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We introduce a g-Dunkl operator T, g, = Hg+0H_; where H is
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primary 33C45 classical orthogonal g-polynomials. Up to a dilatation, the solution
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1. Introduction and preliminaries

Let {Pn}, - o be a sequence of monic polynomials with degP, =n,n>0 (MPS) and O is a lowering
operator on the space of polynomials. The sequence {P;}, ¢ is called O-Appell when

_ OPny1

Py ,
On+1

n>0
with «, is the normalization coefficient. The study of the O-Appell polynomials was the
preoccupation of several authors [5,17].

The (MPS) {Pp}, > o is called symmetric if and only if [7]
Pp(—=X) = (—1)"Py(x), n>0.
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The concept of O-semiclassical orthogonal polynomials of class s > 0 were extensively studied by
Maroni and coworkers for O=D the derivative operator, O = D,, the divided difference operator and
H, the g-derivative one through the following distributional equation satisfied by the regular form u
(linear functional) associated with a such sequence:

O(@Xuw+¥Yxu=0 (1.1)

where @ is a monic polynomial and ¥ a polynomial with deg¥? >1. For O € {D,D,,Hg},
O-semiclassical of class zero are usually called O-classical and are completely described in
[1,13,19]. Also, symmetric O-semiclassical of class one are exhaustively described in [2,12,20]. For
other relevant research in the domain of orthogonal g-polynomials and the O-semiclassical character
with perhaps other operators and from other point of view see [3,4,15,16,21,22].

It is an old result that the D-classical sequence of Hermite polynomials {I:I;O)}nzo is the unique
D-Appell orthogonal one, up to affine transformation [7]. In [11], it is proved that the symmetric

sequence {I:I(n”)}nzo of generalized Hermite polynomials which is D-semiclassical of class one for
u#0, u#-n—1, n>0, is the unique symmetric D,,-Appell orthogonal for u+-n—1, n>0, up to
affine transformations, where D, := D+0H_; is the Dunkl operator (see also [6]).

Moreover, in [10], by considering a first g-analogue of Dunkl operator D4 = Hq+0H_q, the
second author and Ghressi have proved that the symmetric sequence {Yy(.; b,g*)}, > o of Brenke type
[7] which is Hg-semiclassical of class one for b0, b#q, b#q~2", n> 0 [12] is the unique symmetric
D,q-Appell orthogonal, up to a dilatation.

Recently, in [8], the authors proved an uncertainty principle for the basic Bessel transform of
order o > —1 by introducing the following g-Dunkl operator:

[2a+1],

Toq =Hq+ Tt

H_;.
After replacing in the above expression [20+ 1]q/q2°‘+1 by a parameter 6, we obtain a second g-Dunkl
operator

T((.)'q) = Hq +()H_]

and the aim of our contribution is to highlight all symmetric Ty q-Appell orthogonal g-polynomials.
Up to a dilatation, it is a g>-analogue of generalized Hermite polynomials orthogonal with respect to
the form #(u,q?) which is a symmetric H,-semiclassical form of class one [12] for some values of the
parameter p. Moreover, some particular special cases well known in the literature are recovered [7]
(see Theorem 2.3) and their integral representations and discrete measure are given in [12]. Thus,
Section 3 is devoted to establish moments, integral representation and discrete measure for H(u,q?)
when it is possible.

Let P be the vector space of polynomials with coefficients in C and let 7’ be its topological dual.
We denote by <u,f) the effect of u € P’ on f € P. In particular, we denote by (1), = <u,x"», n>0
the moments of u. Let us introduce some useful operations in 7'. For any form u, any a € C—{0} and
any q#1, we let Du=u/, hau and Hqu, be the forms defined by duality [13,18]

<u/-f> ::_<uvf/>v fEP,

<hﬂuvf> = <uvhaf>=<uvf(ax)>v uE'P,,fGP
and
(Houf > = —<u,Hef >, feP

where (Hyf)(x) = (f(gx)—f(x))/(q—1)x. Denoting C=1{zeCz20,2"#1,n>1}.

The form u is called regular if we can associate with it a sequence of polynomials {Pn},- ¢ such
that <u,PpPn) =1adpm, n,m>0; 1r,#0, n>0. The sequence {P,},- ¢ is then said orthogonal with
respect to u. Therefore {Pp}, - ¢ is an (OPS) such that any polynomial can be supposed monic (MOPS).
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The (MOPS) {Pn}, - o fulfils the recurrence relation

Pox)=1, Pi(x)=x—P, 12
Ppy2(®) = (X=Pn 1P 1(0)=7p 1 Pn(X),  Ypy1#0, n=0. 0

The (MOPS) {Pn}, s o is symmetric if and only if 5, =0, n>0 [7].
A form u is called Hg-semiclassical when it is regular and there exist two polynomials @ and ¥, @
monic, deg® =t >0, deg¥ =p > 1 such that

Hg(Pu)+Yu=0 (1.3)

the corresponding orthogonal sequence {Py}, - ¢ is called Hs-semiclassical [14]. The Hg-semiclassical
character is kept by shifting. In fact, let {P; = A™"(haPn)}, >0, A#0; when u satisfies (1.3), then
il = hy1u fulfils the equation

Hy(A" d(Ax)il) + AT P(Ax)ii = 0 (1.4)
and the recurrence elements f,, Fns+1, 1 =0 of the sequence {Pp},> ¢ are

Bn:%v ?n+1:yfq-£lv n=0. (1.5)

Also, the Hq-semiclassical form u is said to be of class s = max(p—1,t—2) > 0 if and only if [14]

11 t1athg P)©)+ Hg®@)(©)|+ 1< ,q(Ocg ) + (Ocg0c D) >} > O, (1.6)

ceZyp

where Z4 is the set of zeros of @.
Regarding integral representations through weight-functions for a Hg-semiclassical form u
satisfying (1.3), we look for a function U such that

+00
wfy= [ " ueredx fen, 1.7)
where we suppose that U is regular as far as necessary. On account of (1.3), we get [13]
+ o0
[ @ e @Up+ PeoUf e de=0, [ e,

with the additional condition [13]

1 _U(—
lim0 w dx exists or U is continuous at the origin. (1.8)
e—->+0 /¢
Therefore
g (Hg-1 (@U)X)+ P (OUX) = 28(X), (1.9

where 4 € C and g is a locally integrable function with rapid decay representing the null form. For
instance

0, x<0,
8X) =1 exsinxl/4, x>0,
was given by Stieltjes [23]. When A =0, Eq. (1.9) becomes
D(q U@ %) = (PX)+(q—-DXP I (),
so that, if ¢ > 1, we have

PX)+(g—Dx¥P ()

U@ 'x)= o)

Ukx), xeR, (1.10)
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and if 0 < q < 1, with x—qx, we have

D(x)
D(gx)+(q—1)gx ¥ (gx)

Lastly, let us recall the following result useful for our work [2]:

U(gx) = Ux), xeR.

Lemma 1.1. Let {Pn},- o be a (MOPS) and M(x,n), N(x,n) two polynomials such that
M(x,m)Py11(X) = N(X,m)Pn(x), n=0.
Then, for any index n for which degN(x,n) < n, we have

N(x,n)=0 and M(x,n)=0.

Let us introduce the g-Dunkl operator in P by

Tig.q) = Hq+0H_; ;fo(zl;) ]{}((X) ofc f) J® g0, fep qet.

We haveT 0.9 = —Hy—0H_; where T,

P’ by Tipq = —Tg, SO that

<T(9'q)u,f> = —<U.T(g_qJ>, ue 7)/. f eP.

In particular this yields

(H QD

(To.qWn = —OngWpn_q, n=0,

where (u)_; := 0 and

_ 1—(-1)" q”l 1—(-1)"
Ong=[nly+0 5 =g +0 5 n>0
with
q' -1
[n]y = -1 n>0
In fact,

9211,(1 = [2n]q, 92n+1.q = [2n+1]q+9, n=0.
It is easy to see that

Ti0.9 (@) = (h_1/)(T(0,98)+&(To,q)f )+ (hof —h_1f)Heg, f.g P
and

T(O'q)qjqpo.
Now consider a (MPS) {Pp},- o and let

1
L(x; HQ)— (T(()q)Pn+l)(X) 0#—-[2n+1];, n=0.

1.11)

denotes the transposed of Ty 4. We can define Ty ) from P’ to

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

Definition 1.2. The (MPS) {Py},- o is called Ts4)-Appell classical if Py)(;0,q) = P,, n>0 and {P},~ o

is orthogonal.
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2. Determination of all symmetric Tyq-Appell classical orthogonal g-polynomials

Lemma 2.1. Let {Pn},» o be a symmetric Ty q-Appell classical sequence. The following formulas hold:

1+ 2 0
qu(hflanrl)(x): {9n+2,q* /r;;rl Hn,qflf(I*Q)j}PnJrl(X)Jr <Vn+1 en.q*q6n+l.q>xpn(x)v nx>1,

n Yn
2.1
1+
V2= Qﬁ%- 2.2)
Proof. From (1.2) and the fact that {P},, - o is a symmetric (MOPS) we have
Py 2(X) =XPn 1(X) =1 Pn(x), n=>0. (2.3)

Applying the operator Ty in (2.3), using (1.15) and in accordance of the T4 -Appell classical
character we obtain

On+2,qPn+1(X) = —0n11,¢XPa() +(1+ 0Py 1(X)+(q+ Dx(HgPn )X =7y 4 1 OngPr1(®), n=1.
(2.4

From definition of the operator Ty and the recurrence relation in (1.2), formula (2.4) becomes

1—
On+2,gPn+1(X) = q0n 4 1,¢XPn(X)+ (1 + Tq())Pn-H(X)

T+q Vn+

+ T@(h,lanr])(X)— p 1 en.q(XPn(X)—P,1+1(X)), nx>1.

Consequently (2.1) is proved.
On the other hand, taking n=1 in (2.1) and on account of P;(x)=x and P,(x) = x>—y,, we get (2.2)
after identification. O

Now, we are able to give the system satisfied by y,_ ;, n> 0 written in terms of r, 1, n > 0 where
m+1 1S given by

Fayr= 019 oo 2.5)
/n+l

Proposition 2.2. The sequence {ry 1}, o fulfils the following system:

qrpp1 =A=Qra+rn1, n=2, (2.6)
1 'n—
L g O = On s 3.9—Oni1g0 N=2, 2.7
Thi2 I'n

= 1;9

1
. 140 (2.8)
:- qri

Proof. Applying the dilatation h_, for (2.3) and multiplying by (1+q)/20, according to (2.1), we get
successively

(h-1Py42)(%) = =X(h_1 Py 1))=Y 1 (h_1Pr)x), n=0,

1+ 1+ 1+
30 1Py ) = x5 L0 1Pa )01 L Oh PR, 10,

n+1

q 1—
<9n+3.q*§::?6n+1,q*1*7q9>Pn+2(x)+<zn+z9n+1,q*q9n+2,q>xpn+1(x)
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1— A
= —X{ <0n+2,q_yr;)+l Qn,q—l—Tq 9>Pn+1(x)+ (/r:)+] en,q_q9n+l,q>xpn(x)}
n n

N

A

1—
—Vn+1 { <9n+1,q*vy7n0n7],q*]*7q8> Pp(x)+ < ’n 0n—1.q*q9n,q)xpn7](x)}' n>2.
1

_ n—1
But from (2.3) another time we obtain
M(x,mPy 4 1(X) = N(x,n)Pp(x), n=2,

where for n>2

0 O
M(x,n) = (9n+3,q+(‘1 _Q)0n+2,q_(1_qwn+1 #—%HA ool
/n ’Vn—l
0 O
Nx,n) = <q9n+l,q_(1_qwn+1 ﬂ_ynJrl :]—M>X2
yn /n—l
On_
Jr“/,pr](911+3,q*9n+1,q)*7n+20n+1,q+7n+17n ; ]]'q-
ne
Next, according to Lemma 1.1, for n> 2, M(x,n)=0, N(x,n)=0, that is to say
0 On_
q9n+1,q—(] —Q)Vn+1 #_VnJrl n-14 =0, n 22|
/n Vn—l

On_
Pn+10n+3.0=0n+1.0—Vn1 20010+ Vg1V — =0, n>2.

Yn-1

According to (2.5) relations (2.10) and (2.11) give the desired results (2.6) and (2.7).

Also, from (2.5) and (1.14) we get
r1:1+0, T2=1+q.
71 V2

Therefore, taking into account (2.2) we obtain (2.8). O

Now we are going to solve the system (2.6)-(2.8).
It is easy to see that (2.6) is equivalent to

Thi1 _(q71 _1)rn—q71rn_1 =0, n>2,

42 (1-q)0

2.9

(2.10)

2.11)

with the associated characteristic equation r*—(q~'—1)r—q~'=0 having to roots g~! and —1.

Consequently, there exist two complex numbers o, /5 such that
m=oq "+p-1", n>1.
Now, taking into account (2.8), (2.12) becomes
_(+06)yq g
71

and (2.7) is valid.
From (2.5) and (1.12), the relation in (2.13) yields to

1+(-1)"
i = 1age (11,1050, nzo,

with the regularity condition

0#—[2n+1], n=0.

n , n>1

2.12)

2.13)

(2.14)

Theorem 2.3. The symmetric Ty q-Appell classical form, up to a dilatation, is the q*-analogue of
Generalized Hermite H(u,q?) where p = (1+0)/q(1+q)—3, p+ —[nlg —1, n> 0 which is Hg-semiclassical

of class one having the q-distributional equation

Hq(xH(t,g)) +(q+ (x> —u—HH(u.q*) =0
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for u#1/q1+q)—3, p#—[nle—3%, n>0[12] and its (MOPS) satisfies (1.2) with [12]

Bn =0,
- 1
Tons1 =0"" ([n]qz ‘HH‘j)v n>0. (2.15)

Tons2 =" n+1]g,

We may write some special particular cases:

(i) If 0£1/(q—1), q € C, then the symmetric case of the Al-Salam-Verma form SV(a,q?) where a =
1/(1+0(1—q)) which is Hg-semiclassical of class one such that

Hq(x8V(a,q°)—(aq*(q—1)) "' ®*—1+ag*)SW(a,4*) =0
for ge C, a0, a#q!, a#q~2"2, n>0 [14] and its (MOPS) satisfies (1.2) with [7,12]
Bn =0,
Joni1 =q*"(1—-ag**2),  n=0. (2.16)
5’2n+2 — aq2n+2(1 7q2n+2),
(ii) If 0=1/(q—1), q € C, then the symmetric form u which is Hg-semiclassical of class one fulfilling
Hy(xw)+(q-1D)'**+1u=0
for g e € [12] and its (MOPS) satisfies (1.2) with [12]
Bn =0,
Pons1 =—q*", n>0. 2.17)
Ton 2 =0"(1-¢2"*2)

Proof. Let {Py},. ¢ be a symmetric T q-Appell classical sequence and u its associated regular form.
By virtue of (2.14) and (2.2) we get

ﬁnzo'

Yan+1 =1yﬁq2“([2n+1]q+0). n>0 (2.18)

)i
Y2n+2 :1—_;0q2"+1[2”+2]q.

From assumption of regularity we get 0+ —[2n+1],, n>0.
Moreover, from (1.13) we obtain

[2n+1]; =q(@+D[n]p +1, 0
2n+2],=(@+Dn+1]p, "=

Consequently, the system (2.18) becomes

ﬁn=0v
o MA@+ oy 1+0
Y1 = 1+0 q [n]q2+q(q+]) ' n>0. (2.19)

) +1
Yon+2 :%qzn[n"-l]qz.

With the choice A% = y,q(q+1)/(1+0) in (1.5) and putting u := (1+0)/q(1+q)— 3, the system (2.19)
leads to (2.15) and the desired result is then proved. O
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Now, let us suppose g € C. In this case and on account of (1.13) an other time, the system (2.18)
becomes

N __ "N o oy 2n+1

n>0. (2.20)
\ _ 71 2n+1 (1_ 2n+2
Va2 = A gy A—g) 1 (1-g"*2),
There are two ways to read (2.20)
If 6#1/(q—1) then
,Bn =0,
_’Vil _ 2n _; 2n+1
=g 000 (g™ ) aso @21)
. _ 71 2n+1(1 _g2n+2
))ZTH—Z _(1+0)(1_q)q (1 q )1
If 0 =1/(qg—1) then
n =0,
Yans1 =119 n=0. (2.22)

Voni2 =—113*"(1—-g*"*2),

With the choice A% =y,(14+0(1-q))/(1+0)(1—¢) in (1.5) and putting a := 1/(1+0(1—q)), the system
(2.21) leads to (2.16) and the point (i) is then proved. O
With the choice A2 = —y, in (1.5), the system (2.22) leads to (2.17) and the point (ii) is then proved.

Remark. In [12], the moments and integral representations or discrete measure of SV(a,q?) (see the
situation (i) in Theorem 2.3) and those for u (see the situation (ii) in Theorem 2.3), are established.
Our aim in the sequel is to establish analogue results for the g?>-analogue of Generalized Hermite
H(u,q?). According to (2.15), the form #(u,q?) is positive definite if and only if ¢ >0, u> —1.

3. Moments, integral representation and discrete measure of #(u,q?)

Firstly, let us recall the following standard expressions [9,13,22]:

@qo =1 (@q@,=[[(A-ag"", n=>1, 3.1)
k=1

+ 00

@ Qo = [[1—ag"), lqI<1, (3.2)
k=0
(@; @)oo
amoy  0Sa=th

@q,= (aq—lqn. q—l) 3.3)
RIS

The g-binomial theorem

2 Py g _ @z 9
=0 (@ D (Z: Do

, lzZl<1, g1 <1, (3.9

the g-analogue of the exponential function
+00 q1/2k(k71>

k
G, f == 00 < 1, i
(@ -z @ gl -
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T (@D @ Ds

, xe RN, |aj<qg*, O0<qg<1,

S T
0 > oo 1_qmmm(q”), x=meN"*, |al<q", O0<qg<1.
Also, in what follows we are going to use the principal branch of the square root
VZ= Jﬁexp(i%). ze C\{0}, —nt<Argz<m, (3.7
where the logarithmic function denoted by Log : C\{0}— C defined by
Logz =In|z|+iArgz, z e C\{0}, —T <Argz <m.
Log is the principal branch of log and includes In : R*\{0}— R as a special case.
Secondly, let us state this technical lemma needed to the sequel and is easy to establish:
Lemma 3.1. Let
Gu@=1+@+3)A-¢*), q>0, u>-% (38)

We have

1
Cu@#0, a>0, g#qu 1>—5, @ <0e=qe€lqu+ool, 0<Eu(@) <1e=q €]l.qul.
Eu(@) > 1<=q €]0,1], (3.9

where q, = \/(1t+ 3)/(1+ D).

Thirdly, from the Hg-semiclassical of class one conditions p+#1/q(1+q)—3, ,u;é—[n]qz—l, n>0
concerning the form H(u,q%) we get

L@#q7", u@#g*", n>0. (3.10)

Now, we are able to highlight integral representations and discrete measure of H(u,q?) in the
positive definite case and for some values of parameters.

Proposition 3.2. The form H(u,q?) has the following properties.

(1) The moments of H(u,q*) are

(H(,u'qz))2n+l =0, n>0,

ko 1(q*2=¢ 3.11
H(gNo =1, (H(u,q%)zn=Hk*1((22_1)f“(q)). n=1. G110

(2) Forall f e P, 1 <q<gqy and u> —1, the form H(u,q?) is represented by

|x|*1nfu(4)/1nf1*1

~ + 00
> =K [ AL (3.12)

(1=g)Eu(@) X% g7
where K~1 = [;F° t~In6u(@/2Ina=1 /(_(q2 ~1)(£ ,(q)) ' t:q %), dt is given by (3.6).
(3) Forall f e P, 0<q<1 and u> —1, the form H(u,q?) is represented by
g1 Eu@/—g*)'?

CHG).f> =K / o x| @ (1) Eu(@) T X P)af ) X, (3.13)
—q 7 (Cu@/(A-g*)Y

where

g7 @/ (1= B
k=2 [ X @I (1 2)(E, (@) g 0P
0
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(4) Forall 0 <q <1 and pu> —1, the form H(u,q%) has the discrete measure

(€ (q))* 1000 <X (@)
2 14 0o u
Hwq™) = Z (@ Py (Pg vaae O e yamme): (3.14)
(5) For all q €]1,+oo[\{q,} and u> —1, the form H(u,q?) has the discrete measure
1
H(uq*) =

2@ 'q2:972),

+o0 (_])kq—k(k+l)(§u(q))—k 5
Xk— q2:972), ( qk«/s“u(tv/(lfq2)+ qu«/i“(q)/(l—qz))‘

where /£,(q)/(1—q?) is given by (3.7).

Proof. For (1), it is seen in Theorem 2.3 that the g?-analogue of generalized Hermite H(u,q?) is a
symmetric Hq-semiclassical form of class one for u=1/q(1+¢q)—1, ,u;é—[n]qz—l, n > 0 satisfying the
g-distributional equation

(3.15)

Hq(xH(1,9%) +(q+ 1) —pu—PH(1,g%) = 0. (3.16)
Equivalently with (3.16), we have
CHgXH(t @)+ (@ + D —p—HH(u,g*)x"» =0, n=0.
Consequently, according to the symmetric character of this form, this yields the recurrence relation
(H(g*No=1, (H(1.g*)) =0,

1 1
(H(q*n 42 = {#+2 +q+l}(H(ﬂ q?),, n>0.
Thus the desired result (3.11) since the relation [2k],/(q+1) = [K]g = (q*-1)/(g*>-1), k>0 and the
definition in (3.8).
To establish (3.12) and (3.13), we look for a function U such that (see (1.7))

» + 00

> = [ Uwpedy. feP. (.7)
From the hypothesis of (2), we have 1 < q <q,,, s> —1. By virtue of (1.7) and (3.16), the g-difference
Eq. (1.10) becomes
U@ "% =q&u@1+@-D(Euq) ' )UE), x<R, (3.17)
with 0 < ¢,(q) <1 according to (3.9). Consequently, we seek U as
V(x)

Ux)= , XeR.
® (1=g)(Eu (@) '¥2:972) ©

Replacing in (3.17) this leads to V(qg~'x) = q¢,(@V(x), therefore
V(x) = K|x|~Ineu(@/Ina—1,

It follows the result (3.12).
From the hypothesis of (3), we have 0<q<1, u>—1 By virtue of (1.7) and (3.16), the
g-difference equation (1.11) becomes

@ @)
1-(1-g2)q2(&,(q)) ' 2

U(gx) = U, (3.18)
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with &,(q) > 1 according to (3.9). Consequently, we seek U as

12

(A-P)PEUQ) PV, X <q ! (f"_(ji) :

Uty = Eu@\ 2
1 u

0, Xl > q (Hz) :

Replacing in (3.18) this leads to V(gx) = (q&,(q))"'V(x), therefore
V(x) = K|x|~Inéu@/Ing—1,

It follows the result (3.13).
To establish (3.14) and (3.15), from (3.11), the notations in (3.1), (3.8) and the first property in
(3.9), we have for ¢ > 0,q#quu>—1

(H(.q%))an = (f*f;’i) (@) @)y n>0. (3.19)

According to (3.3) and (3.10), the relation in (3.19) becomes

n —1. 42
<¢,¢<q>> (Cu@ 500 o _q.

1-¢2) (@) 'g*:q?),
<éy(q)> "E@) a2 g7
1-¢2) (@) 'a-2q2),,

(H(G*))2n = (3.20)

, q>1, q#q,.

But, by the g-binomial (3.4), the g-analogue of the exponential function (3.5) and the last property in
(3.9), the equality in (3.19) yields to

2n
_ X (Eugn* [€.(@)
H(uq?),x*"y = L) >4 k24 , 0 1, 3.21
CHG ) x> = (Eu(@)™ 5 q%) 2 (@ a0 (q 1_q2) <q< ( )

and

2n
1 X (~ kg RkEDE, () * @
H , 2 , 2n — § £ k £ ) lv .
Hadxs (@) 'q2:0) @392 1 | 1-¢2 9> 1 470

(3.22)

Thus the desired results (3.14) and (3.15) according to the fact the form H(u,g?) is symmetric and
3.7). O

Remark 3.3. (1) When q > q,,u > —1, it is not known whether results on integral representations
exist and the problem in this case is open.
(2) In (3.12), by taking into account (3.5) and the fact that

Ing,(q)
N lnq 7]q—>—1>4r 2/1.

we get formally for u > — 1 the following

/+oo |X|—ln¢'ﬂ(q>/lnq—l

r+ 00
_ 20 n—X2
~o0 ((1—qz)(éﬂm))—lx%q—z)mf o / eI TP

—o0

lim
g-17

which confirm an other time that #(u,q2) is a g>-analogue of generalized Hermite.
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