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We classify all the pairs of a commutative associative algebra with an identity
element and its finite-dimensional locally finite Abelian derivation subalgebra such
that the commutative associative algebra is derivation-simple with respect to the
derivation subalgebra over an algebraically closed field with characteristic 0. Such
pairs are the fundamental ingredients for constructing simple Lie algebras of Cartan
type. Moreover, we determine the isomorphism classes of the simple Lie algebras of
Witt type. The structure space of these algebras is given explicitly. © 2000 Academic

Press

1. INTRODUCTION

Simple Lie algebras of Cartan type are important geometrically nat-
ural infinite-dimensional Lie algebras in mathematics. The fundamental
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ingredients of constructing Lie algebras of Cartan type are the pairs of
a polynomial algebra and the derivation subalgebra of the operators of tak-
ing partial derivatives. The abstract definition of Lie algebras of Cartan
type by derivations appeared in Kac’s work [Ka1]. However, there is still
the question of how to construct new explicit simple Lie algebras of Cartan
type. Kawamoto [K] constructed new simple Lie algebras of Witt type by
the pairs of the group algebra of an additive subgroup of �n and the deriva-
tion subalgebra of the grading operators, where n is a positive integer and �
is a field with characteristic 0. One can view the operators of taking partial
derivatives of the polynomial algebra in several variables as down-grading
operators. Using the pairs of the tensor algebra of the group algebra of the
direct sum of a finite number of additive subgroups of � with the polynomial
algebra in several variables, and the derivation subalgebra of the grading
operators and down-grading operators, Osborn [O] constructed new simple
Lie algebras of Cartan type. In [DZ1], the authors expand on Kawamoto’s
work by picking out certain subalgebras. Their construction is also equiv-
alent to generalizing Osborn’s Lie algebras of Witt type by adding certain
diagonal elements of �n into the group.
Passman [P] proved that the simple Lie algebras of Witt type constructed

from the pairs of a commutative associative algebra with an identity element
and its Abelian derivation subalgebra are simple Lie algebras if and only if
the commutative associative algebra is derivation-simple with respect to the
derivation subalgebra. In [X1], the second author of this paper constructed
new explicit simple Lie algebras of Cartan type, based on the pairs of the
tensor algebra of the group algebra of an additive subgroup of �n with the
polynomial algebra in several variables and the derivation subalgebra of the
mixtures of the grading and down-grading operators. The algebras in [X1]
are the most generally known explicit examples of simple Lie algebras of
Cartan type. A natural question is how far it is from the simple Lie algebras
of Witt type in [X1] to those abstractly determined by Passman [P]. In this
paper, we shall show that the simple Lie algebras of Witt type determined
in [P] are essentially the same as those explicitly constructed in [X1] under
certain locally finite conditions. It seems to us that further constructing
new simple Lie algebras of Cartan type that are essentially different from
those in [X1] and some extensions in [X2, Chap. 6] is extremely difficult.
Of course, one can get some new simple Lie algebras of Cartan type by
replacing the commutative associative algebra used in [X1] by a certain
subalgebra of its topological completion. However, such a construction is
not essential from an algebraic point of view.
Zhao [Z] determined the isomorphism classes of the simple Lie algebras

of Witt type found in [DZ1]. In this paper, we shall determine the isomor-
phism classes of the simple Lie algebras of Witt type constructed in [X1],
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which are more general than those in [DZ1]. The structure space of the
simple Lie algebras of Witt type constructed in [X1] will be given explicitly.
Below, we shall give a more detailed description of our results. Through-

out this paper, � denotes an algebraically closed field with characteristic 0.
All the vector spaces (algebras) without specifying the field are assumed
over �. We always assume that an associative algebra has an identity ele-
ment. Moreover, we denote by � the ring of integers and by � the set of
nonnegative integers.
Let � be a commutative associative algebra. A derivation d of � is a

linear transformation on � such that

d�uv� = d�u�v + ud�v� for u� v ∈ �� (1.1)

The space Der� of derivations forms a Lie algebra with respect to the
operation

�d1� d2� = d1d2 − d2d1 for d1� d2 ∈ Der�� (1.2)

For u ∈ � and d ∈ Der�, we define

�ud��v� = ud�v� for v ∈ �� (1.3)

Since � is a commutative associative algebra, ud is also a derivation. In
particular, Der� is an �-module.
A linear transformation T on a vector space V is called locally finite if

dim span	Tm�v� 
 m ∈ �� <∞ (1.4)

for any v ∈ V . A set of linear transformations is called locally finite if all its
elements are locally finite.
For a commutative associative algebra � and a subspace � of derivations,

� is called �-simple (derivation-simple with respect to �) if there does not
exist a subspace � of � such that � 
= 	0��� and

u� � d�� � ⊂ � for u ∈ �� d ∈ �� (1.5)

Moreover, the derivation subspace � is an Abelian subalgebra if

d1d2 = d2d1 for d1� d2 ∈ Der�� (1.6)

In this paper, we shall first give in Section 2 a complete classification of
the pairs of a commutative associative algebra � and a finite-dimensional
locally finite Abelian derivation subalgebra � such that � is �-simple. For
such a pair ����� with � 
= 	0�, Passman’s theorem [P] tells us that

� = �� (1.7)

forms a simple Lie algebra, which is called a Lie algebra of Witt type. In
Section 3, we shall determine the isomorphism classes of the simple Lie
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algebras of the form (1.7). The structure space will be presented explicitly.
From purely Lie algebra structure point of view, it is enough to consider
the Lie algebras of the form (1.7) with⋂

d∈�
kerd = �� (1.8)

2. �-SIMPLE ALGEBRA

In this section, we shall classify the pairs of a commutative associative
algebra � and a finite-dimensional locally finite Abelian derivation subal-
gebra � such that � is �-simple.
We start with constructions of such pairs. Let k1 and k2 be two nonneg-

ative integers such that

k = k1 + k2 > 0� (2.1)

Let 
 be an additive subgroup of �k and let �1 be an extension field of �.
Suppose that f �·� ·�� 
× 
→ �× = � \ 	0� is a map such that

f �α�β�f �α+ β� γ� = f �α�β+ γ�f �β� γ��
f �α�β� = f �β�α�� f �α� 0� = 1 (2.2)

for α�β� γ ∈ 
. Denote by �1�t1� t2� � � � � tk1� the algebra of polynomials in k1
variables over �1. Let ��k1� k2�
� �1� f � be a free �1�t1� t2� � � � � tk1�-module
with the basis

	xα 
 α ∈ 
�� (2.3)

Viewing ��k1� k2�
� �1� f � as a vector space over �, we define an algebraic
operation “·” on ��k1� k2�
� �1� f � by

�ζxα� · �ηxβ� = f �α�β�ζηxα+β

for ζ� η ∈ �1�t1� t2� � � � � tk1�� α�β ∈ 
� (2.4)

Then ���k1� k2�
� �1� f �� ·� forms a commutative associative algebra over
� with x0 as the identity element, which is denoted as 1 for convenience.
We refer [X2, Sect. 5.4.2] for the details of this algebra. When the context
is clear, we shall omit the notion “·” in any associative algebra product.
We define the linear transformations

	∂t1� � � � � ∂tk1 � ∂
∗
1� � � � � ∂

∗
k� (2.5)

on ��k1� k2�
� �1� f � by
∂ti�ζxα� = ∂ti�ζ�xα� ∂∗j �ζxα� = αjζx

α (2.6)
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for ζ ∈ �1�t1� t2� � � � � tk1�, α = �α1� � � � � αk� ∈ 
� where on �1�t1� t2� � � � � tk1�,
∂ti are the operators of taking partial derivative with respect to ti over �1.
Then 	∂t1� � � � � ∂tk1 � ∂

∗
1� � � � � ∂

∗
k� are mutually commutative derivations of

��k1� k2�
� �1� f �. The derivations 	∂t1� � � � � ∂tk1 � are called down-grading
operators and 	∂∗1� � � � � ∂∗k� are called grading operators of the algebra
��k1� k2�
� �1� f �. Given m�n ∈ � with m < n, we shall use the notion

m�n = 	m�m+ 1�m+ 2� � � � � n� (2.7)

throughout this paper. We also treat m�n = � when m > n.
Choose

	∂̄k1+1� � � � � ∂̄k� ⊂
k1∑
j=1

�1∂tj (2.8)

(cf. (1.3)). We set

∂i = ∂∗i + ∂ti � ∂k1+j = ∂∗k1+j + ∂̄j for i ∈ 1� k1� j ∈ 1� k2� (2.9)

Then 	∂i 
 i ∈ 1� k� is a set of derivations. Set

� =
k∑
i=1

�∂i� (2.10)

Note that � is a finite-dimensional locally finite Abelian derivation
subalgebra.

Theorem 2.1. Let � be a commutative associative algebra and let � be
a finite-dimensional locally finite Abelian derivation subalgebra. The algebra
� is �-simple if and only if the algebra � is isomorphic to the algebra of the
form ��k1� k2�
� �1� f � and the derivation subalgebra � of the form (2.10).

Proof. Let us first prove that the algebra ��k1� k2�
� �1� f � is
derivation-simple with respect to the derivation subalgebra � in (2.10).
Let � be a nonzero �-invariant ideal of ��k1� k2�
� �1� f �. For any
α = �α1� � � � � αk� ∈ 
, we define

�̄α = �1�t1� t2� � � � � tk1�xα� (2.11)

Then

�̄α = 	u ∈ ��k1� k2�
� �1� f � 
 �∂i − αi�m�u� = 0

for some m ∈ �� i ∈ 1� k� (2.12)

and

��k1� k2�
� �1� f � =
⊕
α∈


�̄α� (2.13)
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Thus we have

� = ⊕
α∈


�α� �α = �̄α
⋂

� � (2.14)

If �β 
= 	0� for some β ∈ 
, then 	0� 
= x−β��β� ⊂ �0. Thus we always
have �0 
= 	0�. Since

∂i
�0
= ∂ti 
�0

for j ∈ 1� k1 (2.15)

by (2.9), we have 1 ∈ � . Hence ��k1� k2�
� �1� f � · 1 ⊂ � . So � =
��k1� k2�
� �1� f �. That is, ��k1� k2�
� �1� f � is derivation-simple with
respect to � in (2.10).
Next we assume that � is a commutative associative algebra and � is a

finite-dimensional locally finite Abelian derivation subalgebra such that �
is �-simple with respect to �. Denote by �∗ the linear functions from �
to �, which forms a vector space with respect to the addition and scalar
multiplication of functions. Since � is algebraically closed and � is finite-
dimensional, commutative, and locally finite, we have

� = ⊕
α∈�∗

�α� �α = 	u ∈ � 
 �d − α�d��m�u� = 0

for d ∈ � and some m ∈ ��� (2.16)

Denote


 = 	α 
 �α 
= 	0��� (2.17)

For any α ∈ �∗ and n ∈ �, we define

��n�
α = 	u ∈ � 
 �d − α�d��n+1�u� = 0 for d ∈ ��� (2.18)

Then

�α =
∞⋃
n=0

��n�
α (2.19)

and

�α = 	0� ⇐⇒ ��0�
α = 	0�� (2.20)

We call a nonzero element in �
�0�
α a root vector.

For any root vector u, �u is a �-invariant ideal of �. Thus �u = �. In
particular, vu = 1� for some v ∈ �. So any root vector is always invertible.
For u ∈ �

�0�
α with α ∈ 
 and d ∈ �, we have

0 = d�1� = d�uu−1� = d�u�u−1 + ud�u−1�
= α�d�uu−1 + ud�u−1� = α�d� + ud�u−1�� (2.21)
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which implies

d�u−1� = ud�u−1�u−1 = −α�d�u−1� (2.22)

Hence −α ∈ 
. By (1.1), we have

��0�
α · ��0�

β ⊂ �
�0�
α+β for α�β ∈ 
� (2.23)

Expression (2.23) and the invertibility of root vectors implies

��0�
α · ��0�

β = �
�0�
α+β for α�β ∈ 
� (2.24)

In particular, we obtain

α+ β ∈ 
 for α�β ∈ 
� (2.25)

Thus 
 is an additive subgroup of �∗.
Set

�1 = �
�0�
0 � (2.26)

Then �1 is an extension field of � by the invertibility of root vectors
and (2.24). Suppose �0 
= �1. Note that for u ∈ �

�m�
α and v ∈ �

�n�
β , we have

�d − �α+ β��d��m+n+1�uv� =
m+n+1∑
i=0

(
m+ n+ 1

i

)
�d − α�d��i

× �u��d − β�d��m+n+1−i�v� = 0� (2.27)
that is, uv ∈ �

�m+n�
α+β . So

��m�
α · ��n�

β ⊂ �
�m+n�
α+β for α�β ∈ 
� m� n ∈ �� (2.28)

In particular,

�1�
�m�
α = ��m�

α for α ∈ 
� m ∈ �� (2.29)

Hence each �
�m�
α is a vector space over �1.

For any v ∈ �
�1�
0 , ��v� ⊂ �1 and

��v� = 	0� ⇐⇒ v ∈ �1� (2.30)

Set

H = �1� (2.31)

(cf. (1.3)). Expression (2.30) implies that ��1�
0 /�1 is isomorphic to a subspace

of the space Hom�1
�H� �1� over �1. By linear algebra, there exist subsets

	∂1� � � � � ∂k1� ⊂ �� 	t1� t2� � � � � tk1� ⊂ �
�1�
0 (2.32)
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such that

�
�1�
0 = �1 +

k1∑
i=1

�1ti� ∂i�tj� = δi� j for i� j ∈ 1� k1� (2.33)

We write

H1 =
k1∑
i=1

�1∂i� H2 = 	d ∈ H 
 d���1�
0 � = 	0��� (2.34)

Then we have

H = H1 ⊕H2� (2.35)

Set

�̄0 =
∑

ni∈��i∈1�k1
�1t

n1
1 t

n2
2 · · · tnk1k1

⊂ �0� (2.36)

Then �̄0 forms a subalgebra of � and is isomorphic to �1�t1� � � � � tk1� when
we view ti as variables by the second equation in (2.33). Moreover, ��1�

0 ⊂
�̄0 by the first equation in (2.33). Suppose �

�m�
0 ⊂ �̄0 for some 1 ≤ m ∈ �.

Note that

H2��̄0� = 	0� (2.37)

by (1.1) and (2.34).
By (2.18),

d���m+1�
0 � ⊂ �

�m�
0 ⊂ �̄0 for d ∈ H� (2.38)

For any u ∈ �
�m+1�
0 , there exists u1 ∈ �̄0 such that

∂1�u� = ∂1�u1� (2.39)

by the derivation property of a polynomial algebra. Similarly, we can find
u2� � � � � uk1 ∈ �̄0 such that

∂i

(
u−

i∑
j=1
uj

)
= 0� ∂1�ui� = · · · = ∂i−1�ui� = 0 for i ∈ 2� k1 (2.40)

by induction on i. Thus we have

∂i

(
u−

k1∑
j=1
uj

)
= 0 for i ∈ 1� k1� (2.41)
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For any d ∈ H2, we have

d2
(
u−

k1∑
j=1
uj

)
∈ d���m�

0 � ⊂ d��̄0� = 	0� (2.42)

by (2.37) and (2.38). Hence

u−
k1∑
j=1
uj ∈ �

�1�
0 (2.43)

by (2.18), (2.41), and (2.42). By the second equation in (2.34), we get

d

(
u−

k1∑
j=1
uj

)
= 0 for d ∈ H2� (2.44)

Expressions (2.41) and (2.44) imply

u−
k1∑
j=1
uj ∈ �1� (2.45)

that is, u ∈ �̄0. Therefore, �
�m+1�
0 ⊂ �̄0. By induction on m, we obtain

�0 = �̄0� (2.46)

The case �0 = �1 can be viewed as in the general case �0 = �1�t1� � � � � tk1�
with k1 = 0.
For any α ∈ 
, we take 0 
= u ∈ �

�0�
α and have

u−1�α ⊂ �0� u�0 ⊂ �α (2.47)

by (2.22) and (2.28). Hence

u�0 = �α� (2.48)

In particular, we have

��0�
α = �1u (2.49)

is one-dimensional over �1. Choose

x0 = 1� 0 
= xα ∈ ��0�
α for 0 
= α ∈ 
� (2.50)

By (2.24) and (2.49), we have

xαxβ = f �α�β�xα+β with f �α�β� ∈ �1 for α�β ∈ 
� (2.51)
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Moreover, the first equation in (2.50) and the commutativity and associa-
tivity of � imply (2.2). Furthermore, (2.48) and (2.49) imply

� = ∑
α∈


�0x
α� (2.52)

Observe that 	∂1� � � � � ∂k1� is an �-linearly independent subset of �
by (2.33). Extend it to an �-basis 	∂1� � � � � ∂k� of �. Identifying

α←→ �α�∂1�� � � � � α�∂k�� for α ∈ 
� (2.53)

we can view 
 as an additive subgroup of �k. Moreover, by (2.31)–(2.37)
and (2.46), we have

∂j

∣∣∣∣
�0

∈
( k1∑
i=1

�1∂i

)∣∣∣∣
�0

for j ∈ k1 + 1� k� (2.54)

Therefore, the algebra � is isomorphic to the algebra ��k1� k2�
� �1� f �
with k2 = k− k1 and � is of the form (2.10) by (2.52). This completes the
proof of Theorem 2.1.

3. SIMPLE LIE ALGEBRAS OF WITT TYPE

In this section, we shall determine the structure space of the simple Lie
algebras of Witt type constructed in [X1], namely, the isomorphism classes
of the Lie algebra � of the form (1.7) with � and � as in last section and

�1 = � (3.1)

for different k1, k2, and 
. First we need to rewrite � in a more compact
form. Since � is algebraically closed, the algebra ��k1� k2�
� �� f � is isomor-
phic to the semi-group algebra ��k1� k2�
� �� 1� by [X2, Proposition 5.4.4],
where 1�α�β� = 1 for any α�β ∈ 
. For convenience, we shall give the new
settings.
For any positive integer n, an additive subgroup G of �n is called nonde-

generate if G contains an �-basis of �n. Let �1, �2, and �3 be three nonneg-
ative integers such that

� = �1 + �2 + �3 > 0� (3.2)

Take any nondegenerate additive subgroup 
 of ��2+�3 and 
 = 	0� when
�2 + �3 = 0. Denote by ��t1� t2� � � � � t�1+�2 � the algebra of polynomials in
�1 + �2 variables over �. Let ���1� �2� �3�
� be a free ��t1� t2� � � � � t�1+�2 �-
module with the basis

	xα 
 α ∈ 
�� (3.3)
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Viewing ���1� �2� �3�
� as a vector space over �, we define a commutative
associative algebraic operation “·” on ���1� �2� �3�
� by

�ζxα� · �ηxβ� = ζηxα+β

for ζ� η ∈ ��t1� t2� � � � � t�1+�2 �� α�β ∈ 
� (3.4)

Note that x0 is the identity element, which is denoted as 1 for convenience.
When the context is clear, we shall omit the notion “·” in any associative
algebra product.
We define the linear transformations

	∂t1� � � � � ∂t�1+�2 � ∂
∗
1� � � � � ∂

∗
�2+�3� (3.5)

on ���1� �2� �3�
� by
∂ti�ζxα� = ∂ti�ζ�xα� ∂∗j �ζxα� = αjζx

α (3.6)

for ζ ∈ ��t1� t2� � � � � t�1+�2 � and α = �α1� � � � � α�2+�3� ∈ 
� where on
��t1� t2� � � � � t�1+�2 �, ∂ti are operators of taking partial derivative with
respect to ti. Then 	∂t1� � � � � ∂t�1+�2 � ∂

∗
1� � � � � ∂

∗
�2+�3� are mutually commuta-

tive derivations of ���1� �2� �3�
�. We set

∂i = ∂ti � ∂�1+j = ∂∗j + ∂t�1+j � ∂�1+�2+l = ∂∗�2+l (3.7)

for i ∈ 1� �1� j ∈ 1� �2, and l ∈ 1� �3. Then 	∂i 
 i ∈ 1� �� is an �-linearly
independent set of derivations. Set

� =
�∑
i=1

�∂i (3.8)

and

� ��1� �2� �3�
� = ���1� �2� �3�
��� (3.9)

Then � ��1� �2� �3�
� is a standard form of the simple Lie algebras of Witt
type constructed in [X1]. Moreover, the Lie algebras found in [DZ1] are of
the form � ��1� 0� �3�
�. In fact, we can rewrite the Lie algebra � in (1.7)
under the condition (3.1) as � ��1� �2� �3�
� by considering the maximal
�-linearly independent subset of the set{	αi 
 �α1� � � � � αk� ∈ 
� 
 i ∈ 1� k

}
(3.10)

of k sequences and changing variables in ��t1� � � � � tk1�.
Denote by Mm×n the set of m× n matrices with entries in � and by GLm

the group of invertible m×m matrices. Set

G�2� �3
=

{(
A 0�2×�3
B C

)

 A ∈ GL�2� B ∈M�2×�3� C ∈ GL�3

}
� (3.11)
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where 0�2×�3 is the �2 × �3 matrix whose entries are zero. Then G�2� �3
forms

a subgroup of GL�2+�3 . Define an action of G�2� �3
on ��2+�3 by

g�α� = αg−1 �matrix multiplication�
for α ∈ ��2+�3� g ∈ G�2� �3

� (3.12)

For any nondegenerate additive subgroup ϒ of ��2+�3 and g ∈ G�2� �2
, the set

g�ϒ� = 	g�α� 
 α ∈ ϒ� (3.13)

also forms a nondegenerate additive subgroup of ��2+�3 . Let

&�2+�3 = the set of nondegenerate additive subgroups of ��2+�3 � (3.14)

We have an action of G�2� �3
on &�2+�3 by (3.13). Define the moduli space

��2� �3
= &�2+�3/G�2� �3

� (3.15)

which is the set of G�2� �3
-orbits in &�2+�3 .

Theorem 3.1. The Lie algebras � ��1� �2� �3�
� and � ��′1� �′2� �′3�
′� are
isomorphic if and only if ��1� �2� �3� = ��′1� �′2� �′3� and there exists an element
g ∈ G�2� �3

such that g�
� = 
′. In particular, there exists a one-to-one corre-
spondence between the set of isomorphism classes of the Lie algebras of the
form (3.9) and the following set:

SW = 	��1� �2� �3�)� 
 �0� 0� 0� 
= ��1� �2� �3� ∈ �3�) ∈ ��2� �3
�� (3.16)

In other words, the set SW is the structure space of the simple Lie algebras of
Witt type in the form (3.9).

Proof. For convenience of proof, we redenote

��′��′� ∂′i� t
′
j� ≡ ����� ∂i� tj� involved in � ��′1� �′2� �′3�
′�� (3.17)

First, we assume ��1� �2� �3� = ��′1� �′2� �′3� and there exists an element g ∈
G�2� �3

such that g�
� = 
′. We write

g =
(
A 0�2×�3
B C

)
with A ∈ GL�2� B ∈M�2×�3� C ∈ GL�3 � (3.18)

By (3.12), we have


 = 	α′g 
 α′ ∈ 
′�� (3.19)

Moreover, we set

∂̃′�1+1
���
∂̃′�


 = g−1



∂′�1+1
���
∂′�


 � �t̃ ′�1+1� � � � � t̃ ′�1+�2�

= �t ′�1+1� � � � � t ′�1+�2�A (3.20)
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as matrix multiplications. For convenience, we let

∂̃′i = ∂′i� t̃ ′i = t ′i for i ∈ 1� �1� (3.21)

Now we define a linear map σ from � ��1� �2� �3�
� to � ��1� �2� �3�
′� by

σ

( �1+�2∏
i=1

t
mi

i x
α∂j

)
=

�1+�2∏
i=1

�t̃ ′i�mixg�α�∂̃′j (3.22)

for �m1� � � � �m�1+�2� ∈ ��1+�2� α ∈ 
, and j ∈ 1� �. It is straightforward to
verify that σ is a Lie algebra isomorphism.
Next we assume that

σ � � ��1� �2� �3�
� → � ��′1� �′2� �′3�
′� (3.23)

is a Lie algebra isomorphism. We simply denote

� = � ��1� �2� �3�
�� � ′ = � ��′1� �′2� �′3�
′� (3.24)

for convenience. Note that the adjoint operators

	add 
 d ∈ ��� 	add′ 
 d′ ∈ �′� are locally finite� (3.25)

Suppose that � = �′ = 1. If 
 
= 	0�, we can prove that any element in
� whose adjoint operator is locally finite is in �∂1 by picking a well-order
on � as an additive group (note � = 	 is the most interesting case). The
same statement holds for �
′�W ′�. A transformation T of a vector space
V is called locally nilpotent if for any v ∈ V , there exists a positive integer
m such that Tm�v� = 0. Observe that ad∂1 is locally nilpotent if and only
if adσ�∂1� is. Thus 
 = 	0� if and only if 
′ = 	0�. If 
 = 
′ = 	0�, we are
done. Assume that 
 
= 	0� and 
′ 
= 	0�. By local finiteness,

σ∂1 = λ∂′1 for some 0 
= λ ∈ �� (3.26)

Note 
� 
′ ⊂ � in this case. Moreover,

�xα∂1 = 	u ∈ � 
 �∂1� u� = αu��
�xα

′
∂′1 = 	v ∈ � 
 �∂′1� v� = α′v� (3.27)

for α ∈ 
 and α′ ∈ 
′. Since
ασ�xα∂1� = σ��∂1� xα∂1��

= �σ�∂1�� σ�xα∂1��
= λ�∂′1� σ�xα∂1��� (3.28)

we have

σ�xα∂1� = f �α�xλ−1α∂′1� f �α� ∈ � for α ∈ 
� (3.29)
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Hence


′ = λ−1
� (3.30)

Since ad∂1 is semi-simple if and only ad∂′1 is, we have

��1� �2� = ��′1� �′2�� (3.31)

Therefore, the theorem holds.
Next we assume �� �′ > 1. Set

Xα = �xα� X ′
α′ = �xα

′
� X = ∑

α∈

Xα� X ′ = ∑

α′∈
′
X ′
α′ � (3.32)

Then X is the group algebra of 
 and X ′ is the group algebra of 
′. Since
� is locally finite on �, so is ad� on � . This implies that adσ��� is locally
finite on � ′. Moreover, σ��� is an Abelian subalgebra of � ′. For any
d1� d2 ∈ � and v ∈ �′, we have

�σ�d1�� vσ�d2�� = σ�d1��v�σ�d2�� (3.33)

Hence σ��� is locally finite on �′. For i ∈ 1� �1, ∂i is locally nilpotent
on �. Naturally, ad∂i is locally nilpotent on � , which implies the local
nilpotency of adσ�∂i� on � ′. Thus σ�∂i� is locally nilpotent on �′. By these
facts, we have

�′ = ⊕
β∈��2+�3

�̄β (3.34)

with

�̄β = 	v ∈ �′ 
 �σ�∂�1+j� − βj�m�v� = 0

for j ∈ 1� �2 + �3 and some m ∈ ��� (3.35)

where we have written β = �β1� � � � � β�2+�3�. Furthermore, we let

X̄β = 	v ∈ �′ 
 σ�∂i��v� = 0� σ�∂�1+j��v� = βjv

for i ∈ 1� �1� j ∈ 1� �2 + �3� (3.36)

for β = �β1� � � � � β�2+�3� ∈ ��2+�3 � Obviously,

�̄β 
= 	0� ⇐⇒ X̄β 
= 	0�� (3.37)

Set


̄ = {
β ∈ ��2+�3 
 X̄β 
= 	0�}� (3.38)

Let α = �α1� � � � � α�2+�3� ∈ 
̄ and let 0 
= z ∈ X̄α. For any ∂ ∈ �, we have

zσ�∂� = σ�w� for some w ∈ � � (3.39)
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Note

0 = �σ�∂i�� zσ�∂�� = σ��∂i� w�� for i ∈ 1� �1 (3.40)

and

αjσ�w� = αjzσ�∂� = �σ�∂�1+j�� zσ�∂�� = σ��∂�1+j� w�� (3.41)

for j ∈ 1� �2 + �3. Hence
�∂i� w� = 0� �∂�1+j� w� = αjw for i ∈ 1� �1� j ∈ 1� �2 + �3� (3.42)

Observe that

xβ� = 	u ∈ � 
 �∂i� u� = 0� �∂�1+j� u� = βju

for i ∈ 1� �1� j ∈ 1� �2 + �3� (3.43)

for any β = �β1� � � � � β�2+�3� ∈ 
 and any root of � with respect to ad� is
in 
. Thus α ∈ 
 and

w ∈ xα�� (3.44)

So we obtain


̄ ⊂ 
� (3.45)

Moreover, we can write

zσ�∂� = σ�xατz�∂�� with τz�∂� ∈ �� (3.46)

Hence we get an injective linear transformation τz on � because �′ does
not have zero divisors. Since � is finite-dimensional, τz is a linear automor-
phism. When α = 0, we get 0 
= z ∈ � by (3.46). Therefore

X̄0 = �� (3.47)

Suppose 
 
= 	0�. Then the elements of ad� are not all locally nilpotent.
So are those of adσ���. Assume that 
̄ = 	0�. Then σ��� is locally nilpo-
tent. Since adσ��� is locally finite, we can choose ∂ ∈ � and d ∈ � ′ such
that

�σ�∂�� d� = d� (3.48)

Since d 
= 0, there exists v ∈ �′ such that

d�v� 
= 0� (3.49)

On the other hand, there exists a positive integer m such that

σ�∂�m�v� = 0� (3.50)
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Note that

�σ�∂� − 1�m+1�d�v�� =
m+1∑
j=0

(
m+ 1
j

)
�adσ�∂� − 1�j

× �d�σ�∂�m+1−j�v� = 0� (3.51)

which contradicts the local nilpotency of σ�∂�. Thus 
̄ 
= 	0�.
For any θ = �θ1� � � � � θ�2+�3� ∈ 
 and ∂ = ∑�

i=1 ai∂i ∈ � (cf. (3.2)), we
define

θ�∂� =
�2+�3∑
i=1

a�1+iθi� (3.52)

Pick any 0 
= α ∈ 
̄ and 0 
= z ∈ X̄α. We have (3.46). Let 0 
= β ∈ 
. Set
γ = β− α� (3.53)

Since � > 1, we can choose 0 
= ∂ ∈ � such that

γ�∂� = 0� (3.54)

Moreover, we can pick d ∈ � \ �τz�∂� such that

α�d� 
= 0� (3.55)

Then we have

�σ�xγd�� zσ�∂�� = σ�xγd��z�σ�∂� + z�σ�xγd�� σ�∂��
= σ�xγd��z�σ�∂� + zσ��xγd� ∂��
= σ�xγd��z�σ�∂� − γ�∂�zσ�xγd�
= σ�xγd��z�σ�∂�� (3.56)

by (3.54) and

�σ�xγd�� σ�xατz�∂��� = σ��xγd� xατz�∂���
= σ�xβ�α�d�τz�∂� − γ�τz�∂��d��

= 0 (3.57)

by (3.55). Thus (3.46), (3.56), and (3.57) imply

0 
= σ�xγd��z� ∈ X̄β� (3.58)

Hence β ∈ 
̄. By (3.45), we obtain


̄ = 
� (3.59)
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Now we want to prove that any nonzero element in X̄α is invertible for
α ∈ 
. Let 0 
= z ∈ X̄α. Pick any 0 
= z′ ∈ X̄−α and ∂ ∈ � such that α�∂� 
= 0.
Since τz and τz′ are invertible, we have

zσ�τ−1z �∂�� = σ�xα∂�� z′σ�τ−1z′ �∂�� = σ�x−α∂�� (3.60)

Moreover,

�z′σ�τ−1z′ �∂��� zσ�τ−1z �∂��� = zz′�α�τ−1z′ �∂��σ�τ−1z �∂��
+ α�τ−1z �∂��σ�τ−1z′ �∂���� (3.61)

�σ�x−α∂�� σ�xα∂�� = σ��x−α∂� xα∂�� = 2α�∂�σ�∂�� (3.62)

Hence

zz′�α�τ−1z′ �∂��σ�τ−1z �∂�� + α�τ−1z �∂��σ�τ−1z′ �∂��� = 2α�∂�σ�∂� 
= 0 (3.63)

by (3.60)–(3.62). Thus

0 
= zz′ ∈ �� (3.64)

This also shows

dim X̄α = 1 for α ∈ 
 (3.65)

by (3.47). Furthermore, (3.34)–(3.36) imply

�′ = X̄�̄0� (3.66)

Observe that( ⋃
α∈


X̄α

)
\ 	0� = the set of all invertible elements in �′ (3.67)

by (3.64)–(3.66). On the other hand,

the set of all invertible elements in �′ = � ⋃
α∈
′

X ′
α� \ 	0� (3.68)

(cf. (3.32)) because �′ = ���′1� �′2� �′3�
′�. Hence there exists a bijective map
ι� 
→ 
′ such that

X̄α = X ′
ι�α� for α ∈ 
� (3.69)

In particular,

X̄ = X ′� (3.70)

Note that (3.70) implies

�̄0 = ��t ′1� t ′2� � � � � t ′�′1+�′2 �� (3.71)
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Set

�0� 1 =
�1+�2∑
i=1

�ti� �̄
�1�
0 = 	v ∈ �̄0 
 σ����v� ⊂ ��� (3.72)

By the proof of Theorem 2.1 and the construction of �′ = ���′1� �′2�
�′3�
′�, we have

dim��̄�1�
0 /�� = the transcendental degree of �̄0 over � = �′1 + �′2� (3.73)

For any z ∈ �̄
�1�
0 , we have

zσ�∂1� = σ�w� for some w ∈ � � (3.74)

Note

σ�∂��z�σ�∂1� = �σ�∂�� zσ�∂1�� = σ��∂�w�� for ∂ ∈ �� (3.75)

Since σ�∂��z� ∈ �, we obtain

�∂�w� = σ�∂��z�∂1 for ∂ ∈ �� (3.76)

Since

�0� 1�+� = 	u ∈ � 
 ��� u� ⊂ �� (3.77)

by the construction of � = � ��1� �3� �3�
�, there exists a unique ν�z� ∈
�0� 1 and ρ�z� ∈ � such that

w = ν�z�∂1 + ρ�z�� and ν�z� = 0 ⇐⇒ σ����z�
= 	0� ⇐⇒ z ∈ �� (3.78)

Thus the map

z + �  → ν�z� (3.79)

defines an injective linear map from �̄
�1�
0 /� to �0� 1. So

�′1 + �′2 = dim��̄�1�
0 /�� ≤ dim�0� 1 = �1 + �2 (3.80)

by (3.73). Exchanging positions of � and � ′, we can prove �1 + �2 ≤
�′1 + �′2. Therefore,

�1 + �2 = �′1 + �′2� (3.81)

Denote

∂̂i = σ�∂�1+i�
X̄ � ∂̃j = ∂′�′1+j
X̄
for i ∈ 1� �2 + �3� j ∈ 1� �′2 + �′3� (3.82)
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Write

σ�∂�1+i� =
�′1∑
j=1
ai� j∂

′
j +

�′2+�′3∑
l=1

bi� l∂
′
�′1+l for i ∈ 1� �2 + �3� (3.83)

where

ai� j� bi� l ∈ �′ for i ∈ 1� �2 + �3� j ∈ 1� �′1� l ∈ 1� �′2 + �′3� (3.84)

Since

∂′j
X̄ = 0 for j ∈ 1� �′1� (3.85)

we have

∂̂i =
�′2+�′3∑
l=1

bi� l∂̃l for i ∈ 1� �2 + �3� (3.86)

Since 
′ is a nondegenerate additive subgroup of ��
′
2+�′3 , there exists a basis

��
′
2+�′3 :

	β1� � � � � β�
′
2+�′3� ⊂ 
′� (3.87)

Writing

βi = �βi1� � � � � βi�′2+�′3� for i ∈ 1� �′2 + �′3� (3.88)

we get an invertible matrix

6 =




β1
1� � � � � β

�′2+�′3
1

���
���

���
β1
�′2+�′3� � � � � β

�′2+�′3
�′2+�′3


 � (3.89)

Write

ι−1�βi� = �αi1� � � � � αi�2+�3� ∈ 
 for i ∈ 1� �′2 + �′3� (3.90)

Note

α
j
ix
βj = ∂̂i�xβ

j � =
�′2+�′3∑
l=1

bi� l∂̃l�xβ
j � =

( �′2+�′3∑
l=1

bi� lβ
j
l

)
xβ

j

(3.91)

or, equivalently,

α
j
i =

�′2+�′3∑
l=1

bi� lβ
j
l (3.92)
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for i ∈ 1� �2 + �3 and j ∈ 1� �′2 + �′3. Thus

�α1i � � � � � α
�′2+�′3
i � = �bi� 1� � � � � bi� �′2+�′3�6 for i ∈ 1� �2 + �3� (3.93)

In particular,

�bi� 1� � � � � bi� �′2+�′3� = �α1i � � � � � α
�′2+�′3
i �6−1 ∈ ��

′
2+�′3

for i ∈ 1� �2 + �3� (3.94)

Since 	∂̂1� � � � � ∂̂�2+�3� is linearly independent due to the nondegeneracy of

̄ = 
 and 	∂̃1� � � � � ∂̃�′2+�′3� is linearly independent because of the nonde-
generacy of 
′, we have

�2 + �3 ≤ �′2 + �′3 (3.95)

by (3.86) and (3.94). Exchanging positions of � and � ′, we can prove
�′2 + �′3 ≤ �2 + �3. Hence we have

�2 + �3 = �′2 + �′3� (3.96)

Thus the matrix

B = �bi� j���2+�3�×��2+�3� (3.97)

is nondegenerate.
Observe that

σ�∂�1+�2+i� is semi-simple because adσ�∂�1+�2+i� is (3.98)

for i ∈ 1� �3. Thus

0 = σ�∂�1+�2+i��t ′�′1+j� = b�2+i� j for i ∈ 1� �3� j ∈ 1� �′2 (3.99)

by (3.71) and (3.83). So

∂̂�2+i =
�′3∑
j=1
b�2+i� �′2+j ∂̃�′2+j for i ∈ 1� �3� (3.100)

The above expression implies �3 ≤ �′3. Exchanging positions of � and � ′,
we can similarly prove �′3 ≤ �3. Thus

�3 = �′3� (3.101)

Therefore, we obtain

��1� �2� �3� = ��′1� �′2� �′3� (3.102)

by (3.81), (3.96), and (3.101).
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Let α = �α1� � � � � α�2+�3� ∈ 
. Denote β = �β1� � � � � β�2+�3� = ι�α�.
We have

αix
β = σ�∂�1+i��xβ� =

( �2+�3∑
j=1

bi� j∂
′
�1+j

)
�xβ� =

( �2+�3∑
j=1

bi� jβj

)
�xβ� (3.103)

or, equivalently

αi =
�2+�3∑
j=1

bi� jβj (3.104)

for i ∈ 1� �2 + �3. Hence we get

ι�α� = β = α�Bt�−1� (3.105)

where Bt is the transpose of B. By (3.94) and (3.99), we have Bt ∈ G�2� �3
(cf. (3.11)). Denoting g = Bt , we get


′ = g�
� (3.106)

by (3.12) and (3.105). This completes the proof of Theorem 3.1.
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