, combining the results from the toy model in Section 2 with lessons
from the role of conic sections as trajectories in the standard Kepler problem.

Focusing on the non-degenerate case l ≠ 0, we note that the sign of q determines both the direction of the cone (4.34)
and the position of the plane (4.40) relative to the origin. If q > 0 then the situation is as shown in Fig. 3, with the cone in
the positive half-space determined by J⃗ · r⃗ > 0 and the plane (4.40) displaced from the origin in the direction of N⃗ . If q < 0
the cone is in the opposite half-space and the plane is displaced from the origin in the direction of −N⃗ . The nature of the
intersection between them, however, is independent of the sign of q, and only depends on the angle between J⃗ and N⃗ , see
again Fig. 3.

A lengthy calculation shows that the squared norm of N⃗ is

|N⃗|
2

=
l2E
4


L2E − 2pq


, (4.41)

which is positive for all allowed values of the energy by virtue of (4.21). Since, from the first equation in (4.36),

N⃗ · J⃗ =
l2

2L
(L2E − 2q2 − pq), (4.42)

we deduce that δ is determined by

cos δ =
l
J
L2E − 2q2 − pq

L

E(L2E − 2pq)

. (4.43)

In order to classify the orbits we also note that, from (4.35) and (4.39), sin θ =
l
J or

cos
π

2
− θ


=

l
J
. (4.44)

Elementary geometrical considerations in Fig. 3 now show that

l ≠ 0 and



δ <
π

2
− θ

δ =
π

2
− θ

π

2
− θ < δ <

π

2
+ θ

δ ≥
π

2
+ θ


⇔ orbit is


ellipse
parabola
hyperbola
empty set

 . (4.45)

We analyse each of those conditions in turn. Since the cosine function is strictly decreasing on the interval [0, π], applying
it to the inequalities in (4.45) reverses them. It will also be useful to observe that the energy bound (4.21) implies

q2 <
p2

4
⇒ L2E > 2q2 + pq. (4.46)

For the short proof, one needs to distinguish the cases pq > 0 and pq < 0 and use |q| < |p/2|.
For elliptic orbits, we require cos δ > cos(π

2 − θ). Inserting the above relations, this condition gives

l ≠ 0 and L2E − 2q2 − pq > L

E(L2E − 2pq). (4.47)

Since the right hand side is positive (assuming L > 0), we deduce that, for elliptic orbits,

L2E > 2q2 + pq. (4.48)

On the other hand, squaring both sides of (4.47), we deduce

L2E <

q +

p
2

2
. (4.49)



316 R. Jante, B.J. Schroers / Journal of Geometry and Physics 104 (2016) 305–328

However, the inequalities (4.48) and (4.49) can only both be satisfied if

q2 <
p2

4
, (4.50)

which is precisely the condition (2.9) derived in the toy model in Section 2. Since, by (4.46), the condition (4.50) is sufficient
for (4.48) to hold, we deduce that elliptical orbits occur iff p ≠ 0, the charge q satisfy (4.50) and the energy satisfies (4.49).1
As an aside we note that elliptical orbits are possible in the case L < 0 even when p = 0 (as discussed in [13]).

Returning to general p and positive L, the analysis of the conditions (4.45) for the parabolic and hyperbolic cases along the
lines of the discussion of elliptical orbits is now straightforward. We skip most details, but point out that, in the hyperbolic
case, the trigonometric identity cos


π
2 + θ


= − cos


π
2 − θ


applied to (4.45) implies the condition

l ≠ 0 and |L2E − 2q2 − pq| < L

E(L2E − 2pq), (4.51)

which (for positive L) is equivalent to

L2E >

q +

p
2

2
, (4.52)

but does not require any restrictions on p and q.
We summarise the dependence of the orbits on the energy E and the charge q as follows:

l ≠ 0 and


p ≠ 0, q2 <

p2

4
, L2E <


q +

p
2

2
p ≠ 0, q2 ≤

p2

4
, L2E =


q +

p
2

2
L2E >


q +

p
2

2


⇔ orbit is

ellipse
parabola
hyperbola


. (4.53)

5. Gauged Taub–NUT quantummechanics

5.1. Canonical quantisation

In this paper we set h̄ = 1 when discussing quantum mechanics. With this convention, the canonical quantisation
procedure of T ∗MTN amounts to replacing

π⃗ → −i
∂

∂ r⃗
, q → −i∂γ , (5.1)

where ∂
∂ r⃗ =


∂

∂x1
, ∂

∂x2
, ∂

∂x3


. A comparison of qwith (3.12) shows that, as an operator,

q = −i∂γ = −iX3. (5.2)

The relation (4.11) implies the quantisation of the mechanical momentum according to

p⃗ → −i
∂

∂ r⃗
+ iA⃗∂γ , (5.3)

where A⃗ is the magnetic monopole vector potential (4.6).
Inserting (5.2) into (4.19) gives

Hp =
1
V

|p⃗|2 −
V
L2


X3 +

ip
2V

2

, (5.4)

which turns out to be precisely the gauged Laplace operator (3.31). To see this, note that

|p⃗|2 = (−i∂l + i∂γ Al)(−i∂l + i∂γ Al)

= −


∂

∂ r⃗

2

+ 2

A⃗ ·

∂

∂ r⃗


∂γ − |A⃗|

2∂2
γ , (5.5)

1 If p were to vanish then (4.50) forces q to vanish, and then (4.49) would imply E = 0, which is impossible.
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where


∂
∂ r⃗

2
is the Laplace operator on Euclidean R3, andwe have used that, for the Diracmonopole (4.6), divA⃗ = 0. In terms

of spherical coordinates and (4.6) one checks that
∂

∂ r⃗

2

=
1
r2

∂r(r2∂r) +
1
r2

(∂2
β + cotβ∂β + csc2 β∂2

α), A⃗ ·
∂

∂ r⃗
=

cosβ

r2 sin2 β
∂α, |A⃗|

2
=

cos2 β

r2 sin2 β
, (5.6)

so that

|p⃗|2 = −
1
r2

∂r(r2∂r) −
1
r2

(∂2
β + cotβ∂β + csc2 β∂2

α − 2 cotβ cscβ∂γ ∂α + cot2 β∂2
γ )

= −
1
r2

∂r(r2∂r) −
1
r2

(X2
1 + X2

2 ), (5.7)

where we have used the relation,

X2
1 + X2

2 = ∂2
β + cotβ∂β + cot2 β∂2

γ + csc2 β∂2
α − 2 cotβ cscβ∂α∂γ , (5.8)

which can be obtained from (3.12). Substituting (5.7) into (5.4) shows that the quantumHamiltonianHp is the gauged Laplace
operator (3.31), as claimed.

Finally applying the quantisation rule to the angular momentum J⃗ defined in (4.22) we obtain the differential operator

J⃗ = −ir⃗ ×
∂

∂ r⃗
+ i(r⃗ × A⃗ − r̂)∂γ

= i


sinα ∂β + cotβ cosα ∂α −

cosα

sinβ
∂γ

− cosα ∂β + cotβ sinα ∂α −
sinα

sinβ
∂γ

−∂α

 . (5.9)

Transforming coordinates according to (3.10), one checks that, up to a factor of i, the components are the vector fields Z1, Z2
and Z3 (3.14) generating the left-action of SU(2) on itself:

J⃗ = iZ⃗ . (5.10)

It follows that the squared total angular momentum operator can be written in terms of the left- and right-generated vector
fields on S3 as

J⃗2 = −(Z2
1 + Z2

2 + Z2
3 ) = −(X2

1 + X2
2 + X2

3 ) = −∆S3 . (5.11)

5.2. Separating variables

For fixed r , the angular part of the quantum Hamiltonian (3.31) is akin to the Hamiltonian of a symmetric rigid body
coupled to a gauge field. In that context, the operators iZj are interpreted as ‘space-fixed’ angular momentum components
and the operators iXj as ‘body-fixed’ angular momentum components [13,3]. The quantum Hamiltonian Hp commutes with
Z1, Z2, Z3 and with X3; together, these generate the U(2) symmetry of TN space.

To separate the radial from the angular dependence in thewavefunction, we therefore require a complete set of functions
on SU(2) which diagonalise the commuting operators ∆S3 , iZ3, iX3. This is usually done in terms of Wigner functions of
the Euler angles, but here we use the construction of the eigenfunctions as homogeneous polynomials of the complex
coordinates z1, z2 and their complex conjugates given in [3]. As explained there, an irreducible representation of SU(2) can
be given in terms of polynomials in z1, z2, z̄1, z̄2 that belong to the kernel of the differential operator � = 4(∂1∂̄1 + ∂2∂̄2).
Combining this observation with the discussion in [16] we obtain a basis that satisfies this irreducibility condition:

Y j
sm =


(j + s)!(j − s)!

(j + m)!(j − m)!

1/2
k

(j + m)!

(j + m − k)!k!
(j − m)!(−1)j−s−k

(j − s − k)!(s − m + k)!
zs−m+k
1 z j+m−k

2 z̄k1 z̄
j−s−k
2 , (5.12)

where

j ∈
1
2

Z+, s,m = −j, −j + 1, . . . , j − 1, j, (5.13)

and k runs over the values so that the factorials are well defined. These functions are normalised and are clearly orthogonal
since they are eigenfunctions of the Hermitian operators∆S3 , (total angular momentum), iZ3 (angular momentum along the
space-fixed 3-axis), iX3 (angular momentum along the body-fixed 3-axis) with eigenvalues

∆S3Y
j
sm = −j(j + 1)Y j

sm, iZ3Y j
sm = mY j

sm, iX3Y j
sm = sY j

sm. (5.14)
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They also satisfy

X+Y j
sm = −i[(j − s)(j + s + 1)]1/2Y j

s+1,m, X−Y j
sm = −i[(j + s)(j − s + 1)]1/2Y j

s−1,m, (5.15)

where X± = X1 ± iX2, which shows that all the angular momentum eigenstates can be obtained from the holomorphic Y j
jm

or the anti-holomorphic Y j
−jm by the repeated action of X− or X+.

We look for stationary states Ψ of the form

Ψ (r, z1, z2) = R(r)Y j
sm(z1, z2). (5.16)

Using

(X2
1 + X2

2 )Y j
sm = [−j(j + 1) + s2]Y j

sm (5.17)

in the stationary Schrödinger equation

HpΨ = EΨ , (5.18)

we obtain the radial equation
−

1
r2

∂r(r2∂r) +
1
r2

j(j + 1) +


2s2

L
−

ps
L

− EL


1
r

+


s −

p
2

L

2

− E


R(r) = 0. (5.19)

Before we study bound and scattering states in the following sections, we make two general observations.
It follows from (5.2) that, when acting on the functions (5.12), the operator q has the eigenvalue −s. For later use, note

that the classical bound (4.21) also holds in the quantum case, so that, in particular, for any eigenstate of Hp and q with
eigenvalues E and −s, we have

L2E ≥


0 if ps > 0

−2sp if ps ≤ 0. (5.20)

Finally, it is worth stressing that neither the space-fixed nor the body-fixed angular momentum operators discussed above
are invariant under U(1)-gauge transformations. The quantum numbers j, s andm are not gauge invariant either and there-
fore have to be interpreted with care. However, this is familiar in the context of the Schrödinger equation coupled to a
magnetic field, particularly in the discussion of Landau levels for planar motion in a magnetic field. Even though the angular
momentum operator is not gauge invariant in this context, the eigenvalues can be used to label degenerate energy eigen-
states. This labelling is not gauge invariant, but physical quantities like the energy or the degeneracy of energy levels are. The
role of the gauge choice in labelling degenerate states in Landau levels is discussed in detail in [17], see also the book [18].

5.3. Bound states

The substitution of

R(r) = r je−k′ru(r), k′2
=


s −

p
2

L

2

− E, (5.21)

into the radial Schrödinger equation (5.19), reduces it to

z
d2u
dz2

+ (b − z)
du
dz

− au(z) = 0, (5.22)

where

z = 2k′r, a = (j + 1 + λ), b = 2j + 2, (5.23)

and

λ = −
1

2k′L


L2E + ps − 2s2


. (5.24)

Eq. (5.22) is the confluent hypergeometric equation [19]. The general solution which is regular at the origin is

u = A M(a, b, z), (5.25)

where A is an arbitrary constant andM is Kummer’s function of the first kind. Square integrability requires

a = −ν, ν = 0, 1, 2, . . . and k′
∈ R+. (5.26)
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Since j takes arbitrary half-integer positive values, the first condition is equivalent to

n := −λ = ν + j + 1, ν = 0, 1, 2, . . . . (5.27)

In principle, n can take all half-integer values ≥1, but the ranges of the quantum numbers j and n are related by (5.27). This
requirement together with the expression (5.24) for λ as well as L > 0 and k′ > 0 imply

L2E > 2s2 − ps. (5.28)

On the other hand, the relation (5.21) between E and k′ enforces

L2E <

s −

p
2

2
= s2 − ps +

p2

4
. (5.29)

There can only be bound states if these two inequalities can be simultaneously satisfied, i.e., if

p2

4
> s2, (5.30)

which is the quantum version of the condition (4.50) for bounded orbits in the classical theory.
Note that, if Lwere negative, the inequality (5.28) would have the opposite direction and there would be no condition on

p. In that case we can set p = 0 and recover the bound states in the singular L = −2 TN space discussed in [13], which exist
for any s ≠ 0. As shown in [20], there are no bound states (and no bounded orbits) when L > 0 and p = 0. More generally,
however, binding is always possible when p is sufficiently large. All these results confirm the qualitative discussion of the
two-dimensional toy model in Section 2.

Solving (5.21), (5.24) and (5.27) for E, we find

E =
2
L2


−n2

+ s2 −
ps
2


±

2n
L2


n2 − s2 +

p2

4
. (5.31)

Only the solution with the upper sign satisfies (5.28), and we write the resulting spectrum of bound state energies as

E =
2
L2


s2 −

ps
2

+ n


n2 − s2 +

p2

4
− n2


, n = |s| + 1, |s| + 2, |s| + 3 . . . . (5.32)

The behaviour for large n is typical for Coulomb bound states

E ≈


s −

p
2

2
L2

−


s2 −

p2

4

2
4L2n2

+ O


1
n4


. (5.33)

This formula for the bound state energies shows that, like in the toymodel of Section 2, the bound state energies are relatively
high when p and q have the same sign (so that the signs of p and s are opposite) but are lowered when the signs of p and q
are opposite (and those of p and s the same). Note also that, in the limit p = 0 and for L = −2 our formula reduces to that
obtained in [13] for the negative mass TN space. For a detailed comparison observe that in [13] only integer values of j and
nwere considered.

The energy levels for fixed s and n have a large degeneracy, given by the sum over the dimension 2j+1 for allowed values
of j. Recalling the constraint (5.27) and j ≥ |s|, the degeneracy is′n−1

j=|s|
2j + 1 = (2|s| + 1) + (2|s| + 3) + · · · + (2n − 3) + (2n − 1) = n2

− s2, (5.34)

with


′ indicating that we sum over integers if |s| is an integer and over half-odd integers if |s| is a half-odd integer. As we
shall see in Section 6, the degeneracy can be understood in terms of a conserved Runge–Lenz vector.

5.4. Scattering states

Next we turn to solutions of the eigenvalue equation (5.18) which describe stationary scattering states. For the analysis
of scattering it is convenient to use parabolic coordinates familiar from the treatment of Coulomb scattering.

Assuming solutions of (5.18) of the form

Ψ = e−isγ eimαΛ(β, r), (5.35)

and recalling the formula (5.8), we find that Λ has to satisfy the equation
∂2
r +

2
r
∂r +

1
r2

∂2
β +

1
r2

cotβ∂β


Λ +

1
r2

(−s2 cot2 β − m2 csc2 β + 2ms cotβ cscβ)Λ

−
V 2

L2


s −

p
2V

2
Λ + EVΛ = 0. (5.36)
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Now introducing parabolic coordinates ξ, η via

ξ = r(1 + cosβ), η = r(1 − cosβ), (5.37)

and noting the inverse transformation

r =
ξ + η

2
, cosβ =

ξ − η

ξ + η
, sinβ =

2
√

ξη

ξ + η
, (5.38)

we think of Λ now as a function of ξ and η via the substitution (5.38) for r and β . Then (5.36) becomes

4
ξ + η


ξ∂2

ξ + η∂2
η + ∂ξ + ∂η


Λ −

1
ξη


s2 + m2

+ 2ms
ξ − η

ξ + η


Λ

+


−

2s2

L
+

sp
L

+ EL


2Λ
ξ + η

−
1
L2


s −

p
2

2
Λ + EΛ = 0. (5.39)

Separating variables again via Λ = f (ξ)g(η) we find

4ξ
f

∂2
ξ f +

4
f
∂ξ f −

1
ξ
(m + s)2 + k2ξ + 2


EL −

2s2

L
+

ps
L


− C = 0, (5.40)

4η
g

∂2
ηg +

4
g
∂ηg −

1
η
(m − s)2 + k2η + C = 0, (5.41)

where C is a separation constant and

k2 = E −
1
L2


s −

p
2

2
. (5.42)

These differential equations can be simplified further if we assume solutions of the form

f (ξ) = ξ
|m−s|

2 e−
ikξ
2 F(ξ), g(η) = η

|m+s|
2 e−

ikη
2 G(η), (5.43)

and implement the change of variable

z1 = ikξ, z2 = ikη. (5.44)

Doing so we deduce that both F and G satisfy the confluent hypergeometric equation

z1
d2F
dz21

+ (b1 − z1)
dF
dz1

− a1F = 0, (5.45)

z2
d2G
dz22

+ (b2 − z2)
dG
dz1

− a2G = 0, (5.46)

where

a1 =
|m − s|

2
+

1
2

−
ic
4k

+
i
2k


EL −

2s2

L
+

ps
L


, b1 = |m − s| + 1, (5.47)

a2 =
|m + s|

2
+

1
2

+
ic
4k

, b2 = |m + s| + 1. (5.48)

We see from these relations that

a1 + a2 = 1 +
1
2
|m + s| +

1
2
|m − s| − iλ, (5.49)

where

λ = −
L

2kL2

L2E + ps − 2s2


. (5.50)

So, the scattering solution is of the form

Ψ = e−isγ eimαξ
|m−s|

2 η
|m+s|

2 e−
ikξ
2 e−

ikη
2 M(a1, b1, ikξ)M(a2, b2, ikη), (5.51)

where M is Kummer’s function of the first kind. This is formally the same as the two monopole scattering state found
by Gibbons and Manton [13] in the case p = 0 and L = −2. However, in our case the constants k and λ have an extra
p-dependence and the length parameter L is positive.
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As in [13] one can compute the cross section by looking at the wave function withm = s and a1 = 1,

Ψ = eis(α−γ )(r − z)|s|eikzM(|s| − iλ, 2|s| + 1, ik(r − z)), z = r cosβ. (5.52)

Then the substitution of the asymptotic form of M(|s| − iλ, 2|s| + 1, ik(r − z)) for large |z| as in [13] allows us to identify
the scattered spherical wave, and to obtain the cross section

dσ
dΩ

=
s2 + λ2

4k2
csc4

β

2
. (5.53)

Writing λ in terms of k via (5.50), we finally arrive at the cross section
dσ
dΩ


(p,s)

=
L2

16


4s2

k2L2
+


1 −

s2

k2L2
+

p2

4k2L2

2

csc4

β

2

=
L2

16


1 +

s2

k2L2

2

+
p2

4k2L2


2 −

2s2

k2L2
+

p2

4k2L2


csc4

β

2
. (5.54)

The special cases s = 0 and p = 0 are interesting because the resulting cross sections
dσ
dΩ


(p,0)

=
L2

16


1 +

(p/2)2

L2k2

2

csc4
β

2
(5.55)

and 
dσ
dΩ


(0,s)

=
L2

16


1 +

s2

L2k2

2

csc4
β

2
(5.56)

are mapped into each other under the exchange s ↔ p/2 even though the general case (5.54) is not invariant under this
exchange. In both special cases, the charge, energy and angular dependence approaches that of the Rutherford scattering
cross section for electrically charged particles in the limit of large s (or p).

6. Algebraic calculation of quantum bound states

6.1. The Runge–Lenz operator and so(4) symmetry

In 1926, Pauli computed the quantum spectrum of the hydrogen atom by using the conservation of the Runge–Lenz
vector [21]. His method has since then beenmuch explored and extended in various papers, see [22] for a reference which is
particularly useful in the current context. More recently, it was used to compute bound states and scattering of the Laplace
operator on TN space [15] and also for the Dirac operator on TN [14]. We now use it to re-derive the spectrum of the gauged
TN Hamiltonian (3.31) purely algebraically.

As always in quantising a theory, we need to be careful with ordering in the quantisation of classically conserved quan-
tities. While there are no such ambiguities in the definition of the angular momentum operators, they do arise in defining a
quantum version of the Runge–Lenz vector. The quantum analogues of the canonical Poisson brackets (4.17),

[pi, pj] = −iqϵijk
xk
r3

, [pj, f (r⃗)] = −i∂jf (r⃗), (6.1)

imply, for the quantum angular momentum operator (5.9),

[Ji, pj] = iϵijkpk, (6.2)

which is the quantum version of (4.23). This means that [Ji, pj] ≠ 0, i ≠ j, and hence the order of J⃗ and p⃗ is important in the
definition of the quantum version of the Runge–Lenz vector (4.29).

Noting that, classically, p⃗ × J⃗ =
1
2 (p⃗ × J⃗ − J⃗ × p⃗), one finds that the quantum ordering

M⃗ =
1
2
(p⃗ × J⃗ − J⃗ × p⃗) −

r̂
2L


L2H − 2q2


(6.3)

ensures that the quantum commutation relations between J⃗ and M⃗ are,

[Jk, Jl] = iϵklmJm, [Jk,Ml] = iϵklmMm, (6.4)

in analogy to the classical Poisson brackets (4.24) and (4.26) respectively. Nowweuse (6.2) to rewrite the Runge–Lenz vector
as

M⃗ = p⃗ × J⃗ − ip⃗ −
r̂
2L


L2H − 2q2


. (6.5)
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The second ambiguity has to do with the position of the factor r̂ of the last term. The above choice guarantees that the
quantum Runge–Lenz vector commutes with H .

In order to obtain a Runge–Lenz vector which commutes with the gauged Hamiltonian Hp and still satisfies the relations
(6.4), it turns out that the addition of the term f⃗ (4.28), whichworked in the classical case, alsoworks in the quantum theory.
The gauged quantum Runge–Lenz vector is therefore

M⃗p
= p⃗ × J⃗ − ip⃗ −

r̂
2L


L2Hp − 2q2 − pq


. (6.6)

A lengthy calculation yields the commutators

[Ji,M
p
j ] = iϵijkM

p
k ,

[Mp
i ,M

p
j ] = i


1
L2


q +

p
2

2
− Hp


ϵijkJk, (6.7)

which quantise the Poisson brackets (4.30). We also find the following operator identities:

M⃗p
· J⃗ = J⃗ · M⃗p

= −
q
2L


L2Hp − 2q2 − pq


,

M⃗p
· M⃗p

=


Hp −

1
L2


q +

p
2

2
(⃗J · J⃗ − q2 + 1) +

1
4L2


L2Hp − 2q2 − pq

2
. (6.8)

Since the Hamiltonian Hp and the U(1) generator q commute with each other and all components of M⃗p and J⃗ , we can fix
their eigenvalues and study the commutation relations of M⃗p and J⃗ in a fixed common eigenspace of Hp and q. Denoting the
eigenvalues by, respectively, E and −s, and assuming the bound state energy range

L2E <

s −

p
2

2
, (6.9)

we define the rescaled Runge–Lenz vector,

M̃p
=

1
1
L2

s −

p
2

2
− E

M⃗p. (6.10)

Together with the components of J⃗ , it satisfies the so(4) commutation relations,

[Ji, Jj] = iϵijkJk, [Ji, M̃
p
j ] = iϵijkM̃

p
k , [M̃p

i , M̃
p
j ] = iϵijkJk. (6.11)

6.2. Bound states revisited

The bound state energies of Hp can now be derived from the isomorphism so(4) ≃ su(2) ⊕ su(2) and the standard
representation theory of su(2). We introduce the commuting operators

J⃗± =
1
2
(⃗J ± M̃p), (6.12)

and see that the two Casimirs

J2
±

=
1
4
(⃗J · J⃗ + M̃p

· M̃p) ±
1
4
(M̃p

· J⃗ + J⃗ · M̃p) (6.13)

have eigenvalues j±(j± + 1), where j± are both non-negative half-integers. Moreover, since J⃗ = J⃗+ + J⃗−, it follows that the
total angular momentum quantum number j defined in (5.14) lies in the range

|j+ − j−| ≤ j ≤ |j+ + j−|. (6.14)

Since −j ≤ s ≤ j, we deduce that

−|j+ + j−| ≤ s ≤ |j+ + j−|. (6.15)

In terms of M̃p, the relations (6.8) read

M̃p
· J⃗ = J⃗ · M̃p

=
s
2L

(L2E − 2s2 + ps)
1
L2

s −

p
2

2
− E

,

M̃p
· M̃p

+ J⃗ · J⃗ = s2 − 1 +
(L2E − 2s2 + ps)2

4


s −
p
2

2
− L2E

 . (6.16)
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Substituting these into (6.13) and replacing J⃗2
±

by the eigenvalues j±(j± + 1), we get two quadratic equations for the
unknown2

n :=
L2E − 2s2 + ps

2L


1
L2

s −

p
2

2
− E

, (6.17)

namely

n2
+ 2sn + s2 − 1 − 4j+(j+ + 1) = 0,

n2
− 2sn + s2 − 1 − 4j−(j− + 1) = 0. (6.18)

The roots of the first equation are

n = −s ± (2j+ + 1), (6.19)

and the roots for the second equation are

n = s ± (2j− + 1). (6.20)

Both equations have to be satisfied for some values of j+ and j−, but combining the upper sign in one with the lower sign in
the other implies a value of swhich is outside the range (6.15). Hence, there are only two possible solutions for n, one which
is manifestly a half-integer ≥1:

n = −s + (2j+ + 1) = s + (2j− + 1), (6.21)

and one which is manifestly a half-integer ≤ − 1:

n = −s − (2j+ + 1) = s − (2j− + 1). (6.22)

Finally solving (6.17) for E we obtain again the solutions (5.31) previously obtained via square integrability arguments.
However, we still have four possibilities in total: two choices of sign in (5.31) and two choices for n (positive or negative)
and in this section we cannot assume the conditions (5.28) and (5.30) to resolve the ambiguity. In the four different cases
the energy equation (5.31) takes the two possible forms

L2E
2

− s2 +
ps
2

= n2

±


1 +

p2
4 − s2

n2
− 1

 . (6.23)

We can eliminate the lower sign because it conflicts with the lower bound (5.20). To see this we re-write (6.23) with the
lower sign as

L2E = −ps − 2(n2
− s2) − 2n2


1 +

p2
4 − s2

n2
, (6.24)

showing that L2E < −ps in this case. However, this is inconsistent with the energy inequality (5.20) and therefore ruled out.
Turning to the upper sign, we need to consider the two possible signs of n and check the consistency between (6.23) and

(6.17). In the case n ≥ 1, both (6.23) and (6.17) assign a positive sign to L2E
2 −s2+ ps

2 provided s2 < p2/4. In that casewe arrive
at the previously derived energy spectrum (5.32) together with the condition (5.30) for bound states. However, n ≤ −1 is
also consistent provided s2 > p2/4. We have not been able to eliminate this case using only the algebraic methods of this
section. It seems that the consideration of the actual wavefunction (5.18) and integrability requirement (5.27) is needed to
rule out n ≤ −1.

Finally turning to the degeneracy of the energy levels, we see that the quantum numbers n and s are determined via

n = j+ + j− + 1, s = j+ − j−, (6.25)

and that the degeneracy of the energy level with quantum numbers n and s is the dimension of the tensor product j+ ⊗ j−
of the irreducible angular representations with spins j+ and j−,

(2j+ + 1)(2j− + 1) = n2
− s2, (6.26)

reproducing and interpreting the degeneracy (5.34) of energy levels.
In this section we have only studied the commutation relations of the angular momentum and Runge–Lenz vectors at

energies satisfying L2E < (s−p/2)2 and corresponding to bound states. It is not difficult tomodify our discussion for the case
L2E ≥ (s−p/2)2. The dynamical symmetry algebra of the angular momentum and of a suitably rescaled Runge–Lenz vector,
analogous to (6.11), turns out to be isomorphic to the Lie algebra so(3) n R3 of the Euclidean group when L2E = (s − p/2)2
and isomorphic to the Lie algebra so(3, 1) of the Lorentz group when L2E > (s − p/2)2. In the following section we will see
how these three cases can be understood from a unified, geometrical point of view.

2 Note that the definition of n here is consistent with (5.24) and (5.27).
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7. Twistorial derivation of the gauged Runge–Lenz vector

7.1. Twistors, SU(2, 2) symmetry and moment maps

It has been known for a while [23] that the usual Kepler problem can be regularised by embedding momentum
three-space into the three-sphere by means of a stereographic projection. This gives a geometrical picture of the angular
momentum and Runge–Lenz vectors as conserved quantities associated with symmetries of the round three-sphere. For a
full geometrical understanding of the dynamical symmetry of the Kepler problem, it is moreover convenient to think of it as
the symplectic quotient of an eight dimensional phase space, and the dynamical symmetry algebra for the various energy
regimes as subalgebras of so(4, 2), see [24] for a pedagogical review.

It was shown in [25] that one can similarly interpret angular momentum and Runge–Lenz vectors of the (ungauged) TN
motion as generators of a subalgebra of a su(2, 2) ≃ so(4, 2) symmetry algebra acting on an eight-dimensional phase space
of twistors. In this sectionwe show how this story can be extended to the gauged TN dynamics.We beginwith a brief review
of the relevant notation.

For our purposes, twistor space is T = (C2
× C2) \ {0}, and a twistor

Z =


ω

π


∈ T (7.1)

is a pair of spinors ω =

ω1
ω2


and π =


π1
π2


. Twistor space T is endowed with a pairing

(Z, Z) = π̄1ω1 + π̄2ω2 + ω̄1π1 + ω̄2π2, (7.2)

which can be written as the matrix product Z∗Z where

Z∗
= ZĎA, A =


0 τ0
τ0 0


, (7.3)

is the conjugate spinor and we write again τ0 for the 2 × 2 identity matrix. The pairing is invariant under U(2, 2), but we
are particularly interested in the Lie algebra of the subgroup SU(2, 2). Following [25], we pick generators γKL where the
structure constants are purely imaginary, and again write τi for the Pauli matrices:

γ0k = −
i
2


τk 0
0 −τk


, γij =

1
2
ϵijk


τk 0
0 τk


, γ06 =

1
2


0 τ0
τ0 0


,

γk6 =
1
2


0 τk

−τk 0


, γ05 =

1
2


0 τ0

−τ0 0


, γk5 =

1
2


0 τk
τk 0


,

γ56 =
i
2


τ0 0
0 −τ0


, (γLK = −γKL, K , L = 0, . . . , 3, 5, 6; i, j, k = 1, 2, 3). (7.4)

For us, two sub-Lie algebras will be important. The stabiliser Lie algebra of the generator γ06 is the Lie algebra generated by
si :=

1
2ϵijkγjk and ti := γ5i and is isomorphic to so(4):

[si, sj] = iϵijksk, [si, tj] = iϵijktk, [ti, tj] = iϵijksk. (7.5)

The stabiliser Lie algebra of the generator γ05 is the Lie algebra generated by si and ri := γi6 and is isomorphic to so(3, 1):

[si, sj] = iϵijksk, [si, rj] = iϵijkrk, [ri, rj] = −iϵijksk. (7.6)

As discussed in [25],3 the space T has the U(2, 2) invariant one-form

θ = Im(Z∗dZ) =
1
2i

(Z∗

αdZ
α

− ZαdZ∗

α), (7.7)

whose exterior derivative

Ω = dθ = −idZ∗
∧ dZ (7.8)

is a symplectic form on T. The su(2, 2) generators γKL define vector fields on T whose moment maps are

JKL = Z∗γKLZ . (7.9)

3 Note that our sign conventions differ from those in [25].
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The diagonal U(1) subgroup of U(2, 2) acts on T, preserving its symplectic structure. The moment map is 1
2Z

∗Z , and the
symplectic quotient is the level set

Tq =


Z ∈ T

12Z∗Z = q


(7.10)

quotiented by the diagonal U(1) action:

M̃q = Tq/U(1). (7.11)

We now introduce coordinates on T which are particularly well adapted for describing this quotient. With the notation
τ⃗ = (τ1, τ2, τ3), we parametrise the spinors π and ω in terms of spherical coordinates (R, α, β, γ ) and P⃗ ∈ R3, q ∈ R as

π =
√
R
e−

i
2 (α+γ ) cos β

2

e
i
2 (α−γ ) sin β

2


, (7.12)

and

ω =


iP⃗ · τ⃗ +

q
R
τ0


π. (7.13)

In order to compute the symplectic structure and moment maps in terms of R⃗ and P⃗ , we note that

πĎπ = R, πĎτ⃗π = R⃗, (7.14)

where

R⃗ = (X1, X2, X3) = (R sinβ cosα, R sinβ sinα, R cosβ), (7.15)

and

ωĎω = RP⃗2
+

q
R
, ωĎτ⃗ω = −2P⃗ × J⃗ +


RP⃗2

+
q
R


R̂. (7.16)

It is not difficult to check that, for fixed q, the twistor Z =

ω

π


satisfies (7.10) and thus belongs to Tq. Moreover, the diagonal

U(1) acts simply by shifting γ , so that the vectors P⃗, R⃗ ∈ R3, which are independent of γ , are good coordinates on the
quotient M̃q.

The symplectic structure (7.8) induces a symplectic structure on M̃q which can be expressed as

Ω = dXl ∧ dPl +
q

2R3
ϵilnXndXi ∧ dXl. (7.17)

The moment maps for γ50, γ60 and the generators of their stabiliser Lie algebras can be written in terms of P⃗, R⃗ as

Z∗γ50Z =
1
2
(ωĎω − πĎπ) =

1
2


RP⃗2

+
q
R

− R


,

Z∗γ06Z =
1
2
(πĎπ + ωĎω) =

1
2


RP⃗2

+
q
R

+ R


,

Z∗s⃗Z =
1
2
(ωĎτ⃗π + πĎτ⃗ω) = R⃗ × P⃗ + qR̂,

Z∗ t⃗Z = −
1
2
(πĎτ⃗π + ωĎτ⃗ω) = P⃗ × J⃗ −

1
2


RP⃗2

+
q
R

+ R

R̂,

Z∗ r⃗Z =
1
2
(πĎτ⃗π − ωĎτ⃗ω) = P⃗ × J⃗ −

1
2


RP⃗2

+
q
R

− R

R̂. (7.18)

We can summarise these formulae more neatly by introducing a variable κ which can take the values ±1. Then we write

H̃p =
1
2


RP⃗2

+
q
R

+ κR


, (7.19)

for the moment maps Z∗γ50Z and Z∗γ06Z with κ = 1 and κ = −1. We write

J⃗ = R⃗ × P⃗ + qR̂, (7.20)

for the vector or moment map Z∗s⃗Z , and finally note that

K⃗ = P⃗ × J⃗ − H̃pR̂ (7.21)
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unifies the moment maps Z∗ t⃗Z and Z∗ r⃗Z for κ = 1 and κ = −1.
It then follows from the general theory of moment maps (and can also be verified directly) that the Poisson brackets of

these moment maps are, up to factors of i, the commutators of the Lie algebra elements which enter the definition. In other
words, the brackets are

{H̃p, Ji} = {H̃p, Ki} = 0
{Ji, Jj} = ϵijkJk, {Ji, Kj} = ϵijkKk, {Ki, Kj} = κϵijkJk. (7.22)

7.2. Mapping twistor space to the gauged Taub–NUT phase space

Adapting the treatment of [25], we shall show how the quotient M̃q (7.11) can be mapped onto the symplectic quotient
Mq (4.14) of the cotangent bundle of TN. The map between the phase spaces is not canonical, but it can be extended to a
map on the evolution space, preserving the presymplectic (or Poincaré-Cartan) two-form.

For a phase spaceM with symplectic structureω andHamiltonianH , the evolution space isM×R, and the presymplectic
two-form is ω + dH ∧ dt , where t is a global (time) coordinate on R. The trajectories of the flow with Hamiltonian H can
be characterised as the vortex lines of ω + dH ∧ dt , i.e., the lines whose tangent lines are in the null space of ω + dH ∧ dt .
Now consider the extended phase spaces M × R and M̃ × R̃ with symplectic structures and Hamiltonians (ω,H) on M and
(ω̃, H̃) on M̃, and time coordinates t on R and t̃ on R̃. Then a map

F : M × R → M̃ × R̃ (7.23)

which satisfies

F∗(ω̃ + dH̃ ∧ dt̃) = ω + dH ∧ dt (7.24)

will map trajectories in the Hamiltonian system (M, ω,H) to trajectories in the Hamiltonian system (M̃, ω̃, H̃). For details
and a pedagogical discussion of Hamiltonian trajectories as vortex lines of Poincaré-Cartan structures see [26].

We should stress that, in contrast to the treatment of the ungauged case with negative L in [25], and unlike in the usual
Kepler problem, no regularisation is required in our case since our Hamiltonian is smooth and finite on the entire phase
space. For definiteness we focus on the case

L2Hp <

q +

p
2

2
, (7.25)

which is relevant for bounded orbits.
The two extended phase spaces we would like to map into each other are Mq × R with presymplectic two-form

σ = ω + dHp ∧ dt = dxl ∧ dpl +
q
2r3

ϵilnxndxi ∧ dxl + dHp ∧ dt, (7.26)

and M̃q × R̃ with presymplectic two-form

Σ = dXl ∧ dPl +
q

2R3
ϵilnXndXi ∧ dXl + dH̃p ∧ dt̃. (7.27)

The required map is most easily written down in terms of the coordinates (P⃗, R⃗, t̃) of M̃q × R̃ and the coordinates (p⃗, r⃗, t)
on Mq × R. It takes the form

F : Mq × R → M̃q × R̃, (r⃗, p⃗, t) → (R⃗, P⃗, t̃), (7.28)

where

R⃗ = r⃗


1
L2


q +

p
2

2
− Hp,

P⃗ =
p⃗

1
L2

q +

p
2

2
− Hp

,

t̃ =


1
L2

q +

p
2

2
− Hp

p2
L +

pq
2L −

1
2 LHp


r⃗ · p⃗ + 2


1
L2


q +

p
2

2
− Hp


t


. (7.29)
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A lengthy calculation shows

F∗(dXl ∧ dPl) = dxl ∧ dpl +
1
2 (p⃗ · dr⃗ + r⃗ · dp⃗) ∧ dHp

1
L2

q +

p
2

2
− Hp

,

F∗

 q
2R3

ϵilnXndXi ∧ dXl


=

q
2r3

ϵilnxndxi ∧ dxl, (7.30)

and

F∗(dH̃p ∧ dt̃) = dHp ∧ dt −

1
2 (p⃗ · dr⃗ + r⃗ · dp⃗) ∧ dHp

1
L2

q +

p
2

2
− Hp

. (7.31)

Combining these, we deduce

F∗Σ = σ , (7.32)

as claimed. It follows that F maps solutions of the Hamilton equations

dr⃗
dt

=
∂Hp

∂ p⃗
,

dp⃗
dt

= −
∂Hp

∂ r⃗
(7.33)

to solutions of the Hamilton equations

dR⃗
dt̃

=
∂H̃p

∂ P⃗
,

dP⃗
dt̃

= −
∂H̃p

∂ R⃗
. (7.34)

Having seen that F maps trajectories to trajectories, albeit traversed at different rates, we conclude this section by showing
how F relates observables. It is easy to check that F maps the angular momentum in M̃q to the angular momentum in Mq,
i.e., the substitution of (7.29) into (7.20) gives the TN angular momentum

J⃗ = r⃗ × p⃗ + qr̂. (7.35)

The Hamiltonians and the Runge–Lenz generators, however, are related by pulling back with F together with rescaling.
Substituting the expressions (7.29) into the Hamiltonian (7.19) with κ = 1, one finds the re-scaled gauged TN Hamiltonian,

H̃p =
L2Hp − 2q2 − pq

2L


1
L2

q +

p
2

2
− Hp

, (7.36)

and the substitution into (7.21) (again with κ = 1) gives a rescaled Runge–Lenz vector (6.10),

K⃗ =
p⃗ × J⃗ −

1
2L (L

2Hp − 2q2 − pq)r̂
1
L2

q +

p
2

2
− Hp

. (7.37)

8. Discussion and conclusion

Our results show that the inclusion of the magnetic field (3.16) in the discussion of dynamics on TN space is both
mathematically natural and phenomenologically interesting. The gauge field preserves the geometrical U(2) symmetry of
TN and here we showed that it also preserves the dynamical symmetry of the associated phase space.

As suggested by our qualitative discussion of magnetic binding in Section 2, the form of the magnetic field ensures
the existence of bounded orbits classically and of bound states quantum mechanically. As a result, TN dynamics with the
magnetic field (3.16) combines aspects of two paradigmatic systems of classical and quantum mechanics – the Kepler
problem and the Landau problem of a charged particle in a magnetic field – into one model that preserves and merges
the most interesting features of both.

In fact, one can understand many results of this paper qualitatively by thinking of gauged TN dynamics as a combination
of a Landau problem in the cigar-shaped submanifolds of TN space, reviewed in Section 3.1, and a Kepler problem on the
base. The magnetic field on the cigars acts as a ‘magnetic plug’ which keeps trajectories in a bounded region and produces
quantumbound states, provided the energy is sufficiently small and |q| < |p/2|. This last condition is precisely the condition
for bounded trajectories in our toymodel of Section 2. A further link with Landau states, explained in [12], is that in the limit
where the TN parameter ϵ in (3.4) (which we set to 1 in our discussion) is taken to zero, the gauged TN problem actually
becomes a four-dimensional Landau problem.

Some of the details of our results deserve further comments. The spectrum of quantum bound states (5.32) depends both
on the magnetic flux parameter p and the quantum number s. Importantly, it also depends on the relative sign of those two
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quantumnumbers through the appearance of the product ps in the energy levels (5.32). This is a consequence of the breaking
of the discrete symmetry (3.18). In view of the interpretation of s as a component of the body-fixed angular momentum,
the dependence on energy levels on the alignment of this angular momentum with the magnetic flux is essentially an
(anomalous) Zeeman effect.

In the interpretation of the TNmanifold as a collective coordinate space ofmagneticmonopoles in [13,5,4], the body-fixed
angular momentum quantum number s is an electric charge. Adopting that nomenclature, and recalling that the parameter
p measure the magnetic flux of an external magnetic field, the equality of the purely magnetic scattering cross section and
the purely electric cross section may be viewed as a manifestation of a magnetic–electric duality. As far as we are aware,
this is not expected in this context, and it remains an open problem to find a simple explanation of it.

Acknowledgements

RJ thanks MACS at Heriot-Watt University for a Ph.D. scholarship. BJS acknowledges support through the EPSRC grant
‘Dynamics in Geometric Models of Matter’ (EP/K00848X/1). We thank the Isaac Newton Institute for hospitality during the
final stage of writing this paper and Guido Franchetti for producing the plots in Fig. 1.

References

[1] C.N. Pope, Axial-vector anomalies and the index theorem in charged Schwarzschild and Taub-NUT spaces, Nuclear Phys. B 141 (1978) 432–444.
[2] C.N. Pope, The η-invariant of charged spinors in Taub-NUT, J. Phys. A: Math. Gen. 14 (1981) L133–L137.
[3] R. Jante, B.J. Schroers, Dirac operators on the Taub-NUT space, monopoles and SU(2) representations, JHEP. 1401 (2014) 114.
[4] K. Lee, E.J. Weinberg, P. Yi, Electromagnetic duality and SU(3) monopoles, Phys. Lett. B 376 (1996) 97–102.
[5] J.P. Gauntlett, D.A. Lowe, Dyons and S-duality in N = 4 supersymmetric gauge theory, Nuclear Phys. B 472 (1996) 194–206.
[6] M. Atiyah, N.S. Manton, B.J. Schroers, Geometric models of matter, Proc. Roy. Soc. A 468 (2012) 1252–1279.
[7] G. Franchetti, Harmonic forms on ALF gravitational instantons, J. High Energy Phys. 1412 (2014) 075. arXiv:1410.2864.
[8] R.D. Sorkin, Kaluza-Klein monopole, Phys. Rev. Lett. 51 (1983) 87–90.
[9] D.J. Gross, M.J. Perry, Magnetic monopoles in Kaluza-Klein theories, Nuclear Phys. B 226 (1983) 29–48.

[10] H.V. McIntosh, A. Cisneros, Degeneracy in the presence of a magnetic monopole, J. Math. Phys. 11 (1970) 896–916.
[11] D. Zwanziger, Exactly soluble non-relativistic model of particles with both electric and magnetic charges, Phys. Rev. 176 (1968) 1480–1488.
[12] M. Atiyah, N. Franchetti, B.J. Schroers, Time evolution in a geometric model of a particle, J. High Energy Phys. 1502 (2015) 062.
[13] G.W. Gibbons, N.S. Manton, Classical and quantum dynamics of BPS monopoles, Nuclear Phys. B 274 (1986) 183–224.
[14] A. Comtet, P.A. Horvathy, The Dirac equation in Taub-NUT space, Phys. Lett. B 349 (1995) 49–56.
[15] L.G. Fehér, P.A. Horváthy, Dynamical symmetry of monopole scattering, Phys. Lett. B 183 (1987) 182–186.
[16] T. Dray, A unified treatment of Wigner D functions, spin-weighted spherical harmonics, and monopole harmonics, J. Math. Phys. 27 (1986) 781–792.
[17] T. Haugset, J. Aa. Ruud, F. Ravndal, Gauge invariance of landau levels, Phys. Scr. 47 (1993) 715–719.
[18] E. Fradkin, Field Theories of Condensed Matter Physics, second ed., Cambridge University Press, Cambridge, 2013.
[19] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
[20] E.J. de Vries, B.J. Schroers, Supersymmetric quantum mechanics of magnetic monopoles: a case study, Nuclear Phys. B 815 (2009) 368–403.
[21] W. Pauli, Z. Phys. 36 (1926) 336–363.
[22] M. Bander, C. Itzykson, Group theory and the hydrogen atom (I), Rev. Mod. Phys. 38 (1966) 330–345.
[23] J.K. Moser, Regularization of Kepler’s problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23 (1970) 609–636.
[24] V. Guillemin, S. Sternberg, Variations on a theme of Kepler, in: AMS Colloquium Publications, vol. 42, American Mathematical Society, 1990.
[25] B. Cordani, L.G. Feher, P.A. Horvathy, Kepler type dynamical symmetries of long range monopole interactions, J. Math. Phys. 31 (1990) 202–211.
[26] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer Verlag, New York, 1978.

http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref1
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref2
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref3
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref4
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref5
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref6
http://arxiv.org/1410.2864
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref8
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref9
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref10
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref11
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref12
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref13
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref14
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref15
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref16
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref17
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref18
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref19
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref20
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref21
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref22
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref23
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref24
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref25
http://refhub.elsevier.com/S0393-0440(16)30042-0/sbref26

	Taub--NUT dynamics with a magnetic field
	Introduction
	A toy model: motion on a surface with magnetic field
	Classical and quantum geometry of the Taub--NUT space
	The Taub--NUT geometry
	The gauged Dirac and Laplace operators

	Dynamical symmetries in classical Taub--NUT dynamics
	Canonical procedure
	Classical trajectories

	Gauged Taub--NUT quantum mechanics
	Canonical quantisation
	Separating variables
	Bound states
	Scattering states

	Algebraic calculation of quantum bound states
	The Runge--Lenz operator and  s o (4)  symmetry
	Bound states revisited

	Twistorial derivation of the gauged Runge--Lenz vector
	Twistors,  S U (2, 2)  symmetry and moment maps
	Mapping twistor space to the gauged Taub--NUT phase space

	Discussion and conclusion
	Acknowledgements
	References


