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1. INTRODUCTION 

Zadeh’s introduction of the notion of a fuzzy set in a universe has inspired 
many mathematicians to generalize the main concepts and structures of present- 
day mathematics into the framework of fuzzy sets. The concept of a fuzzy 
topological space and some of its basic notions have been formulated by Chang. 
It is a well-known fact that, for the purpose of constructing counterexamples in 
ordinary topology, one makes great use of somewhat pathological spaces such as 
the Sierpinski space. It seemed reasonable to us that similar fuzzy topological 
spaces will be needed in the further development of fuzzy topolo,v. 

The key object in our construction of fuzzy topological spaces such as the 
Sierpinski space, the included (excluded) fuzzy singleton topology, and the 
included (excluded) fuzzy set topology, is the fuzzy singleton as described by 
Goguen. We have used fuzzy singletons instead of Wong’s fuzzy points because 
crisp fuzzy singletons reduce to ordinary ones and because we believe that every 
fuzzy generalization should be formulated in such a way that it contains the 
corresponding ordinary-set-theoretic notion as a special (crisp) case. The 
introduction of the spaces listed above revealed an important departure from 
ordinary set theory, i.e., the connection between a fuzzy set and its complement 
in terms of fuzzy singletons. It may be expected that the lack of such a con- 
nection will cause some difficulty in operating with notions that are linked by 
the complement operation, e.g., open and closed set. 

2. PRELIMINARIES 

Let X be an ordinary nonempty set which we will call the universe. Afuxzy 
set A on X is a mapping on X into the closed interval [O, 11, associating with 
each element x of X its grade of membership A(x) in A. 

The equality of two fuzzy sets A and B on X is determined by the usual 
equality condition for mappings, i.e., 

A = B + (V x E X) (A(x) = B(x)), 
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A fuzzy set d on X is said to be a subset of a fuzzy set B on X, written A C B, iti 

The elementary operations on fuzzy sets on X are given by 

A U B(x) = max(A(x), B(x)}, VXEX, 

A n B(x) = min{LI(x), B(x)}, vxxx, 

co A(x) = 1 - A(x), VXEX, 

iJ A&) = sup{A&) j i EI), v x E X, 
ztl 

fi Ai = inf(&(x) j i EI), VXEX, 
&I 

where P denotes an arbitrary index set. 

DEFINITION 2.1. A fuzzy set on X is aj%zzy si@eton if it takes the value 0 
for all points x in X except one. The point in which a fuzzy singleton takes the 
nonzero value will be called the support of the singleton and the corresponding 
element of 10, l] its value. Fuzzy singletons will be denoted by lowercase 
!etters p, q,.... 

DEFINITION 2.2. An ordinary subclass T of the fuzzy power set P(X) of an 
ordinary set X will be called afuxzy topology on X iff r satisfies the conditions 

(Q.1) 

(O-2) 

(0.3) 

where I is an arbitrary index set and as usual $, X denote the fuzzy sets given by 

d(x) = 0, Q’xEX, 

X(x) = 1, VxxEX. 

Every member of a fuzzy topology r on X will be called a r-open fuzzy set on X. 

3. OPERATIONS IN TERMS OF FUZZY SINGLETONS 

One easily proves the following theorem concerning the relations between 
fuzzy singletons on the one hand and inclusion, equality, and elementary 
operations between fuzzy sets on the other band. 
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THEOREM 3.1. We have 

A$B+(VpGX)(p_CA =+pCB); 

A=B-+(Vp_cX)(p_CA*p_CB); 

pCAuB+pCAvpCB, vpcx; 

~CA~B~PCAA~CB, VpCx; 

or, more generally, 

pC 6 A,e(3i~{l,...,n))(pCA,), 
i=l 

p_c n Ai-+(V’iEl) (PCA,), 
&I 

where I is an arbitrary index set and n denotes a natural number. 
We remark that 

pCUA,e(3kI)(pCAi) 
&I 

holds, but the converse of this implication does not remain valid for an arbitrary 
index set I. 

However, there exists no relation between the formulas p _C A and p _C co A. 
Indeed, let A be a fuzzy set on X and p a fuzzy singleton on X with support x,, . 
Then: 

P C A -P(x~) d 44 

P g A 0 ~04 > 4x,), 

p _C co A-++,) d 1 - A@,), 

p $ co A -p(x,) > 1 - A@,). 

A fuzzy set A on X for which A(x,) = g and the fuzzy singleton p for which 
p(qJ = $ satisfy 

p$A~pccoA 

and hence 

where 9(X) denotes the fuzzy power set of X. A similar counterexample proves 
the formula 

+‘P _C X) (b’ A E P(X)) (p _C co A 3 p $L A). 
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One easily shows that using Wong’s fuzzy points instead of fuzzy singletons 
reveals the same lack of connection between a fuzzy set and its complement. 

4. INCLUDED FUZZY SINGLETON TOPOLOGY 

Eet X be a nonempty set, P(X) its fuzzy power class, and p a fuzzy singleton 
on X. 

'FHEOREM 4.1. The subclass 7g of P(X) ginen by 

7g=(OjOE9yX)A(O= 0 vpccq 

is a fuzzy topology on x. 

Proof. (0.1) ,@ E TV; X E 7D since p C X holds. 

(0.2) Suppose that 0, and 0, are elements of ~~ ~ We have O1 = o v 0, 
= o or ,(O, = @ v 0, = u). The first case leads to 0, n 0, = 0 and hence 
OlnO,ET@. On the other hand, if ,(O, = o v 0, = D ) or equivalently 
0, # M A 0, f ,B holds, then p C 0, A p C 0, and hence p C 0, n 0,) so 
again 0, n 0, c 7D . 

(0.3) Let (OJiel be a family of elements of rP . If (V i E 1) (Oi = m) holds, 
then lJic, Oi = o and hence (Jiel Oi E 72, . If on the contrary -@ i E I) (0, = o ) 
or equivalently (3 i E 1) (Oi # 0) holds, then we can choose some index, say j, 
in I for which Oj # @ and hence p C Oj . This proves p C uisl Oi and hence 

Wid oi E 723 . Q.E.D. 

DEFINITION 4.1. The fuzzy topology on X associated with the fuzzy single- 
ton p on X and which is described in Theorem 4.1 is called the inchdedfzmzy 
singleton p topology on X. 

In particular, if X contains only two elements, the included fuzzy singleton 
topologies on X will be called fuzzy Sierpinski spaces; they are fuzzy generaliza- 
tions of the ordinary ones. 

5. EXCLUDED FUZZY SINGLETON TOPOLOGY 

Let X be a nonempty set, 9’(X) its fuzzy power class, and p a fuzzy singleton 
on X. 

THEOREM 5.1. The subclass 78 of .9(X) de$ned by 

~,-=(OjOEqX)A(O=XVpCcoO)~ 

is a fuzzy topology on X. 
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Proof. (0.1) X E ra; m E 76 since co m = X and p _C X hold. 

(0.2) The intersection of any two elements in 71 belongs to ‘d . Let 0, and 
O,betwoelementsofr~.If0~=Xv02=XthenO,~0,=O,vO,~O,=0, 
and hence 0, n 0, E r8 . Otherwise, if ,(O, = X v 0, = X) or equivalently 
O,#X~O~fX,thenp_CcoO,/\p_CcoO~andhencep_CcoO,vcoO,.In 
view of de Morgan’s law co 0, U co 0, = co(0, n 0,) we obtainp C co(0, n 0,) 
and hence 0, n 0, E TV. 

(0.3) The union of an arbitrary family of elements of r8 belongs to 76 . 
Let (O& be a family of elements of r4 . If (3 i E 1) (Oi = X) then Uiel Oi = X 
and hence vie1 Oi E r1 , If +I i ~1) (Oi = X) or equivalently (V i E I) (Oi # X) 
then we have p _C co Oi , V i E I. Hence p _C nisi co Oi and so, by Morgan’s law 
niEI co Oi = co Uiel Oi , we obtain p _C co UiEI Oi . Hence VieI Oi E rTI. 

Q.E.D. 

DEFINITION 5.1. Let X be a nonempty set and p a fuzzy singleton on X. The 
subclass 71 of P(X) given by 

is called the excluded fuzzy singleton p topology on X. If one makes the restriction 
to a crisp fuzzy singleton and only elements of the ordinary power class P(X) 
of X are taken into account in Q-~ then the corresponding set -rs reduces to the 
ordinary excluded singleton topology. 

The ordinary excluded singleton topology on X can also be described by 

However, if one should formally assume the last form as a starting point for the 
construction of an excluded fuzzy singleton topology one should miss its aim. 
Stated more explicitly, the class 

is no topology on X. Indeed, let (OJisl be a family of fuzzy sets on X for which 

holds. If x,, denotes the support of p, then we obtain 

P c oi -P@,) < a(%), 
hence 
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and 

hence 

p Q tJ oi -=-p(q)) > sup{O,(x,) , i 2-q. 
iEI 

It is clear that for an arbitrary index set I the impiication 

(V i E I) (p(x,) > O,(q))) +- p(xJ > sup{oi(xo) / i E i) 

is false and hence T’ defines no topology on X. 

6. INCLUDED AND EXCLUDED FUZZY SET TOPOLOGY 

The included fuzzy singleton topology, introduced in Section 4, can be 
generalized in the following way. 

Let X be a set and A an arbitrary fuzzy set on X. 

THEOREM 6.4. The subclass TV of f?(X) given by 

7;1=={0j0EfqX)A(0==L3 vACO)j 

is a fuzzy topology on X. 

&,oof. (0.1) ~3’ E rA by definition of T-~ ; X E 7A since 4 g X. 

(0.2) Let 0, , 0, be two elements of 7A ~ If 0, = a v 0, = B hoi&. 
then 0, n 0, = o and hence 0, n 0, E 7A . 

On the other hand, from T(O, = D v 0, = O) or equivalently 0, f 3 A 0, 
Z o we deduce A C 0, A A C 0, and hence A C 0, n 0, , so 0, n 0, E 7A 

(0.3) Let (O,),,, be an arbitrary family of elements of ~~ . If (Vi ET> 

(Of = O) then ui Oi = o and hence u Oi E 7A . If on the contrary (3 i ~1) 
(Oi # 0) then A C Oj for some j belonging to I and so 
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DEFINITION 6.1. Let X be a nonempty set and A a fuzzy set on X. The 
subclass of b(X) given by 

TA=(O~OEqX)A(O=O VACO)) 

is called the included fuzzy set A topology on X. 
A deduction similar to that in the proof of Theorem 5.1 leads to the following 

theorem. 

THEOREM 6.2. The subclass of P(X) defined by 

is a fuzzy topology on X. It is called the excluded fuzzy set A topology on X. 
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