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Evaluation of how historical irrigation reactions can adapt to future drought is indispensable to irrigation policy,
however, such reactions are poorly quantified. In this paper, county-level irrigation data formaize, soybean, grain
sorghum, and wheat crops in Kansas were compiled. Statistical models were developed to quantify changes of
irrigation and yields in response to drought for each crop. These were then used to evaluate the ability of current
irrigation to copewith future drought impacts on each crop based on an ensemble PalmerDrought Severity Index
(PDSI) prediction under the Representative Concentration Pathways 4.5 scenario. Results indicate that irrigation
in response to drought varies by crop; approximately 10 to 13% additional irrigation was applied when PDSI was
reduced by one unit for maize, soybean, and grain sorghum. However, the irrigation reaction forwheat exhibits a
large uncertainty, indicating a weaker irrigation reaction. Analysis of future climate conditions indicates that
maize, soybean, and grain sorghum yields would decrease 2.2–12.4% at the state level despite additional irriga-
tion application induced by drought (which was expected to increase 5.1–19.0%), suggesting that future drought
will exceed the range that historical irrigation reactions can adapt to. In contrast, a lower reduction (−0.99 to
−0.63%) was estimated for wheat yields because wetter climate was projected in the central section of the
study area. Expanding wheat areas may be helpful in avoiding future drought risks for Kansas agriculture.
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1. Introduction

Climate change has been reported to slow current crop yield growth
in the United States (Kucharik and Serbin, 2008; Lin and Huybers, 2012;
Lobell et al., 2014) and results in substantially adverse impacts on future
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agricultural outputs (Schlenker and Roberts, 2009; Ruane et al., 2014).
Progressively increasing drought stress in the US, induced by either
declining rainfall (Dai, 2013) and higher water demands associated
with warmer climate (Lobell et al., 2013), are critical mechanisms
constraining yields, testing the ability of the current irrigation infra-
structure to adapt to future climate change.

Previous studies investigated the potential ability of irrigation to
adapt to future drought using process-based models that simulate crop
development under hypothetical irrigation scenarios (Brumbelow and
Georgakakos, 2001; Rosenzweig et al., 2014; Ventrella et al., 2012;
Moore et al., 2013). For example, Rosenzweig et al. (2014) investigated
future climate impacts on global crop yields by assuming two simplified
irrigation scenarios (full irrigation and rainfed), and simulated an overall
reduction of yields induced by climate change. Ventrella et al. (2012)
executed an assessment for wheat and tomato in southern Italy but
employed more irrigation scenarios; i.e. assuming irrigation application
when soil moisture reaches a certain threshold. Similar analysis can
been found in Brumbelow andGeorgakakos (2001), who assumed apply-
ing irrigation in the model when a ten-day composite moisture stress
index was reduced to a certain level. The International Panel on Climate
Change Fifth Assessment Report (IPCC AR5, 2014) summarized that
those studies must implicitly or explicitly make assumptions about how
farmers adjust their practices in response to climate change. However,
in reality, farmers have long been interacting with climate to maximize
their profits (Zhang et al., 2008;Wreford et al., 2010;OECD, 2012). For ex-
ample, US data shows that farmers increased irrigation in response to
drought while their reactions varied substantially by location (Zhang
et al., 2015). This variability reflects not only a consequence of drought se-
verity but also a combined effect of the availability of irrigation water re-
sources and technologies (Dowet al., 2013). Such reactions are difficult to
reflect in artificial irrigation scenarios in process-based models, and are
often poorly quantified due to the lack of relevant data. Therefore, the re-
gional irrigationwater application induced by climate needs to be reason-
ably estimated so that the impact assessment can be executed based on a
realistic response.

A central issue is whether future drought severity would surpass the
ability of the current irrigation water supply to maintain crops at the
county level and this would have fundamental implications in guiding
future irrigationwater policy. If future drought is still within the current
irrigation adaptive capacity, further investments to upgrade current sys-
tems would not be economically justified; conversely, if future drought
exceeds current irrigation capacity, then improving irrigation-based
adaptive capacity is critical to mitigate future drought impacts. How-
ever, quantifying and benchmarking the current irrigation-based adap-
tation is never easy because most available irrigation data products are
not very well characterized in terms of crop-specific information, and
the databases are compiled from short periods of records. For example,
the most-frequently used irrigation dataset, MIRCA2000 (Portmann
et al., 2010) only provides the total irrigated area in the year 2000. To
quantify the adaptive effects of irrigation, crop-specific irrigation
water application over a long time period is required. A long-term
data product is needed to be able to evaluate the actual irrigation reac-
tion to drought and allow the irrigation-based impact on yields to be
benchmarked under current climate conditions.

In this study, county-level irrigation datasets for each of the four
crops (maize, soybean, grain sorghum, and wheat) for 1992 through
2012 in the state of Kansas in the US were compiled. Based on this
dataset, the irrigation reaction to drought for each crop was quantified,
providing a basis for actual drought-induced irrigation change. Potential
yield changes to future drought were then calculated considering such
reactions. The objective of this study was to assess whether the histori-
cal irrigation reactions could mitigate future drought impacts on the
four major crops in Kansas. A statistical model in conjunction with this
dataset was used to investigate the relationship between climate,
crop, and irrigation. Currently, a statistical model has been often used
to establish the relationship between climate and yield in empirical
studies. For example, Lobell et al. (2011) established a multiple regres-
sion model to investigate the response of crop yields to air temperature
and precipitation for major grain production. Using an empirical statis-
tical model, Schlenker and Roberts (2009) developed a linkage between
thermal time accumulation and yields and found harmful impacts of
extreme temperatures in US agricultural production. In our study we
attempted to quantify this relationship from temperatures; a quantity
of combining temperature, precipitation, soil conditions (i.e., drought
index), and irrigation. Therefore a two-stage least square regression
method was applied to this dataset. This regression method is a
widely-used multilevel modeling technique to help quantify the
inter-relationship in a hierarchical system as is the case in this
study (Angrist and Imbens, 1995).

2. Datasets and methods

2.1. Datasets of irrigation, crop yields, and climate

The irrigation data used in this study were drawn from the Water
Information Management and Analysis System (WIMAS) (Kansas
Department of Agriculture and Kansas Geological Survey, 2013). The
datasetwas based onwater use annual reports from farmers to the Kan-
sas Department of Agriculture, Division of Water Resources. The crop-
specific irrigation data by county for 1992 through 2012 were obtained
from the dataset. Even though this dataset is only available for Kansas
counties, it provides much more detailed information on irrigation
than the other more geographically extensive datasets from which
crop-specific information cannot be determined (e.g., USGS, 2013;
Portmann et al., 2010).

Following the procedures of previouswork using theWIMAS dataset
(KansasWater Office andDivision ofWater Resources, 2011; Kenny and
Juracek, 2013; Wilson et al., 2005), crop-specific irrigation water vol-
ume was determined for each county-year pair. Then the irrigation
water volume was divided by the harvested area for each crop so
that the crop-specific mean seasonal irrigation depth (mm) for each
county-year pair could be produced. The harvest area of each crop was
derived from the US Department of Agriculture's National Agricultural
Statistics Service (NASS, 2013) database. Themajor reasonwe used har-
vested area data rather than irrigated area is that irrigated area changes
in each year are caused by different climate moisture conditions occur-
ring in each year. Thus, only using irrigation volume per irrigated area
will overlook drought impacts on irrigated areas; hence thereby
underestimating drought influences. In addition, the second reason for
using harvest area data is the large amount of missing data on irrigated
crops in the NASS dataset.

The annual county-level yield data for the four crops in all Kansas
counties were collected from the NASS database (NASS, 2013) from
1992 through 2012. In addition,monthly temperature and precipitation
data were obtained from the Parameter-elevation Regressions on
Independent Slopes Model dataset (PRISM, 2013) and their county-
level average valueswere calculated in ArcGIS software. To better repre-
sent drought, the Palmer Drought Severity Index (PDSI) was calculated
for each county andmonth using an algorithm provided by the National
Climatic Data Center (2013). Briefly speaking, PDSI was developed by
Palmer (1965) to measure the cumulative departure in surface water
balance. This index incorporates antecedent and current moisture sup-
ply (precipitation) and demand (potential evapotranspiration) into a
hydrological accounting system, which is a two-layer bucket-type
model for soil moisture calculations. The PDSI is a standardizedmeasure
ranging from about−10 (dry) to +10 (wet). The PDSI index has been
widely used in the US to monitor drought conditions, and a detailed
description on the algorithm can be found in Dai (2013). Based on the
algorithm, the monthly PDSI over 1931–2012 was calculated, and only
the results from 1992 to 2012 were used to match the availability of
irrigation data. In calculating the PDSI, the reference climate period
was set to the default value in the calculation code (i.e., 1931–1990,
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60 years). Using other reference climate periods would not change the
year-to-year variation of PDSI and thus would not influence modeling
projections in our regression model (see Section 2.2). The available
water capacity for the upper and lower soil layers in each county used
to calculate PDSI was extracted from the Gridded Soil Survey Geograph-
ic Database (Soil Survey Staff, 2013).

Mean growing-season temperature (T) and PDSIwere then calculated
for each crop growing season. Based on the US Department of Agriculture
crop calendar (http://www.usda.gov/oce/weather/CropCalendars/), the
growing seasons of the three summer-season crops (maize, soybean,
and grain sorghum) were set from May to September. For the winter-
season crop (wheat), the growing season was set from September in
the previous year to June in the current year.

2.2. Two-stage model and scenario analysis

In this study, changes in irrigation depth for each unit change in PDSI
(hereinafter referred to as the irrigation reaction) were quantified and
drought impacts on yield with the irrigation reaction were estimated.
A two-stage least square regression method was applied for each crops'
dataset. The model is written as,

log Yc;t
� � ¼ α1IRRIc;t þ α2IRRIc;t

2 þ α3Tc;t þ α4Tc;t
2 þ α5PDSIc;t

þ α6PDSIc;t
2 þ α7;cCountyc þ α8;cCountyc � Yeart

þ α9;cCountyc � Yeart2 þ εc;t

ð1Þ

log IRRIc;t
� � ¼ β1PDSIc;t þ β2PDSIc;t

2 þ β3;cCountyc þ β4;cCountyc � Yeart
þ β5;cCountyc � Yeart2 þ μc;t

ð2Þ

where Yc,t is crop yield of county c in year t (bu/ac); IRRI is the irrigation
depth applied to the crop (mm); T is the mean growing-season
Fig. 1.Mean growing-season irrigation for maize (a), soybean (b), grain sorg
temperature (°C); PDSI is the mean growing-season PDSI (−); County is
the dummy variable for county, accounting for the difference between
counties; Year denotes time for removing technology factors related to
time; α and β are the regression coefficients for each term; and ε and μ
are the error terms.

The two-stage model first quantifies the actual irrigation reaction to
each unit change in PDSI as the first-stage equation (Eq. (2)). Then in
the second stage (Eq. (1)), the model-estimated new IRRI replaces the
actual values of IRRI in Eq. (1) to compute a regression model for esti-
mating the effects of all predictors on crop yields. For each equation,
the quadratic term of variables used to capture the potential nonlinear
effect was included. The quadratic terms in Eq. (2) are important for
detecting the potential gradual limitation of water resources as climate
becomes drier. Unobserved possible nonlinear time trends at the county
level were controlled by using county-by-year linear and quadratic
terms and unobserved time-constant variations between counties
using a county-fixed effect.

The uncertainty of the model and associated estimates was assessed
by a bootstrap analysis, which is a common statistical method to esti-
mate the uncertainty of a model (Rubin, 1981). By constructing a num-
ber of re-samples and replacing the observed dataset, this analysis
evaluated the model accuracy defined by confidence intervals. More
specifically, the years were chosen randomly with replacements for
1000 times to estimate the regression coefficients of the model. After
that, 1000 sets of regression coefficients were derived which could
then be used to calculate yield changes by inputting future drought con-
ditions. Here, themedian value and 95% confidence interval of those re-
gression coefficients are reported. The confidence interval not spanning
zero indicates that the coefficient is statistically significant.

This model considered irrigation amounts but does not include po-
tential effects of irrigation timing. This is because irrigation schedules
were not recorded in theWIMAS dataset, thus it is impossible to include
schedule effects into the statistical model. In addition, a six-year
hum (c), and wheat (d) in Kansas. The blank counties indicate no data.

http://www.usda.gov/oce/weather/CropCalendars/


Table 1
Regression coefficients of the two-stage regressionmodel and the 95% confidence interval
estimated by the bootstrap resampling approach.

Crops Variables Regression coefficient 95% confidence interval

Maize Eq. (1)
IRRI 0.002 (0.001, 0.004)
IRRI2 −1.19E−06 (−2.05E-06, −3.64E−07)
T −0.4 (−0.72, −0.08)
T2 0.008 (0.001, 0.015)
PDSI 0.082 (0.068, 0.098)
PDSI2 −0.011 (−0.015, −0.007)
Eq. (2)
PDSI −0.11 (−0.13, −0.09)
PDSI2 0.014 (0.004, 0.025)
Adjusted R2 0.998

Soybean Eq. (1)
IRRI 0.004 (0.003, 0.006)
IRRI2 −2.84E−06 (−5.06E−06, −1.08E−06)
T 0.39 (0, 0.78)
T2 −0.011 (−0.021, −0.001)
PDSI 0.092 (0.08, 0.105)
PDSI2 −0.01 (−0.013, −0.007)
Eq. (2)
PDSI −0.11 (−0.13, −0.09)
PDSI2 0.002 (0.001, 0.003)
Adjusted R2 0.996

Sorghum Eq. (1)
IRRI 0.004 (0, 0.008)
IRRI2 −4.25E−07 (−1.31E−05, −1.12E−08)
T 1.09 (0.56, 1.67)
T2 −0.024 (−0.037, −0.012)
PDSI 0.14 (0.128, 0.152)
PDSI2 −0.015 (−0.019, −0.012)
Eq. (2)
PDSI −0.12 (−0.15, −0.1)
PDSI2 0.001 (0, 0.002)
Adjusted R2 0.997

Wheat Eq. (1)
IRRI −0.004 (−0.009, 0)
IRRI2 1.70E−05 (5.81E−08, 4.03E−05)
T −0.13 (−0.26, 0)
T2 0.006 (0, 0.012)
PDSI 0.088 (0.071, 0.105)
PDSI2 −0.006 (−0.01, −0.002)
Eq. (2)
PDSI −0.24 (−0.28, −0.19)
PDSI2 0.068 (0.053, 0.084)
Adjusted R2 0.995

Fig. 2.Percentage irrigation reactions to one lower PDSI over the growing season. The box shows
percentiles calculated from the bootstrap analysis.
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experiment in theUS found that climatic variability has been the leading
influence on seasonal irrigation requirements over irrigation timing
(Steele et al., 2000), indicating irrigation scheduling must follow real-
time monitoring of crop water use and a preprogrammed irrigation
scheduling regime may be not pragmatic.

For supporting the two-stage model approach in this study, the
Durbin–Wu–Hausman (Wu, 1973) test of endogeneity was conducted
which compare results of consistent but possible less efficient two-
stage least squares estimationswith those of inconsistent but more effi-
cient ordinary least squares estimations (Davidson and MacKinnon,
1993). When the resulting p-value is significantly different from zero,
this indicates a preference for the two-stage least squares model, and
if there is no significant difference, the ordinary least squares model
should be used. Results of the test are presented in supplementary ma-
terial 1, suggesting the two-stage model is preferred for the four crops.

PDSI predictions based on the IPCC AR5 ensemble mean climate under
the Representative Concentration Pathways (RCP) 4.5 scenario as reported
by Dai (2013) were obtained. The RCP 4.5 scenario is representative of an
intermediate greenhouse gas emission scenario. This data product is
based on 14 climate models with a spatial resolution of 2.5 × 2.5 degree.
Using the monthly PDSI predictions in Dai (2013), the mean growing sea-
son for the four studied crops was calculated for three future climate pe-
riods: years 2020–2039, 2040–2059, and 2080–2099. The difference in
anticipated growing-season PDSI for the three future time periods relative
to the baseline climate (1992–2012) was calculated as the PDSI changes
for each crop growing season, and was then input into the two-stage
model. Finally, the changes in irrigation and yields due to future droughts
can be estimated. This PDSI prediction data product may be coarse at the
state level, but this dataproduct is basedon themultiple climatemodelpre-
diction in the newest IPCC AR5. Comparedwith predictionsmade by single
climate models, multiple climate model prediction is clearly preferred for
accurate estimates of future climate trends (Fordham et al., 2012) When
finer climate prediction data products become available in the future, the
methodology used in this study can be applied and would provide more
spatially extensive results.

3. Results

3.1. Crop-specific irrigation in Kansas

TheWIMASdata indicate that the 1992–2012 county-level irrigation
water depth varies by crop. Greater irrigation depths for maize and
the estimate of the 50thpercentile, and the error bars showestimates of the 2.5th to 97.5th



Fig. 3. Model-estimated percentage yield changes for one unit lower PDSI. Black points are the model-estimated percentage yield changes. The shaded areas show the 95% confidence
interval in the bootstrap analysis. Results are depicted for maize (a), soybean (b), grain sorghum (c), and wheat (d).
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soybean are shown particularly in the western regions (350–550 mm),
compared with grain sorghum and wheat (0–200 mm irrigation)
(Fig. 1). In addition, substantial variability throughout Kansas is also evi-
dent with 2 to 4 times greater irrigation applied in the western region
than in the central and eastern regions for maize and soybean (Fig. 1a,
b). Spatial distributions of irrigation for grain sorghumandwheat are sim-
ilar butmore uniform(Fig. 1c, d) and suchdistributions aremainly caused
by the uneven precipitation in Kansas.
Fig. 4. Changes in PDSI relative to the baseline climate in 2020–2039, 2040–2059, and 2080–2099
crop (Oct in the previous year to May in the current year, lower panel).
3.2. Climate and irrigation-based adaptive effects on crop yields

A two-stage regression model was established, and the regression
coefficients and their 95% confidence interval suggest a statistically
significant effect for each variable (Table 1). Using the model, PDSI
was artificially reduced by one unit to evaluate the effect of drought.
The model outputs show the degree that irrigation and yields would
change per each one unit reduction in PDSI. The model indicates
for summer growing-season crops (May–Sep., upper panel) and the winter growing-season



Table 2
State-level estimated percentage irrigation and yield changes under projected future
drought in 2020–2039, 2040–2059, and 2080–2099.

Crops Time period Irrigation changes
(%)

Yield changes (%)

Maize 2020–2039 9.4 (7.7, 11.5) −2.2 (−2.6, −1.8)
2040–2059 14.6 (11.7, 17.9) −3.6 (−4.2, −3.1)
2080–2099 19.0 (15, 23.6) −6.5 (−7.3, −5.6)

Soybean 2020–2039 5.1 (4.3, 6.0) −2.2 (−2.4, −1.9)
2040–2059 9.4 (7.9, 11.1) −4.2 (−4.8, −3.7)
2080–2099 14.5 (12, 17.1) −9.4 (−10.5, −8.3)

Grain sorghum 2020–2039 10.3 (8.3, 12.8) −4.9 (−5.3, −4.5)
2040–2059 15.1 (12.1, 19.1) −8.5 (−9.1, −7.9)
2080–2099 18.9 (15, 24.2) −12.4 (−13.3, −11.6)

Wheat 2020–2039 9.1 (5.7, 13.5) −0.63 (−0.86, 0.12)
2040–2059 6.9 (4.2, 10.2) −0.75 (−0.98, −0.06)
2080–2099 9.2 (5.8, 13.3) −0.99 (−1.57, 5.36)
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drought-induced increased irrigation application to offset the resultant
water stresses but this varies by crop (Fig. 2). For the three summer-
season crops (maize, soybean, and grain sorghum), a one-unit reduction
in PDSI would result in approximately a 10–13% increase in irrigation to
meet the associated higherwater demands,while the irrigation reaction
to drought for wheat was about 8% but exhibited considerable uncer-
tainty (Fig. 2).

Fig. 3 illustrates the yield change resulting from a one unit reduction
in PDSI assuming the historical pattern of irrigation reactions. At present,
maize growing above 4 in the mean growing-season PDSI tends to in-
crease from the drought, whereas maize yields grown below this thresh-
old tend to decline (Fig. 3a). Similar results were found for soybean and
Fig. 5.Model-estimated percentage changes inmaize irrigation (left panel), and yield changes (righ
(c, d), and 2080–2099 (e, f).
sorghum when the PDSI threshold is approximately 4 (Fig. 3b) and 5
(Fig. 3c). For wheat, a reduction in the yields at most sites were projected
when PDSI was artificially decreased by 1 unit, with the greatest reduc-
tion being around 15% (Fig. 3d).

3.3. Future PDSI changes under the RCP4.5 climate scenario

Using the PDSI scenarios predicted by Dai (2013), a drier climate
averaged over the growing season for the three summer-season crops
was projected in most counties, where PDSI would decline by 0.0–0.8
for climate in 2020–2039 (Fig. 4a), 0.4–1.2 in 2040–2059 (Fig. 4b),
and 0.8–1.2 in 2080–2099 (Fig. 4c), relative to the baseline climate.
For wheat, the future drying trend would be concentrated in eastern
and western Kansas and a small number of counties in the southern
areas where the magnitude of PDSI reduction varies between 0.0
and 0.4 (Fig. 4d–f). In the central region of the state, the climate
for the wheat growing season was projected to become wetter
with PDSI increasing by 0.0–0.8 in most counties (Fig. 4d–f) during
the three twenty-year time periods.

3.4. Changes in yield and irrigation under future drought

Under future drought scenarios, maize irrigation shows a positive
change due to drought, with the state level irrigation increased by
9.4% for the climate in 2020–2039, 14.6% in 2040–2059, and 19.0%
in 2080–2099 (Table 2). The majority of counties will experience a
0–30% increase in irrigation with the western and eastern regions
showing a substantial increase especially for the climates in 2040–
2059 and 2080–2099 (Fig. 5a, c, e). Despite the increased irrigation
t panel) under three climate scenarios. Results are depicted for 2020–2039 (a, b), 2040–2059
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application under future drought scenarios, the model still projects an
overall negative yield change. On the state level, maize yield was
projected to decrease by 2.2% for the climate in 2020–2039, 3.6% in
2040–2059, and 6.5% in 2080–2099 (Table 2) relative to the baseline cli-
mate. Substantial yield reductions were found in counties in the west-
ern and eastern regions especially for the climates in 2040–2059 and
2080–2099 (Fig. 5b, d, f).

Similar changes in yield were estimated for soybeans (Fig. 6). More
irrigation was applied due to drier climate in most counties (Fig. 6a, c,
e) with state-level irrigation increasing by 5.1% for the climate in
2020–2039, 9.4% in 2040–2059, and 14.5% in 2080–2099 (Table 2).
However, the overall soybean yield would still decrease under future
climate scenarios: 2.2% for the climate in 2020–2039, 4.2% in 2040–
2059, and 9.4% in 2080–2099 (Table 2). There would be 0–3% yield im-
provement in some southwestern counties but yields in the eastern
areas would have substantial reductions in variability between 3 and
15% (Fig. 6b, d, f).

For grain sorghum, around 0–30%more irrigation was applied in re-
action to drier climate (Fig. 7a, c, e). At the state level, irrigation was
projected to increase by 10.3% for the climate in 2020–2039, 15.1% in
2040–2059, and 18.9% in 2080–2099 (Table 2). However, greater yield
losses due to drought were projected for grain sorghum (Fig. 7b, d,
f) than for maize and soybean. Yield would decrease by 4.9% in 2020–
2039, 8.5% in 2040–2059, and 12.4% in 2080–2099 relative to the base-
line level (Table 2).

Because of the different PDSI trends during the wheat growing
season (Fig. 3), fundamentally different projections for future changes
in irrigation and yield were obtained (Fig. 8). An increase in irrigation
Fig. 6.Model-estimated percentage changes in soybean irrigation (left panel), and yield chang
2040–2059 (c, d), and 2080–2099 (e, f).
was projected but the magnitude is much lower than the other three
crops. State irrigation was projected to increase by 9.1% in 2020–2039,
6.9% in 2040–2059, and 9.2% in 2080–2099 (Table 2). This is because
irrigation becomes less than the baseline level in the central part of
the state (Fig. 8a, c, e). Yields would increase in some eastern counties
under the three future climate scenarios (Fig. 8b, d, f), whereas crop
yields in some portions of the southern areas would be negatively
affected by drought (Fig. 8b, d, f). Reductions in crop yield due to drought
are marginal at the state level, with variability between −0.99 and
−0.63% (Table 2).
4. Discussion

This study assesses how future drought would affect crop yields in
Kansas considering actual farmers' irrigation reactions to drought. The
results indicate that more irrigation would be necessary to offset
water stresses resulting from drought, and is consistent with a previous
study (Zhang et al., 2015). These results further indicate that irrigation
responses to drought are dependent on the crop. Increasing irrigation
as a reaction to drought is more evident for the three summer-season
crops: around 10–13% more irrigation was applied when PDSI was
one unit lower than the baseline level. However, there was only an 8%
increase in irrigation with one unit reduction in PDSI for wheat with
large uncertainty noted (Fig. 2). Since these results were derived from
observations, the quantified irrigation reactions are viewed as anoverall
consequence due to the combined effects of climate, local water policy,
and farmers' reactions in order to abate drought.
es (right panel) under three climate scenarios. Results are depicted for 2020–2039 (a, b),



Fig. 7.Model-estimated percentage changes in grain sorghum irrigation (left panel), and yield changes (right panel) under three climate scenarios. Results are depicted for 2020–2039 (a,
b), 2040–2059 (c, d), and 2080–2099 (e, f).
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Separating crop-specific irrigation is very difficult inmany irrigation
data products. Earlier modeling studies often assume that full irrigation
was applied for the irrigated area to all crops (Deryng et al., 2011;
Rosenzweig et al., 2014; Ventrella et al., 2012). However, these results
do not support that assumption. Results demonstrate that after under-
taking the same degree of water stresses (i.e., one unit reduction in
PDSI), the three summer-season crops (maize, soybean, and grain
sorghum) would benefit more from the associated irrigation responses
than wheat (Fig. 3). This could be ascribed to the lower irrigation
response to drought for wheat than the other three crops (Fig. 2). A
clear PDSI threshold of yield changes was found for the three summer-
season crops. This may be due to less severe water-logging or disease
under a very wet climate (i.e., higher PDSI) and higher yields when
PDSI was reduced (Zhang et al., 2008, 2010). It is unknown if the results
derived in Kansas can be applied to other states in the US. Further inves-
tigation is needed to examine existing adaptive priorities for different
crops on a broader regional scale.

Historical irrigation reactions were then projected to future drought
conditions to evaluate the adaptive effect of current irrigation to future
drought. The projection for more severe drought is that irrigation adap-
tive effects onmaize, soybean, and grain sorghumwould be inadequate,
predicting a yield decline of 2.2–12.4% (Table 2). These results suggest
improved irrigation technologies andmanagement aswell as additional
irrigation water supplies could be critical to Kansas agriculture for
drought management. It is important to note that it was assumed that
the irrigation reaction to future climate conditions would follow histor-
ical patterns. However, an irrigation reaction that is less robust than the
historical level is possible since the availability of future agricultural
water resources might be reduced due to climate change (Elliott et al.,
2014). Additionally, water requirements increase to meet municipal and
industrial water demands (Strzepek and Boehlert, 2010) while water re-
sources in theHigh Plains are currently already in decline (Wen andChen,
2006; Butler et al., 2013). For these reasons, our model projections are
considered conservative. More serious crop damage from drought than
estimated here is possible. These findings indicate the need to improve
crop resilience to drought in Kansas and demonstrate a need to invest
in irrigation infrastructure and relevant technology, particularly for
summer-season crops. In contrast, projected reductions in wheat yields
under future climate scenarioswere very limited (Table 2). This is because
wetter climate conditions predicted in the central region of Kansas during
the growing season of wheat improve yields (Fig. 4). Therefore, ex-
panding wheat farming may be an option to utilize moisture conditions
found during wheat growing season brought on by projected climate
change. This wheat farming expansion may help to avoid the future
more serious drought during the summer season.

Finally, this study focused only on the effects of drought and associat-
ed irrigation responses but this does not include all climate risks such as
heat stress (Gourdji et al., 2013). According to this model, yields would
decline by 3–13% in response to 1 °C warming (Supplementary material
2); indicating yield would decrease more than presented in this study if
heat stresses were to be taken into account.

5. Conclusion

Kansas may face an extensive drought that could be beyond the
range of their current irrigation ability if future projections are accurate.



Fig. 8.Model-estimated percentage changes inwheat irrigation (left panel), and yield changes (right panel) under three climate scenarios. Results are depicted for 2020–2039 (a, b), 2040–2059
(c, d), and 2080–2099 (e, f).
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Understanding and quantifying knowledge of the historical ability of
irrigation to mitigate drought and projecting that information to future
drought scenarios could be useful in at least two ways. First, our results
provide specific information to local government that can be used to
evaluate future drought risks under current irrigation conditions. This
research also suggests that the current irrigation reaction can manage
future drought risks over the winter season but drought during the
summer growing season would exceed the capability of current
irrigation practices. Investing in a water-saving crop cultivar and high-
efficiency irrigation infrastructure appear to be promising initial
priorities needed to abate drought over the summer season in Kansas.
Secondly, these results demonstrate that Kansas agriculture
could greatly benefit from expanding wheat growing areas thus
utilizing the moisture conditions available during wheat growing
season.
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