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In this note, we solve the problem of determining the chromatic number of 
planar graphs to which a certain number p of “extra” edges are attached. We 
obtain a (best-possible) theorem when p < (“, for every integer k >, 3. The 
statement of the theorem for k = 2 is the Four-Color Conjecture. 

If G is a graph (no loops or parallel edges), we denote by p(G) the 
skewness of G which is the minimum number of edges whose removal 
makes G planar. Of course, p(G) = 0 if and only if G is planar. The 
problem of determining x(G) when p(G) = 0 is just the Four-Color 
Conjecture. However, things turn out to become quite tractable if we 
consider the problem of determining x(G) when p(G) < r for some 
fixed r > 1. 

We have shown elsewhere [l] that x(G) < 5 if p(G) < 2 and that 
x(G) < 6 if p(G) < 5. Since 2 = (i) - 1 and 5 = (3 - 1, the following 
theorem generalizes these results. 

THEOREM A. @-p(G) < (3, then, for k 2 3, x(G) < 2 + k. 

Proof. By the above remarks, the theorem holds for k = 3 or 4. 
Suppose k > 5 and let G be a graph with n vertices and m edges satisfying 
6~~(G)<(~).Thenm--~(G)~3n--6som~3n--6+$-(G).Now 
if d is the average degree of G, d = 2m/n < 6 + [2&(G) - 6)/n]. Consider 
the equation 

6 + [2(p - 6)/x] = x - 1. (1) 

Multiplying by X, we obtain 6x + 2& - 6) = x2 - X, or 

x2 - 7x - 2(p - 6) = 0 (2) 
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Since p > 0, there is a positive real root 

a(p) = 7 + (49 + s(jA - 6)y/2 = 7 -j- (I T 8p)1y2Q (3) 

Let H(p) = [C&L)]. It is now an easy argument, exactly analogous to the 
proof of the Heawood Theorem (see, for example [2]); to show that 

d < CL - f and hence that G must contain a vertex of degree < H - PI. 
An inductive argument due to Szekeres and ilf [6] now implies that 
x(G) < H(p). Thus, it remains to show that H(,u) < 2 + k. 

Note that if p < p’, a(,~) < a+‘). NOW 

a((k2 - k)/2) = (7 + (1 + 4k2 - 4k)l/3/2 = (7 + (2k - I))/2 = 3 -t k. 

Hence, for p < (2”) = (k2 - k)/2, a(p) < 3 $ k so H(p) < 2 + k. 
Let us reverse the question for a moment. Certainly, x(K,) = 12. 

what is ~-L(K,)? It is an easy consequence of Euler’s formula (see [3]) that 
for n > 5, 

PW 3 g) - 3(n - 2) = ((n” - n)/2) + ((--6sz + 12)/z) 

= (n - 3)@ - 4)/Z = 

oreover, since for n 3 3, triangulations of order ?(I? - 2) exist, we 
have the following. 

LEMMA. p(K,) = (n;3). 

Now we can use the preceding theorem to derive an interesting result. 
For I > 0, let X(,U < r) = sup&(G)/ ,LL(G) < rj and let 
SUP@ I PKJ -c r>- 

DEOREM B. x(p < (3) = k + 2 = M(p < (3) ifk 3 3. 

Proof. By Theorem A, J&L < (5) < k + 2 foor k > 3. Moreover, by 
tbe lemma, &Y,.,,) = (“;I) < (5, for k > 3, so ,I&L < (5) = k + 2. But, 
again by the lemma, M(p < (3) = k + 2. 

mark 4. Since (i3> = I, the validity of Theorem A for k = 2 is 
equiva~e~t to the validity of the Four-Color Conjecture. 

emark 2. Theorem B shows that the “obstruction” to the geomet ’ 
coloring problem of determining the chromatic number of graphs WI 

cified skewness is a complete graph. This result is analogous, though 
ove, to the results of Binge1 and Youngs [5] in the orient- 

gel [4] in the nonorientable case which show the same 
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thing about the obstruction to the geometric coloring problem of deter- 
mining the chromatic number of graphs with specified genus. 

Remark 3. It is an easy exercise to see that Theorem B can be strength- 
ened to read &L < r) = k + 2 = M(p ==c Y), where r > 1 and k is the 
smallest integer for which r < (3. 
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