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1. Introduction

The subject of this paper is the analysis of discretized differential inclusions by calculating the
coderivatives of the discretized reachable map. We then pass these results to the limit to obtain
results on differential inclusions. We say that S is a set-valued map or a multifunction, denoted by
S : X ⇒ Y , if S(x) ⊂ Y for all x ∈ X . For F : [0, T ] ×Rn ⇒Rn and C ⊂ Rn ×Rn , consider the differential
inclusion:

min
x(·)∈AC([0,T ],Rn)

ϕ
(
x(0), x(T )

)

s.t. x′(t) ∈ F
(
t, x(t)

)
for t ∈ [0, T ] a.e. (1.1)

Here, AC([0, T ],Rn) is the set of absolutely continuous functions of the form x : [0, T ] → Rn . The
constraint

(
x(0), x(T )

) ∈ C ⊂ Rn ×Rn

is sometimes included in the differential inclusion problem (1.1), but this constraint can be easily
incorporated into the objective function ϕ . More details on differential inclusions can be obtained
in the texts [1–3,9,14,15]. As is popularized in these texts, the differential inclusion framework (1.1)
encompasses optimal control and the calculus of variations.

In order to optimize (1.1), much attention has focused on necessary optimality conditions for a
path x(·). Such research was undertaken in the last few decades by Clarke, Loewen, Rockafellar, Ioffe,
Vinter, Mordukhovich, Kaskosz and Lojasiewicz, Milyutin, Smirnov, Zheng, Zhu and others, building
on results in the calculus of variations and optimal control. For a history of the development of the
necessary optimality conditions, we refer to the previously mentioned texts. The following conditions
are currently understood as useful necessary optimality conditions for a feasible path x̄(·) of (1.1):

(TC) (Transversality Condition)

(−p(0), p(T )
) ∈ ∂ϕ

(
x̄(0), x̄(T )

)
.

(EL) (Euler–Lagrange Condition)

p′(t) ∈ −co D∗
x F

(
t, x̄(t)

∣∣ x̄′(t)
)(

p(t)
)

for t ∈ [0, T ] a.e.

(WP) (Weierstrass–Pontryagin Maximum Principle)

〈−p(t), v − x̄′(t)
〉
� 0 for all v ∈ F

(
t, x̄(t)

)
, t ∈ [0, T ] a.e.

While such necessary conditions are helpful in finding candidates for a minimizing path, the defi-
ciency in such necessary conditions is that they give no indication on how to perturb a feasible path
to optimality. As a first step, we study the discrete inclusions corresponding to the differential inclu-
sion and calculate the dependence of the differential inclusion on its initial point.
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Define the reachable map (or attainable map) R :Rn ⇒Rn by

R(x0) := {
y: ∃x(·) ∈ AC

([0, T ],Rn)
s.t.

x′(t) ∈ F
(
t, x(t)

)
for t ∈ [0, T ] a.e.,

x(0) = x0 and x(T ) = y
}
. (1.2)

In order to study (1.1), we consider

f (x) := min
x

ϕ(x, y)

s.t. y ∈ R(x). (1.3)

We study (1.3) under the broader framework of marginal functions. For a set-valued map G : X ⇒ Y
and a function ϕ : X × Y → R, the marginal function f : X →R is

f (x) := inf
{
ϕ(x, y): y ∈ G(x)

}
. (1.4)

One can view the value x as a parameter of an optimization problem in terms of y. A well-studied
example of a set-valued map G is the map G : Rn ⇒Rm defined by

G(x) = {
y

∣∣ y ∈ F (x) + [{0} ×R
m2−

]}
where m1 + m2 = m and F : Rn → Rm is smooth

= {
y

∣∣ yi = Fi(x) for 1 � i �m1 and yi � Fi(x) for m1 + 1 � i � m
}
.

The sensitivity analysis of marginal functions can be analyzed with tools of variational analysis and
generalized differentiation. We denote the composition S2 ◦ S1 : X ⇒ Z of set-valued maps S1 : X ⇒ Y
and S2 : Y ⇒ Z in the usual way by

S2 ◦ S1(x) =
⋃

y∈S1(x)

S2(y).

Denote the epigraphical mapping of ϕ and f by Eϕ : X × Y ⇒ R and E f : X ⇒ R respectively. Then
Eϕ and E f satisfy the relation

E f (x) = Eϕ ◦ Ḡ(x), (1.5)

where Ḡ : X ⇒ X × Y is defined by Ḡ(x) = {x} × G(x). The relationship (1.5) and a set-valued chain
rule can be used to express differentiability properties of f in terms of the coderivatives of G and ϕ .

1.1. Contributions of this paper

In this work, we focus on the subdifferential analysis of the discretized differential inclusion prob-
lem by finding the subdifferential of f N , where f N is the discretized analogue of (1.3). Our approach is
to look at the marginal function framework and calculate the coderivatives of the discretized reachable
map RN (·). The coderivative of the reachable map gives new insight on the Euler–Lagrange Condition
(EL). We also study the limitations of a discrete analogue of the Weierstrass–Pontryagin Maximum
Principle (WP).

For a set-valued map S : Rn ⇒Rm between finite dimensional spaces, [11] recently established that
the convexified limiting coderivative characterizes the set of positively homogeneous maps that are
generalized derivatives of S as defined in [10]. We will recall on this relation in Section 2, limiting our
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analysis to the finite dimensional case. By making use of this result, we can obtain the convexified
limiting coderivative of the reachable map R(·) by passing a sequence of discrete problems to the
limit. The marginal function framework allows us to calculate the subdifferential dependence of f of
the differential inclusion in terms of its initial value.

An advantage of our subdifferential analysis over the necessary optimality conditions is that our
analysis gives a better indication of how to perturb a feasible path to optimality. Our approach in
analyzing differential inclusions can be compared to previous discrete approximation methods. In
particular, the notes in [15, Chapter 7] highlighted [7,8,13]. For a more comprehensive commentary
and further references, we refer the reader to [9, Section 6.5.12] and [14].

1.2. Outline

In Section 2, we recall standard definitions in variational analysis and some results in [11] that
will be used in the later part of the paper. In Section 3, we recall chain rules for coderivatives, and
show how these results can be easily extended for the convexified limiting coderivative. In Section 4,
we study the discretized differential inclusion problem. Finally, in Section 5, we study the continuous
inclusion problem by passing the discretized problems in Section 4 to the limit, and find formulas for
the convexified limiting coderivative of the reachable map.

2. Preliminaries and notation

This section recalls some standard definitions in variational analysis and some other results in [11]
that will be used in the remainder of this paper. The texts [12,9] contain many standard definitions
in variational analysis, like inner and outer semicontinuity (isc and osc) and the Pompieu–Hausdorff
distance d(·,·). We highlight some of definitions used most often in this paper. We denote the set
{1,2, . . . , N} by 1, N . For set-valued maps Hi : Rn ⇒ Rm , i = 1,2, we let H1 ⊂ H2 denote H1(x) ⊂
H2(x) for all x, or equivalently Graph(H1) ⊂ Graph(H2).

We recall the definition of coderivatives.

Definition 2.1 (Normal cones). For a set C ⊂ Rn , the regular normal cone at x̄ is defined as

N̂C (x̄) := {
y

∣∣ 〈y, x − x̄〉 � o
(‖x − x̄‖) for all x ∈ C

}
.

The limiting (or Mordukhovich) normal cone NC (x̄) is defined as lim supx→
C

x̄ N̂C (x), or as

NC (x̄) = {
y

∣∣ there exist xi →
C

x̄, yi ∈ N̂C (xi) such that yi → y
}
.

Definition 2.2 (Coderivatives). For a set-valued map S : Rn ⇒ Rm locally closed at (x̄, ȳ) ∈ Graph(S),
the regular coderivative at (x̄, ȳ), denoted by D̂∗ S(x̄ | ȳ) :Rm ⇒Rn , is defined by

v ∈ D̂∗ S(x̄ | ȳ)(u) ⇔ (v,−u) ∈ N̂Graph(S)(x̄, ȳ)

⇔ 〈
(v,−u), (x, y) − (x̄, ȳ)

〉
� o

(∥∥(x, y) − (x̄, ȳ)
∥∥)

for all (x, y) ∈ Graph(S).

The limiting (or Mordukhovich) coderivative at (x̄, ȳ) ∈ Graph(S) is denoted by D∗ S(x̄ | ȳ) : Rm ⇒ Rn

and is defined by

v ∈ D∗ S(x̄ | ȳ)(u) ⇔ (v,−u) ∈ NGraph(S)(x̄, ȳ).

The convexified limiting coderivative co D∗ S(x̄ | ȳ) :Rm ⇒Rn is defined in the natural manner.
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We recall the definition of subdifferentials.

Definition 2.3 (Subdifferentials). Consider a function f : Rn → R∪{∞} at a point x̄ where f (x̄) is finite.
Then the limiting (or Mordukhovich) subdifferential ∂ f (x̄), horizon (or singular) subdifferential ∂∞ f (x̄)
and the Clarke (or generalized) subdifferential ∂C f (x̄) are defined respectively by

∂ f (x̄) := {
v

∣∣ (v,−1) ∈ Nepi( f )
(
x̄, f (x̄)

)}
= D∗E f

(
x̄
∣∣ f (x̄)

)
(1),

∂∞ f (x̄) := {
v

∣∣ (v,0) ∈ Nepi( f )
(
x̄, f (x̄)

)}
= D∗E f

(
x̄
∣∣ f (x̄)

)
(0), and

∂C f (x̄) := co ∂ f (x̄)

= co D∗E f
(
x̄
∣∣ f (x̄)

)
(1).

The limiting and Clarke subdifferentials coincide with the usual definition of the subdifferential for
convex functions. The subdifferential ∂ f (x̄) gives important information on how f varies with respect
to x when close to x̄.

We now recall the definition of generalized derivatives of set-valued maps in the sense of [10]. Let
B denote the unit ball in the appropriate space.

Definition 2.4 (Generalized differentiability). (See [10].) Let S : Rn ⇒Rm be such that S is locally closed
at (x̄, ȳ) ∈ Graph(S), and let H : Rn ⇒ Rm be a positively homogeneous map. The map S is pseudo
strictly H-differentiable at (x̄, ȳ) if for any δ > 0, there are neighborhoods Uδ of x̄ and V δ of ȳ such
that

S(x) ∩ V δ ⊂ S
(
x′) + H

(
x − x′) + δ

∥∥x − x′∥∥B for all x, x′ ∈ Uδ.

We write

(H + δ)(w) := H(w) + δ‖w‖B

to reduce notation. The map S has the Aubin property (or the Lipschitz-like property, or the pseudo-
Lipschitz property) with modulus κ � 0 if S is pseudo strictly H-differentiable for some H defined by
H(w) = κ‖w‖B. The graphical modulus is the infimum of all such κ , and is denoted by lip S(x̄ | ȳ).

We now recall the definition of prefans and the generalized derivative set H (D).

Definition 2.5 (Prefans). (See [6].) We say that H :Rn ⇒Rm is a prefan if

(1) H(p) is nonempty, convex and compact for all p ∈ Rn ,
(2) H is positively homogeneous, and
(3) ‖H‖+ := sup‖w‖�1 supz∈H(w) ‖z‖ is finite.

Definition 2.6 (Generalized derivative set). (See [11].) Let D : Rm ⇒ Rn be a positively homogeneous,
osc set-valued map s.t. ‖D‖+ is finite. We define the generalized derivative set by
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H (D) :=
{

H : Rn ⇒Rm: H is a prefan,

and for all p ∈Rn\{0} and u ∈ Rm,

min
y∈H(p)

〈u, y〉 � min
v∈co D(u)

〈v, p〉
}
.

The Aubin criterion characterizes the graphical modulus lip S(x̄ | ȳ) in terms of graphical deriva-
tives (which are in turn defined in terms of tangent cones), while the Mordukhovich criterion charac-
terizes lip S(x̄ | ȳ) in terms of coderivatives. Theorem 2.7 and Lemma 2.8 below characterize the set
of possible generalized derivatives at a point (x̄, ȳ) ∈ Graph(S), and can be seen as a generalization
of the Mordukhovich criterion. While the proof in [11] makes heavy use of graphical derivatives and
recent work in [5] (who in turn acknowledged Frankowska’s contribution), the main results in finite
dimensions have an appealing formulation in terms of coderivatives.

Theorem 2.7 (Characterization of generalized derivatives). (See [11].) Let S : Rn ⇒ Rm be locally closed at
(x̄, ȳ) ∈ Graph(S) and let H : Rn ⇒Rm be a prefan. Then S is pseudo strictly H-differentiable at (x̄, ȳ) if and
only if H ∈ H (D∗ S(x̄ | ȳ)). (Note that H (D∗ S(x̄ | ȳ)) = H (co D∗ S(x̄ | ȳ)).)

Lemma 2.8 (Convexified coderivatives and generalized derivatives). (See [11].) Suppose Di : Rm ⇒ Rn are
positively homogeneous, osc, and ‖Di‖+ are finite for i = 1,2. Then the following strict reverse inclusion prop-
erties hold:

(1) H (D1) ⊃ H (D2) iff co D1 ⊂ co D2 .
(2) H (D1)� H (D2) iff co D1 � co D2 .
(3) H (D1) = H (D2) iff co D1 = co D2 .

These results show that the convexified limiting coderivative co D∗ S(· | ·)(·) is an effective tool for
studying the generalized derivatives of set-valued maps, just like the way the Clarke subdifferential is
useful for studying the generalized differentiability of single-valued maps.

We recall the definition of inner semicompactness that will be used in the chain rules for set-
valued maps in this paper.

Definition 2.9 (Inner semicompactness). We say that S : Rn ⇒Rm is inner semicompact at x̄ ∈ dom(S) if
for every sequence xk → x̄, there is a sequence yk ∈ S(xk) that contains a convergent subsequence as
k → ∞.

In finite dimensions, if there is a neighborhood U of x̄ and a bounded neighborhood V such that
S(U ) ⊂ V , then S is inner semicompact at x̄.

Finally, we recall the definition of regularity and a straightforward consequence of graphical regu-
larity.

Definition 2.10 (Regularity). We say that C ⊂ Rn is Clarke regular (or normally regular) at x̄ ∈ C if C
is locally closed at x̄ and NC (x̄) = N̂C (x̄). We say that S : Rn ⇒ Rm is graphically regular at (x̄, ȳ) ∈
Graph(S) if Graph(S) is Clarke regular at (x̄, ȳ).

Fact 2.11 (Convexified limiting coderivatives under graph regularity). If S : Rn ⇒ Rm is graphically regular
at (x̄, ȳ) ∈ Graph(S), then Graph(D∗ S(x̄ | ȳ)) = Graph(D̂∗ S(x̄ | ȳ)). Furthermore, Graph(D̂∗ S(x̄ | ȳ)) is a
convex cone, and we have co D∗ S(x̄ | ȳ) ≡ D∗ S(x̄ | ȳ).

3. Calculus of convexified limiting coderivatives

In this section, we discuss how the chain rule for the convexified limiting coderivatives can be ob-
tained directly from the coderivative chain rules, removing parts irrelevant in the finite dimensional
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case. In Lemma 3.3, we deduce that the convexified limiting coderivative, together with the limiting
subdifferential, are sufficient in calculating the Clarke subdifferential of marginal functions. This sug-
gests that the convexified limiting coderivative of the reachable map as calculated in Section 5, while
not as precise as the coderivative, can be a satisfactory conclusion.

We first write down the chain rule for finite dimensional coderivatives based on [9, Theorem 3.13]
and [12, Theorem 10.37]. The formulas (3.2) and (3.3) for convexified limiting coderivatives are
straightforward.

Theorem 3.1 (Coderivative chain rule). Let G : Rl ⇒Rm, F :Rm ⇒Rn, z̄ ∈ (F ◦ G)(x̄), and

S(x, z) := G(x) ∩ F −1(z) = {
y ∈ G(x): z ∈ F (y)

}
.

The following assertions hold:

(1) Given ȳ ∈ S(x̄, z̄), assume that S is inner semicontinuous at (x̄, z̄, ȳ), that the graphs of F and G are locally
closed around the points ( ȳ, z̄) and (x̄, ȳ) respectively, and that the qualification condition

D∗ F ( ȳ | z̄)(0) ∩ −D∗G−1( ȳ | x̄)(0) = {0} (3.1)

is fulfilled. Then one has

D∗(F ◦ G)(x̄ | z̄) ⊂ D∗G(x̄ | ȳ) ◦ D∗ F ( ȳ | z̄),

which in turn implies

co D∗(F ◦ G)(x̄ | z̄) ⊂ co D∗G(x̄ | ȳ) ◦ D∗ F ( ȳ | z̄). (3.2)

(2) Assume that S is inner semicompact at (x̄, z̄), that G and F −1 are closed-graph whenever x is near x̄ and
z is near z̄, respectively, and that (3.1) holds for every ȳ ∈ S(x̄, z̄). Then

D∗(F ◦ G)(x̄ | z̄) ⊂
⋃

ȳ∈S(x̄,z̄)

D∗G(x̄ | ȳ) ◦ D∗ F ( ȳ | z̄),

which in turn implies

co D∗(F ◦ G)(x̄ | z̄) ⊂ co
⋃

ȳ∈S(x̄,z̄)

co D∗G(x̄ | ȳ) ◦ D∗ F ( ȳ | z̄). (3.3)

(3) If S is locally bounded at (x̄, z̄), (3.1) holds for every ȳ ∈ S(x̄, z̄), and F and G are both graph convex (i.e.,
have convex graphs), then F ◦ G is also graph convex, and

D∗(F ◦ G)(x̄ | z̄) = D∗G(x̄ | ȳ) ◦ D∗ F ( ȳ | z̄) for any ȳ ∈ S(x̄, z̄).

The formula (3.3) is not any stronger if its RHS is replaced by

co
⋃

ȳ∈S(x̄,z̄)

D∗G(x̄ | ȳ) ◦ D∗ F ( ȳ | z̄),

since this formula is equal to the RHS of (3.3). Therefore, to find the convexified limiting coderivative
co D∗(F ◦ G)(x̄ | z̄), the convexified limiting coderivative of G , i.e., co D∗G , is sufficient. We explore the
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possibilities if we had relaxed the formulas (3.2) and (3.3) by replacing the relevant formulas with
co D∗G(x̄ | ȳ) ◦ co D∗ F ( ȳ | z̄) instead.

Example 3.2 (Tightness of chain rules). Consider the set-valued maps Gi : R⇒R, i = 1,2,3 and F :R⇒
R defined by

G1(x) =
{
R if x � 0,

(−∞,−x] ∪ [x,∞) if x � 0,

G2(x) = [
min(0, x),∞)

,

G3(x) = [
max(x/2, x),∞)

, and

F (x) = {−x} ∪ {x}.
As illustrated in Table 1, we have

co D∗(F ◦ G1)(0 | 0) = co D∗G1(0 | 0) ◦ D∗ F (0 | 0) � co D∗G1(0 | 0) ◦ co D∗ F (0 | 0),

co D∗(F ◦ G2)(0 | 0) � co D∗G2(0 | 0) ◦ D∗ F (0 | 0) = co D∗G2(0 | 0) ◦ co D∗ F (0 | 0), and

co D∗(F ◦ G3)(0 | 0)� co D∗G3(0 | 0) ◦ D∗ F (0 | 0) � co D∗G3(0 | 0) ◦ co D∗ F (0 | 0).

The following general principle in the optimization of marginal functions will be used later. We
take this result from [9, Theorem 3.38].

Lemma 3.3 (Subdifferential of marginal functions). For the marginal function (1.4), define the argminimum
mapping by

M(x) := {
y ∈ G(x)

∣∣ ϕ(x, y) = f (x)
}
.

The following hold:

(1) Given ȳ ∈ M(x̄), assume that M is inner semicontinuous at (x̄, ȳ), that ϕ(x, y) is lsc around (x̄, ȳ), and
that Graph(G) is locally closed at (x̄, ȳ). Suppose also that the qualification condition

∂∞ϕ(x̄, ȳ) ∩ −NGraph(G)(x̄, ȳ) = {0} (3.4)

is satisfied. Then one has the inclusion

∂ f (x̄) ⊂
⋃

(x∗,y∗)∈∂ϕ(x̄, ȳ)

[
x∗ + D∗G(x̄ | ȳ)

(
y∗)], and

∂C f (x̄) ⊂ co
⋃

(x∗,y∗)∈∂ϕ(x̄, ȳ)

[
x∗ + co D∗G(x̄ | ȳ)

(
y∗)]. (3.5)

(2) Assume that M is inner semicompact at x̄, that G is closed-graph and ϕ is lsc on Graph(G) whenever x
is near x̄, and that the other assumptions in (1) are satisfied for every ȳ ∈ M(x̄). Then one has analogs of
inclusion (3.5), where the sets on the right-hand sides are replaced by their unions over ȳ ∈ M(x̄).

(3) Assume that M(·) is locally bounded at x̄, (3.4) is satisfied for every ȳ ∈ M(x̄), G is graph-convex and ϕ is
convex. Then f is convex, and

∂ f (x̄) = {
x∗ + D∗G(x̄ | ȳ)

(
y∗) ∣∣ (

x∗, y∗) ∈ ∂ϕ(x̄, ȳ)
}

for any ȳ ∈ M(x̄).
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Table 1
Possible scenarios in chain rule of set-valued maps from Example 3.2.

i = 1 2 3

Gi

F

F ◦ Gi

D∗ F (0 | 0)

D∗Gi(0 | 0)

co D∗(F ◦ Gi)(0 | 0)

co D∗Gi(0 | 0) ◦ D∗ F (0 | 0)

co D∗Gi(0 | 0) ◦ co D∗ F (0 | 0)

Proof. Cases (1) and (2) are exactly the statement of [9, Theorem 3.38], and we prove only (3) from
Theorem 3.1(3). Consider the map Ḡ : Rn ⇒ Rn × Rm defined by Ḡ(x) = {x} × G(x). The coderivative
D∗Ḡ(x̄ | (x̄, ȳ)) :Rn ×Rm ⇒Rn is easily evaluated to be

D∗Ḡ
(
x̄
∣∣ (x̄, ȳ)

)
(p,q) = p + D∗G(x̄ | ȳ)(q).
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Noting that E f = Eϕ ◦ Ḡ , the constraint qualification we need to check in Theorem 3.1(3) is

D∗Eϕ

(
(x̄, ȳ)

∣∣ f (x̄)
)
(0) ∩ −D∗Ḡ−1((x̄, ȳ)

∣∣ x̄
)
(0) = {0}. (3.6)

Note that ∂∞ϕ(x̄, ȳ) = D∗Eϕ((x̄, ȳ) | f (x̄))(0). Now, (p,q) ∈ D∗Ḡ−1((x̄, ȳ) | x̄)(0) if and only if
(p,q,0) ∈ NGraph(Ḡ−1)(x̄, ȳ, x̄), which is in turn equivalent to (0, p,q) ∈ NGraph(Ḡ)(x̄, x̄, ȳ). We see that

Graph(Ḡ) is the image of a linear map of Graph(G) and use a rule of normal cones on linear maps in
[12, Theorem 6.43] to obtain

NGraph(Ḡ)(x̄, x̄, ȳ) = {
(u, w, v)

∣∣ (u + w, v) ∈ NGraph(G)(x̄, ȳ)
}
.

Thus (0, p,q) ∈ NGraph(Ḡ)(x̄, x̄, ȳ) iff (p,q) ∈ NGraph(G)(x̄, ȳ). Therefore (3.6) is equivalent to (3.4). We
then apply Theorem 3.1(3) to get

∂ f (x̄) = D∗E f
(
x̄
∣∣ f (x̄)

)
(1)

= D∗(Eϕ ◦ Ḡ)
(
x̄
∣∣ f (x̄)

)
(1).

Then for any ȳ ∈ M(x̄),

∂ f (x̄) = D∗Ḡ
(
x̄
∣∣ (x̄, ȳ)

) ◦ D∗Eϕ

(
(x̄, ȳ)

∣∣ f (x̄)
)
(1)

= D∗Ḡ
(
x̄
∣∣ (x̄, ȳ)

)(
∂ϕ(x̄, ȳ)

)
= {

x∗ + D∗G(x̄ | ȳ)
(

y∗) ∣∣ (
x∗, y∗) ∈ ∂ϕ(x̄, ȳ)

}
. �

We remark that [12, Section 10H] and [9, Section 3.2] contain other coderivative calculus rules
that can be easily extended for the convexified limiting coderivative. As we have remarked after The-
orem 3.1, the convexified limiting coderivative of G in Lemma 3.3 is sufficient for obtaining the Clarke
subdifferential of f .

Remark 3.4 (Alternative view of marginal functions). A different view useful for later discussions is to
consider

min
(x,y)

ϕ(x, y)

s.t. (x, y) ∈ Graph(G).

As is well known in nonlinear programming, if the point (x̄, ȳ) is optimal, then 0 ∈ ∂ϕ(x̄, ȳ) +
NGraph(G)(x̄, ȳ). Recall that through the definition of coderivatives, NGraph(G)(x̄, ȳ) is related to
Graph(D∗G(x̄ | ȳ)) by a linear transformation.

4. Subdifferential analysis of discretized inclusions

In this section, we consider the discretized inclusion and calculate the coderivatives of its reach-
able map. One can then obtain the subdifferential dependence of the differential inclusion in terms
of its initial conditions. We can then obtain a necessary optimality condition of the discretized inclu-
sion similar to the Euler–Lagrange and Transversality Conditions. Finally, we discuss the limitations of
obtaining a discretized version of the Weierstrass–Pontryagin Maximum Principle.
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We consider the following discrete inclusion as an analogue to the differential inclusion (1.1):

min
xk∈Rn for k∈0,N

ϕ(x0, xN )

s.t. xk ∈ xk−1 + (�t)F
(
(k − 1)(�t), xk−1

)
. (4.1)

Here, �t = T /N . The inclusion systems above can be further modified to one defined in terms of the
reachable map. The discretized version of the reachable map RN : Rn ⇒Rn can be defined by

RN(x0) = {
xN : ∃xk ∈Rn for k = 1, N − 1 s.t.

xk ∈ xk−1 + (�t)F
(
(k − 1)(�t), xk−1

)
for all k = 1, N

}
. (4.2)

Then (4.1) can be rewritten as

min
x0,xN

ϕ(x0, xN )

s.t. xN ∈ RN(x0) ⊂ Rn. (4.3)

Theorem 4.1 (Coderivatives of discretized reachable map). Recall the map RN : Rn ⇒ Rn as defined in (4.3).
Let �t = T /N, and define Fk,N : Rn ⇒Rn and Mk,N : Rn ⇒Rn by

Fk,N(·) := F
(
k(�t), ·) and Mk,N(x) := x + (�t)Fk,N(x). (4.4)

Note that RN = MN−1,N ◦ MN−2,N ◦ · · · ◦ M0,N . Assume that Fk,N (·) are osc and locally Lipschitz, and for
all x, k and N, Fk,N (·) is locally bounded at x, i.e., there exists a neighborhood U of x and finite R such that
Fk,N (x′) ⊂ RB for all x′ ∈ U .

(1) For xN ∈ R(x0), the coderivative of RN : Rn ⇒Rn satisfies

D∗RN(x0 | xN) ⊂
⋃

{x̃i}N
i=0∈XN

D∗M0,N(x̃0 | x̃1) ◦ · · · ◦ D∗MN−1,N(x̃N−1 | x̃N)︸ ︷︷ ︸
G{x̃i }N

i=0

(4.5)

where

XN = {{x̃i}N
i=0: x̃k ∈ Mk−1,N(x̃k−1) for all k ∈ 1, N, x̃0 = x0 and x̃N = xN

}
. (4.6)

(2) If in addition Fk,N (·) are all graph convex, then

D∗RN(x0 | xN) = D∗M0,N(x̃0 | x̃1) ◦ · · · ◦ D∗MN−1,N(x̃N−1 | x̃N )

for any {x̃i}N
i=0 ∈ XN .

(3) Consider the conditions:
(a) p0 ∈ D∗RN (x0 | xN )(pN ).
(b) There are {x̃i}N

i=0 ∈ XN and {p̃i}N
i=0 such that p0 = p̃0 , pN = p̃N and

pk − pk−1

�t
∈ −D∗ Fk−1,N

(
x̃k−1

∣∣∣ 1

�t
(x̃k − x̃k−1)

)
(pk) for all k ∈ 1, N. (4.7)
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We have (a) implies (b), and in the case where each Fk,N (·) is graph convex for all k ∈ 0, (N − 1), the
converse holds as well.

Proof. For (1), the case where N = 2 follows directly from Theorem 3.1(2). The local boundedness of
Fk,N (·) ensures that S(·,·) in Theorem 3.1(2) is inner semicompact, and the local Lipschitz continuity
of Fk,N (·) implies the constraint qualification in (3.1) holds. The case for general N is easily deduced
from the case where N = 2. For (2), we follow the similar steps and apply Theorem 3.1(3).

To prove that (3)(a) implies (3)(b), let G{x̃i}N
i=0

: Rn ⇒ Rn be the formula as marked in (4.5). For

pN , p0 ∈ Rn , we have p0 ∈ G{x̃i}N
i=0

(pN ) if and only if there exists some {p̃i}N
i=0 such that p0 = p̃0,

pN = p̃N and

pk−1 ∈ D∗Mk−1(x̃k−1 | x̃k)(pk) for all k ∈ 1, N. (4.8)

From the definition of Mk−1,N and calculus rules for coderivatives in [12, Section 10H], we have

D∗Mk−1,N(x̃k−1 | x̃k) = I + (�t)D∗ Fk−1,N

(
x̃k−1

∣∣∣ 1

�t
(x̃k − x̃k−1)

)
. (4.9)

The formula (4.7) follows easily from (1). The converse holds due to (2). �
Putting together the previous results, we have the following necessary optimality condition for the

discrete inclusion problem.

Theorem 4.2 (Subdifferential analysis of discrete inclusions). For the discrete inclusion (4.1), define
Fk,N :Rn ⇒Rn and Mk,N : Rn ⇒Rn as in (4.4), RN : Rn ⇒Rn by (4.2), and f : Rn → R by

f (x0) := min
xN

ϕ(x0, xN )

s.t. xN ∈ RN(x0) ⊂ Rn.

Suppose

• for all k, Fk,N (·) is osc and locally Lipschitz,
• for all k, there is some finite bk,N such that Fk,N (x) ⊂ bk,NB for all x, and
• the function ϕ(·,·) is lsc.

Then

∂ f (x0) ⊂
⋃

{x̃i}N
i=0∈XN , xN∈RN (x0)

ϕ(x0,xN )= f (x0)

{
x∗ + D∗G{x̃i}N

i=0
(x0 | xN)

(
y∗) ∣∣ (

x∗, y∗) ∈ ∂ϕ(x0, xN )
}
,

where G{x̃i}N
i=0

: Rn ⇒ Rn and XN are defined as in (4.5) and (4.6). If in addition all the Fk,N (·) are all graph

convex and ϕ(·,·) is convex, we have

∂ f (x0) = {
x∗ + D∗G{x̃i}N

i=0
(x0 | xN)

(
y∗) ∣∣ (

x∗, y∗) ∈ ∂ϕ(x0, xN )
}

for any {x̃i}N
i=0 ∈ XN s.t. f (x0) = ϕ(x0, xN).

In particular (not assuming the convexity of Graph(Fk,N ) and ϕ(·,·)), a necessary condition for the opti-
mality of the path {x̃i}N

i=0 ∈ XN is the existence of {pi}N
i=0 such that
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(1) (−p0, pN ) ∈ ∂ϕ(x̃0, x̃N ), and
(2) pk−pk−1

�t ∈ −D∗ Fk−1,N (x̃k−1 | 1
�t (x̃k − x̃k−1))(pk) for all k ∈ 1, N.

Proof. Apply Theorem 4.1 and Lemma 3.3. �
Remark 4.3 (Discrete Euler–Lagrange and Transversality Conditions). Condition (1) in Theorem 4.2 is
the discrete analogue of the Transversality Condition (TC), while condition (2) is the analogue of
the Euler–Lagrange Condition (EL). A direct analysis without using coderivatives of the discretized
reachable map allows us to drop the assumption that F is locally Lipschitz. See for example [8, The-
orem 5.2], or [9, Theorem 6.17] for an infinite dimensional extension. For the continuous problem
considered in Section 5, it seems that one cannot weaken the condition that F (t, ·) is locally Lipschitz
for almost every t ∈ [0, T ] to prove the Euler–Lagrange and Transversality Conditions.

Finally, we make a remark on the Weierstrass–Pontryagin Maximum Principle (WP). Before we do
so, we recall that for F : [0, T ] × Rn ⇒ Rn , the reachable map of the relaxed differential inclusion is
defined by

Rco F (x0) := {
y: ∃x(·) ∈ AC

([0, T ],Rn)
s.t.

x′(t) ∈ co F
(
t, x(t)

)
for t ∈ [0, T ] a.e.,

x(0) = x0 and x(T ) = y
}
.

It is well known that under mild conditions, we have cl R(x) = Rco F (x) for all x ∈Rn .

Remark 4.4 (Discrete analogue of the Weierstrass–Pontryagin Maximum Principle). Recall the chain rule
for set-valued maps F : Rn ⇒ Rn and G : Rn ⇒ Rn as presented in Theorem 3.1. If the conclusion of
the chain rule had been that for all r ∈ Rn ,

D∗(F ◦ G)(x̄ | z̄)(r)

⊂
⋃

ȳ∈F −1(z̄)∩G(x̄)

{
co D∗G(x̄ | ȳ)(q)

∣∣ q ∈ co D∗ F (x̄ | ȳ)(r),
〈
q, ȳ − y′〉 � 0 for all y′ ∈ G(x̄)

}
, (4.10)

then we can repeatedly apply this chain rule like in Theorem 4.1 so that under the conditions of
Theorem 4.1, p0 ∈ D∗RN (x0 | xN )(pN ) implies that there are {x̃i}N

i=0 and {p̃i}N
i=0 such that

x̃0 = x0, x̃N = xN , p̃0 = p0, p̃N = pN , (4.11a)

p̃k − p̃k−1

�t
∈ −D∗ Fk−1,N

(
x̃k−1

∣∣∣ 1

�t
(x̃k − x̃k−1)

)
(p̃k) for all k ∈ 1, N, and (4.11b)

〈
−p̃k, v − 1

�t
(x̃k − x̃k−1)

〉
� 0 for all v ∈ Fk−1,N(x̃k−1) and k ∈ 1, N. (4.11c)

Such a formula would be appealing because (4.11b) corresponds to the Euler–Lagrange Condition (EL)
and (4.11c) corresponds to the Weierstrass–Pontryagin Maximum Principle (WP). However, (4.10) is
not true in general. Consider the maps G : R⇒R and f :R→ R defined by

G(x) := [x + 1, x + 2] ∪ [x − 2, x − 1], and

f (x) := −|x − 0.5|.
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Then f ◦ G(0) = [−2.5,−0.5], and f −1(−0.5) ∩ G(0) = {1}. We can calculate that

D∗G(0 | 1)(1) = {1},
D∗ f (1 | −0.5)(−1) = {1}, and

D∗( f ◦ G)(0 | −0.5)(−1) = {1}.

However, since we do not have 〈1,1 − v〉 � 0 for all v ∈ G(0) = [1,2] ∪ [−2,−1], the right-hand side
of (4.10) is empty, showing us that (4.10) cannot be true.

We now consider the case where Fk,N : Rn ⇒ Rn are convex-valued (so that we are considering
the relaxed differential inclusion). It follows easily from the definitions that (4.11b) is equivalent to

(
− p̃k − p̃k−1

�t
,−p̃k

)
∈ NGraph(Fk−1,N )

(
x̃k−1

∣∣∣ 1

�t
(x̃k − x̃k−1)

)
. (4.12)

If Fk−1,N (x̃k−1) is convex and Fk,N is inner semicontinuous, then (4.11c) follows easily from (4.12).
(See for example [8, Proposition 4.7] or [9, Theorem 1.34].)

5. Subdifferential analysis of differential inclusions

In this section, we make use of the work in Section 4 to calculate estimates of the convexified
limiting coderivative of the (continuous) reachable map, and explain how this new formula gives a
new way to interpret the Euler–Lagrange and Transversality Conditions.

We first simplify the notation. Define F (x̄, ȳ) to be the set of feasible paths with end points x̄
and ȳ, i.e.,

F (x̄, ȳ) := {
x(·) ∣∣ x(·) ∈ AC

([0, T ],Rn)
, x(0) = x̄, x(T ) = ȳ,

and x′(t) ∈ F
(
t, x(t)

)
for t ∈ [0, T ] a.e.

}
. (5.1)

Define Π : Rn ×Rn ×Rn ⇒Rn by

Π(x, y, v) := {
u

∣∣ ∃x(·) ∈ F (x, y), p(·) ∈ AC
([0, T ],Rn)

s.t. p(0) = u, p(T ) = v and

p′(t) ∈ −co D∗
x F

(
t, x(t)

∣∣ x′(t)
)(

p(t)
)

for t ∈ [0, T ] a.e.
}
.

Here, co D∗
x F (t, x(t) | x′(t)) : Rn ⇒ Rn is to be understood as co D∗ Ft(x(t) | x′(t)) : Rn ⇒ Rn , where

Ft(·) = F (t, ·). Corresponding to Π(x, y, v) is its discretized version:

ΠN(x, y, v) :=
{

u
∣∣∣ ∃{xi}N

i=0, {pi}N
i=0 s.t. x0 = x, xN = y, p0 = u, pN = v,

1

�t
(xk − xk−1) ∈ F

(
(k − 1)(�t), xk−1

)
for all k ∈ 1, N, and

1

�t
(pk − pk−1) ∈ −D∗ Fk−1,N

(
xk−1

∣∣∣ 1

�t
(xk − xk−1)

)
(pk) for all k ∈ 1, N

}
.

We make the following conjecture.
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Conjecture 5.1 (Upper estimate of discretized coderivative of reachable map). For the reachable map
R : Rn ⇒Rn defined in (1.2), the convexified coderivative co D∗R(x̄ | ȳ) satisfies

D∗R(x̄ | ȳ)(v) ⊂ {
u: ∃x(·) ∈ F (x̄, ȳ), p(·) ∈ AC

([0, T ],Rn)
s.t.

p′(t) ∈ −co D∗
x F

(
t, x(t)

∣∣ x′(t)
)(

p(t)
)
,

p0 = u and pT = v
}

for all v ∈Rn. (5.2)

Remark 5.2 (Consequence of Conjecture 5.1). Consider the problem

min
(x,y)

ϕ(x, y)

s.t. (x, y) ∈ Graph(R).

Recall the discussion in Remark 3.4. Provided (5.2) holds, if the point (x̄, ȳ) is optimal, then 0 ∈
∂ϕ(x̄, ȳ) + NGraph(R)(x̄, ȳ). We have

∂ϕ(x̄, ȳ) + NGraph(R)(x̄, ȳ) = ∂ϕ(x̄, ȳ) + L Graph
(

D∗R(x̄, ȳ)
)

⊂ ∂ϕ(x̄, ȳ) + L Graph
(
co D∗R(x̄ | ȳ)

)
,

where L : Rn ×Rn → Rn ×Rn is the linear map represented by the matrix
( 0 I

−I 0

)
. Unrolling the defi-

nition of D∗R(x̄ | ȳ) gives the following optimality condition: If (x̄, ȳ) is optimal, then there are paths
x(·), p(·) ∈ AC([0, T ],Rn) such that x(·) is feasible for the differential inclusion, x(0) = x̄, x(T ) = ȳ, and
satisfies the Transversality Condition (TC) and the Euler–Lagrange Condition (EL).

We will prove the following weaker result instead:

co D∗R(x̄ | ȳ)(v) ⊂ co
{

u: ∃x(·) ∈ F (x̄, ȳ), p(·) ∈ AC
([0, T ],Rn)

s.t.

p′(t) ∈ −co D∗
x F

(
t, x(t)

∣∣ x′(t)
)(

p(t)
)
,

p0 = u and pT = v
}

for all v ∈Rn. (5.3)

Our strategy is to prove the following three inclusions:

co D∗R(x̄ | ȳ) ⊂
⋂
N∈N
δ>0

co
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

D∗Ri(x | y), (5.4a)

⋂
N∈N
δ>0

co
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

D∗Ri(x | y)(v) ⊂
⋂
N∈N
δ>0

co
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

Πi(x, y, v), and (5.4b)

⋂
N∈N
δ>0

co
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

Πi(x, y, v) ⊂ coΠ(x̄, ȳ, v), (5.4c)

where (5.4b) and (5.4c) hold for all v ∈ Rn . Conditions for D∗Ri(x | y)(v) ⊂ Πp,i(x, y, v), which ad-
dresses (5.4b), were discussed in Theorem 4.1. The same steps used to prove that (5.4b) and (5.4c)
hold for all v ∈Rn yield the following stronger statements: For all v ∈ Rn ,
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⋂
N∈N
δ>0

cl
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

D∗Ri(x | y)(v) ⊂
⋂
N∈N
δ>0

cl
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

Πi(x, y, v), and

⋂
N∈N
δ>0

cl
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

Πi(x, y, v) ⊂ Π(x̄, ȳ, v).

Notice that if (5.4a) were strengthened to be

D∗R(x̄ | ȳ) ⊂
⋂
N∈N
δ>0

cl
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

D∗Ri(x | y)

instead, then piecing the last three formulas together gives (5.2). We continue with some lemmas.

Lemma 5.3 (Coderivatives around (x̄, ȳ)). Let δ > 0, and S : Rn ⇒ Rm be osc. Suppose H : Rn ⇒ Rm is a
prefan such that

H ∈ H

(
co

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

D∗S(x | y)

)
.

Let δ′ := min(δ, δ
5‖H‖+ ). Then

S
(
x′) ∩Bδ/2( ȳ) ⊂ S

(
x′′) + H

(
x′ − x′′) for all x′, x′′ ∈ Bδ′(x̄).

Proof. For any x ∈ Bδ(x̄) and y ∈ Bδ( ȳ), we have H ∈ H (D∗ S(x | y)). Choose any θ > 0. There exists
some εx,y,θ > 0 such that

S
(
x′) ∩Bεx,y,θ (y) ⊂ S

(
x′′) + (H + θ)

(
x′ − x′′) for all x′, x′′ ∈ Bεx,y,θ (x).

For each x ∈ Bδ(x̄), we can find a finite number of elements in Bδ( ȳ), say {y j} J
j=1, such that Bδ( ȳ) ⊂⋃ J

j=1 Bεx,y,θ (y). Letting εx,θ := min j∈1, J (εx,y j ,θ ), we have

S
(
x′) ∩Bδ( ȳ) ⊂ S

(
x′′) + (H + θ)

(
x′ − x′′) for all x′, x′′ ∈ Bεx,θ (x).

For any line segment [x′, x′′] in Bδ(x̄), we can find finitely many x in Bδ(x̄), say {xk}K
k=1 such that

[x′, x′′] ⊂ ⋃K
k=1 Bεxk ,θ (xk). We can break up the line segment [x′, x′′] to a union of line segments⋃ J−1

j=1 [x̃ j, x̃ j+1] so that {x̃ j} J
j=1 line up in that order, each [x̃ j, x̃ j+1] is inside some Bεxk ,θ (xk), x̃1 = x′

and x̃ J = x′′ . Then

S(x̃ j) ∩Bδ( ȳ) ⊂ S(x̃ j+1) + (H + θ)(x̃ j − x̃ j+1)

⇒ [
S(x̃ j) ∩Bδ( ȳ)

] + (H + θ)(x̃1 − x̃ j) ⊂ S(x̃ j+1) + (H + θ)(x̃1 − x̃ j+1).

We write κ = ‖H‖+ to simplify notation. This gives

[
S(x̃ j) + (H + θ)(x̃1 − x̃ j)

] ∩Bδ−(κ+θ)|x′−x′′|( ȳ) ⊂ [
S(x̃ j) ∩Bδ( ȳ)

] + (H + θ)(x̃1 − x̃ j)

⊂ S(x̃ j+1) + (H + θ)(x̃1 − x̃ j+1),
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which implies

[
S(x̃ j) + (H + θ)(x̃1 − x̃ j)

] ∩Bδ−(κ+θ)|x′−x′′|( ȳ)

⊂ [
S(x̃ j+1) + (H + θ)(x̃1 − x̃ j+1)

] ∩Bδ−(κ+θ)|x′−x′′|( ȳ). (5.5)

Consider the case where θ < κ/4 so that 4(κ + θ) < 5κ . If x′, x′′ ∈ Bδ′(x̄), where δ′ = min(δ, δ
5κ ), then

(κ + θ)
∣∣x′ − x′′∣∣ � 5

4
κ

2δ

5κ
� δ

2
.

Recalling that x̃1 = x′ and x̃ J = x′′ and applying (5.5) repeatedly, we have

S
(
x′) ∩Bδ/2( ȳ) ⊂ S

(
x′′) + (H + θ)

(
x′ − x′′).

The above holds for all x′, x′′ ∈ Bδ′(x̄) and for all θ > 0, and hence for θ = 0, giving us the conclusion
we need. �

This result gives a handle on the left-hand bound.

Lemma 5.4 (On (5.4a)). Let S :Rn ⇒Rm be a closed set-valued map. Suppose {Si(·)}∞i=1 , where Si : Rn ⇒Rm,
are osc set-valued maps such that for any ε > 0 and x ∈Rn, there is some I such that

d
(

S(x), Si(x)
)
< ε for all i > I. (5.6)

Then for any δ > 0 and positive integer N, we have

co D∗S(x̄ | ȳ) ⊂ co
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

D∗ Si(x | y).

Proof. By Lemma 2.8, we can prove that the following holds for all δ > 0 and positive integers N
instead:

H
(
co D∗ S(x̄ | ȳ)

) ⊃ H

(
co

⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

D∗Si(x | y)

)
.

Suppose H : Rn ⇒Rm is a prefan in the RHS. Then for any i > N ,

H ∈ H

(
co

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

D∗ Si(x | y)

)
.

By Lemma 5.3, if δ′ = min(δ, δ
5‖H‖+ ), then

Si
(
x′) ∩Bδ/2( ȳ) ⊂ Si

(
x′′) + H

(
x′ − x′′) for all x′, x′′ ∈ Bδ′(x̄).
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For all x′, x′′ ∈ Bδ′(x̄) and ε > 0, we can find i large enough so that

S
(
x′) ∩Bδ/2( ȳ) ⊂ [

Si
(
x′) + εB

] ∩Bδ/2( ȳ)

⊂ Si
(
x′′) + H

(
x′ − x′′) + εB

⊂ S
(
x′′) + H

(
x′ − x′′) + 2εB.

The above holds for all ε > 0, and we have

S
(
x′) ∩Bδ/2( ȳ) ⊂ S

(
x′′) + H

(
x′ − x′′) for all x′, x′′ ∈ Bδ′(x̄).

This implies that H ∈ H (co D∗ S(x̄ | ȳ)) as needed. �
Remark 5.5 (On formula (5.6)). We note that conditions for d(S(x), Si(x)) < ε were given in [4], and in
particular, conditions for S(x) ⊂ Si(x) + εB were given in [9, Theorem 6.4] for example.

Note that Theorem 4.1 says that D∗ Si(x | y)(v) ⊂ Πi(x, y, v). To find suitable conditions for (5.4c),
we need the following result.

Lemma 5.6 (Convexification of intersection of nested sets). Suppose {Ai}∞i=1 ⊂ Rn are nested compact sets
such that Ai+1 ⊂ Ai . Then co

⋂
i Ai = ⋂

i co Ai .

Proof. Suppose x is in the LHS. Then x ∈ co Ai for all i, so x ∈ ⋂
i co Ai , establishing co

⋂
i Ai ⊂⋂

i co Ai .
Next, suppose x is in the RHS. Then x ∈ co Ai for all i. Consider any v ∈ Rn\{0}. Since x ∈ co Ai ,

we have v T x � supa∈Ai
v T a. By the compactness of Ai , let āi be such that v T āi = supa∈Ai

v T a. Since⋂
j A j ⊂ Ai for all i, it is clear that supa∈⋂

j A j
v T a � supa∈Ai

v T a for all i, so supa∈⋂
j A j

v T a �
infi supa∈Ai

v T a. By the compactness of Ai , the limit ā = lim j→∞ ā j exists and lies in
⋂

j A j . This
shows that

inf
i

sup
a∈Ai

vT a = inf
i

vT āi

= vT ā

� sup
a∈⋂

j A j

vT a.

Then v T x � supa∈⋂
j A j

v T a, which holds for all v . Thus we have x ∈ co
⋂

i Ai , so co
⋂

i Ai = ⋂
i co Ai

as needed. �
Here is a lemma useful for proving our next result. We take our result from [14, Lemma 4.4].

Lemma 5.7 (Continuous solutions from discrete solutions). Assume that a set-valued map F : [0, T ] × Rn ×
Rm → Rn has closed convex values. Let the set-valued map (x, y) �→ F (t, x, y) be upper semicontinuous for
almost all t ∈ [0, T ], and let F (t, x, y) ⊂ b(t)B for all (t, x, y) ∈ [0, T ]×Rn ×Rm, where b(·) ∈ L1([0, T ],R).
Assume that functions xk(·) ∈ AC([0, T ],Rn), k = 0,1, . . . , satisfy

x′
k(t) ∈ co F

(
t, xk(t),ηk(t)Bm

) + ηk(t)Bn,
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where ηk � 0, limk→∞ ηk(t) = 0 almost everywhere, and |ηk(t)| � η(t), k = 1,2, . . . , η(·) ∈ L1([0, T ],R).
Then the functions xk(·) are equicontinuous on [0, T ]; and if a subsequence xkp (·) uniformly converges to a
function x(·), then x(·) is a solution of the differential inclusion

x′(t) ∈ F
(
t, x(t),0

)
for t ∈ [0, T ] a.e.

Before we state our main result, we describe in detail the paths produced by discrete approxima-
tions in the remark below.

Remark 5.8 (Discrete approximations). For {xi, j} 0� j�i
1�i�∞

and {pi, j} 0� j�i
1�i�∞

, let �t = T /i, and construct

the following path xi : [0, T ] → Rn defined by

xi(t) = t − j�t

�t
xi, j+1 + ( j + 1)�t − t

�t
xi, j whenever t ∈ [

j�t, ( j + 1)�t
]
, and

pi(t) = t − j�t

�t
pi, j+1 + ( j + 1)�t − t

�t
pi, j whenever t ∈ [

j�t, ( j + 1)�t
]
.

It is clear that xi(·) and pi(·) are piecewise differentiable at all points other than integer multiples
of �t , and the derivatives satisfy

x′
i(t) = 1

�t
(xi, j+1 − xi, j) whenever t ∈ (

j�t, ( j + 1)�t
)
, and (5.7a)

p′
i(t) = 1

�t
(pi, j+1 − pi, j) whenever t ∈ (

j�t, ( j + 1)�t
)
. (5.7b)

We also need the following condition for Lemma 5.9, which was one of the conclusions in Theo-
rem 4.2:

pk − pk−1

�t
∈ −D∗ Fk−1,N

(
xk−1

∣∣∣ 1

�t
(xk − xk−1)

)
(pk) for all k ∈ 1, N. (5.8)

We now prove our result on (5.4c). Note that (5.4c) represents a closedness property, and we shall
show that Lemma 5.7 provides some reasonable conditions for (5.4c) to hold.

Lemma 5.9 (On (5.4c)). Suppose F : [0, T ] × Rn ⇒ Rn is osc. Assume further that there is some b(·) ∈
L1([0, T ],Rn) such that b(t) is finite for all t and co D∗

x F (t, x | y)(p) ⊂ b(t)‖p‖B for all (t, x, y, p) ∈
[0, T ] ×Rn ×Rn ×Rn. Suppose also that the following assumption holds:

(1) If u ∈ ⋂
N∈N, δ>0 cl

⋃
i>N

⋃
x∈Bδ (x̄)
y∈Bδ ( ȳ)

Πi(x, y, v), then there exist x(·) ∈ AC([0, T ],Rn) and subsequences

of paths {xik (·)}∞k=1 and {pik (·)}∞k=1 of {xi(·)}∞i=1 and {pi(·)}∞i=1 respectively such that
• {xi(·)}∞i=1 and {pi(·)}∞i=1 are constructed based on discrete approximations {xi, j} 0� j�i

1�i�∞
and

{pi, j} 0� j�i
1�i�∞

satisfying (5.8) as described in Remark 5.8,

• xik (0) → x̄, xik (T ) → ȳ, pik (0) → u and pik (T ) → v as k → ∞,
• xik (·) converges uniformly to x(·),
• x′

i (·) converges pointwise almost everywhere to x′(·),

k
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• x(·) satisfies the differential inclusion

x′(t) ∈ F
(
t, x(t)

)
a.e.,

x(0) = x̄ and x(T ) = ȳ,

• and {pik (·)}∞k=1 converges uniformly to some p(·).

Then we have

⋂
N∈N, δ>0

cl
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

Πi(x, y, v) ⊂ Π(x̄, ȳ, v), and (5.9)

⋂
N∈N, δ>0

co
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

Πi(x, y, v) ⊂ coΠ(x̄, ȳ, v). (5.10)

Proof. First, we note that (5.9) implies (5.10). If (5.9) holds, then by Lemma 5.6 we have

⋂
N∈N, δ>0

co
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

Πi(x, y, v) = co
⋂

N∈N, δ>0

cl
⋃
i>N

⋃
x∈Bδ(x̄)
y∈Bδ( ȳ)

Πi(x, y, v)

⊂ coΠ(x̄, ȳ, v).

Proving (5.9) is equivalent to proving the following: If ui ∈ Πi(x̄i, ȳi, v) and ui → u, x̄i → x̄ and
ȳi → ȳ as i → ∞, then u ∈ Π(x̄, ȳ, v). Consider v ∈ Rn and the sequences of functions {xi(·)}∞i=1 and
{pi(·)}∞i=1 constructed from {xi, j} 0� j�i

1�i�∞
and {pi, j} 0� j�i

1�i�∞
such that xi(0) = x̄i , xi(T ) = ȳi , pi(0) = ui

and pi(T ) = v . We therefore need to show that u ∈ Π(x̄, ȳ, v).
For a fixed t ∈ [0, T ], the map

(p, x̃, ỹ, p̃) �→ −D∗
x F

(
t, x(t) + x̃

∣∣ x′(t) + ỹ
)
(p + p̃)

can be checked to be osc (at where x(t) and x′(t) are defined) from the definition of the coderivatives
and the fact that the map (x, y) �→ NGraph(F (t,·))(x, y) is osc. The map

(p, x̃, ỹ, p̃) �→ −co D∗
x F

(
t, x(t) + x̃

∣∣ x′(t) + ỹ
)
(p + p̃)

is osc since the convex hull operation preserves outer semicontinuity. (The proof is elementary, and
the steps are shown in [11] for example.)

Suppose x(·) is such that assumption (1) in the statement holds. Our problem can be solved if we
can show that p(·) satisfies the differential inclusion

p′(t) ∈ −co D∗
x F

(
t, x(t)

∣∣ x′(t)
)(

p(t)
)
.

We try to find ηk : [0, T ] → [0,∞) such that for all t ∈ [0, T ],

lim
k→∞

ηk(t) = 0 and

p′
i (t) ∈ −co D∗

x F
(
t + ηk(t)B, x(t) + ηk(t)B

∣∣ x′(t) + ηk(t)B
)(

pik (t) + ηk(t)B
)
. (5.11)
k
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For each t ∈ [0, T ] and k ∈ 1,∞, we have �t/(�t)�(�t) � t � �t/(�t) + 1�(�t), where �t = T /ik
and �α� is the greatest integer not more than α. For simplicity, we consider the case where t/T is
irrational. From the definitions of xik (·) and pik (·) and (5.8), we have

p′
ik
(t) ∈ −co D∗

x F
(
tk, xik (tk)

∣∣ x′
ik
(t)

)(
pik (tk + �t)

)
,

where tk = �t/(�t)�(�t). To establish the existence of ηk(·) in (5.11), it suffices to show that for
each t ,

max
(|tk − t|,∥∥xik (tk) − x(t)

∥∥,
∥∥x′

ik
(t) − x′(t)

∥∥,
∥∥pik (tk + �t) − pik (t)

∥∥) ↘ 0 as k ↗ ∞.

We first have x′
ik
(t) → x′(t) and tk → t as k → ∞. Next, since pik (·) converges uniformly to p(·), we

have

∥∥pik (tk + �t) − pik (t)
∥∥

�
∥∥pik (tk + �t) − p(tk + �t)

∥∥︸ ︷︷ ︸
(1)

+∥∥p(tk + �t) − p(t)
∥∥︸ ︷︷ ︸

(2)

+∥∥p(t) − pik (t)
∥∥︸ ︷︷ ︸

(3)

, (5.12)

so the term on the LHS converges to zero as k → ∞. A similar argument with xik (tk) − x(t) shows
that its norm goes to zero as k → ∞. So the presence of ηk(t) satisfying (5.11) is established.

Since p(·) is continuous on the compact set [0, T ], it is uniformly continuous. This implies that for
any ε > 0, we can find K such that term (2) in (5.12) has norm less than ε for all k > K . The condition
that ηk(t) � η(t) for all t ∈ [0, T ] for some η(·) ∈ L1([0, T ],Rn) (in fact, η(·) ∈ L∞([0, T ],Rn)) follows
easily. All the conditions for Lemma 5.7 are satisfied, and we have u ∈ Π(x̄, ȳ, v) as needed. �

Though condition (1) may look more complicated than (5.4c) alone, it can be understood as a
measurability condition on x(·) and p(·). We collect the previous results to obtain an estimate of the
convexified limiting coderivative of the reachable map.

Theorem 5.10 (Convexified coderivative of reachable map). The formula (5.3) holds provided:

(a) For any ε > 0 and x ∈ Rn, there is some I such that d(R(x), Ri(x)) < ε for all i > I .
(b) For all x and t, F (t, ·) is osc and locally bounded at x.
(c) There is some b(·) ∈ L1([0, T ],Rn) such that b(t) is finite for all t, and either one of the following condi-

tions equivalent under condition (b) holds:
– ‖D∗

x F (t, x | y)‖+ � b(t) for all (t, x, y) ∈ [0, T ] ×Rn ×Rn,
– F (t, ·) is locally Lipschitz with modulus at most b(t) for all t ∈ [0, T ].

(d) Assumption (1) of Lemma 5.9 holds.

Proof. This combines Lemma 5.4, Theorem 4.1 and Lemma 5.9. We can check that the requirements
for Theorem 4.1 are satisfied. The condition ‖D∗

x F (t, x | y)‖+ � b(t) in (c) is equivalent to the condition
on co D∗

x F (t, x | y) in Lemma 5.9. Under condition (b), the two conditions in (c) are equivalent due to
the Mordukhovich criterion. (See for example, [12, Chapter 9].) �

Conditions (b) and (c) are typical assumptions for (EL), (TC) and (WP) to hold. Condition (a) is a
mild assumption on how the discretized reachable map can approximate the continuous reachable
map, and condition (d) relates the discretized paths to continuous paths. The procedure of passing a
sequence of discrete problems to the limit seems to make it unavoidable that assumption (d) has to
hold, and that the conclusion can only be expressed in terms of convexified limiting coderivatives. The
conditions (EL), (TC) and (WP) are usually proved with direct methods in analysis rather than through



224 C.H.J. Pang / J. Differential Equations 253 (2012) 203–224
discrete approximations, so it remains to be seen whether Theorem 5.10 can be further strengthened
with such techniques.

Remark 5.11 (Graph convex F (t, ·)). The discrete case suggests that when F (t, ·) is graphically convex
for all t , then (5.2) is actually an equation. For the continuous case, we study (5.3) instead, and ask
whether (5.3) is an equation when F (t, ·) is graphically convex for all t . In this case, (5.4b) is an
equation, but equality for (5.4a) requires further assumptions. The reverse inclusion for (5.4c) holds
if every continuous path on the RHS can be described as a limit of sequences on the left-hand side.
Such results may already be in the literature. We cite [14, Theorem 4.16] for example, which states
that the reverse inclusion in (5.4c) holds when F (·,·) is independent of its first argument t and is
Lipschitz.

6. Conclusion

In this paper, we study how discrete and differential inclusions depend on the initial conditions.
The advantage of such results over necessary optimality conditions is that such results give an indi-
cation of how to perturb the initial point to optimality. The results for discrete inclusions seem quite
satisfactory, but the results for differential inclusions still require further improvement.
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