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An emergence of cosmic space has been suggested by Padmanabhan in [1]. This new interesting approach
argues that the expansion of the universe is due to the difference between the number of degrees of
freedom on a holographic surface and the one in the emerged bulk. In this paper, we derive, using
emergence of cosmic space framework, the general dynamical equation of FRW universe filled with
a perfect fluid by considering a generic form of the entropy as a function of area. Our derivation is
considered as a generalization of emergence of cosmic space with a general form of entropy. We apply
our equation with higher dimensional spacetime and derive modified Friedmann equation in Gauss–
Bonnet gravity. We then apply our derived equation with the corrected entropy-area law that follows
from Generalized Uncertainty Principle (GUP) and derive a modified Friedmann equations due to the
GUP. We then derive the modified Raychaudhuri equation due to GUP in emergence of cosmic space
framework and investigate it using fixed point method. Studying this modified Raychaudhuri equation
leads to nonsingular solutions which may resolve singularities in FRW universe.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Various approaches to understanding the origin of gravity sug-
gest that gravity is an emergent phenomenon. Most of these ap-
proaches depend on the genuine connection between gravity and
the first law of thermodynamics. This was first realized by Hawk-
ing in [2] where it was proposed that black hole behaves like a
black body radiator with a temperature proportional to its surface
gravity and with entropy proportional to the horizon area of the
black hole [3]. Motivated by the elegant relation between entropy
and horizon area, Jacobson [4] found that the Einstein field equa-
tions can follow exactly from the fundamental relation of first law
of thermodynamics which connects heat, entropy, and temperature
dQ = T dS . Inspired by Jacobson approach, it was straightforward
to derive Friedmann equations of Friedmann–Robertson–Walker
(FRW) universe, from the Clausius relation with the apparent hori-
zon of FRW universe with assumption that the entropy is propor-
tional to the area of the apparent horizon [5]. Recently, Verlinde
[6], with more rigorous approach, suggested that gravity is not
a fundamental force and can be explained as an entropic force,
and he derived Newton’s law of gravitation and Einstein equations
based on his proposal. All the mentioned studies are dealing with
gravity as an emergent phenomenon but they did not touch the
spacetime. It is known from general relativity that spacetime and
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gravity are quite related. A naturally arising question about the
nature of spacetime should be taken into consideration; If grav-
ity is an emergent phenomenon, what about spacetime? Recently,
Padmanabhan [1] proposed that cosmic space is an emergent phe-
nomenon with the cosmic time evolution. His idea was motivated
by the spacial role of cosmic time of a geodesic observer to which
the observed cosmic microwave background (CMB) radiation is ho-
mogeneous and isotropic. Based on this, the expansion of the uni-
verse can be realized as a result of the difference between surface
degrees of freedom (Nsur) and bulk degrees of freedom (Nbulk) in
a region of emerged space and using this argument, the dynamical
equation of an FRW universe has been derived successfully.

The scope of the present paper is to derive the general dy-
namical equation of FRW universe filled with perfect fluid. This
can be done by considering a generic form of entropy as a func-
tion of area and this can host every possible corrections to the
entropy-area law. This derivation will be done through the frame-
work of emergence of cosmic space that has been proposed by
Padmanabhan [1]. We then apply our equation with the corrected
entropy which follows from the generalized uncertainty principle
(GUP) [7–12], where GUP introduces a possible existence of mini-
mal length which represents a natural cutoff, and it is expected to
introduce a possible resolution to the known curvature singulari-
ties in general relativity.

An outline of this paper is as follows. In Section 2, we review
the proposal by [1] and introduce the calculations of the difference
between surface degrees of freedom and bulk degrees of freedom
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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which derive at the end the dynamical Friedmann equation. In Sec-
tion 3, we derive the modified Friedmann equation with a general
form of the entropy as function of the area using emergence of
cosmic space framework, and derive the corresponding dynamical
equation of FRW universe filled with a perfect fluid. In Section 5,
we review the corrected entropy-area law due to the GUP, and in
Section 6 we derive the corrected dynamical equation of FRW uni-
verse due to the GUP through emergence of cosmic space frame-
work and we then derive the corresponding Raychaudhuri equation
and study its non-singular solutions using fixed point method.

2. Emergence of cosmic space

In this section, we review briefly the proposal of emergence of
cosmic space by Padmanabhan [1]. It has been studied a pure de
Sitter universe and realized that the holographic principle can take
the following form

Nsur = Nbulk (1)

where Nsur represents the number of degrees of freedom on the
surface with Hubble radius 1/H , so Nsur takes the following form

Nsur = 4S = A

�2
P

= 4π

�2
P H2

(2)

where S is the entropy, A is the Hubble area given as 4π H−2 and
H is the Hubble constant. Note here, we use the entropy area
law. On the other side, the bulk degrees of freedom are given
by equipartition law of energy as follows in the natural units
(kB = c = h̄ = 1):

Nbulk = 2
Ekomar

T
(3)

If the temperature is taken to be Hawking temperature, T = H/2π
which defines the temperature on the apparent or Hubble horizon
with Komar energy Ekomar = (ρ + 3p)V , where V is the Hubble
volume, and Ekomar represents the energy contained inside this
volume V = 4π/3H3. For de Sitter case ρ = −p, one gets the fol-
lowing relation

H2 = 8π�2
P ρ/3 (4)

The last equation represents the Friedmann equations and this
shows the consistency of Holographic principle in Eq. (1) to yield
at the end Einstein equation of FRW universe in Eq. (4).

The validity of holographic equipartition of Eq. (1) for pure
de Sitter universe motivates Padmanabhan to consider our real
universe which is asymptotically de Sitter. The conceptual idea
is to assume that expansion of the universe is equivalent to the
emergence of space, and as cosmic time evolves, the holographic
equipartition is obtained at the end. Based on this, it is argued
that dynamical equation which describes the emergence of space
should relate the emergence of space to the difference between the
number of degrees of freedom in the holographic surface (Nsur)
and the number of degrees of freedom in the emerged bulk Nbulk.
To translate this argument into a dynamical equation, it is assumed
that during the infinitesimal interval dt of the cosmic time, an in-
crease in the cosmic volume happens to be

dV

dt
= �2

p(Nsur − Nbulk) (5)

Again, using the expression for cosmic volume V = 4π/3H3,
Hawking temperature for Hubble horizon T = H/2π , number of
degrees of freedom on the surface of Eq. (2) and number of de-
grees of freedom in the emerged bulk which is given in terms of
Komar energy Nbulk = 2E/T , where E = (ρ + 3p)V , one obtains
the following dynamical equation

ä

a
= −4π�2

P

3
(ρ + 3p) (6)

The last equation represents the dynamical Friedmann equation of
FRW universe. Using continuity equation

ρ̇ = −3H(ρ + p), (7)

and multiplying Eq. (6) with ȧa, one gets the following equation

H2 + k

a2
= 8π�2

P

3
ρ (8)

In a series of papers the constant k is understood as spatial
constant of FRW universe [19–28]. We note here that this deriva-
tion depends on the fact that number of degrees of freedom on the
surface are given by Nsur = 4S = A/4L2

Pl = 4π/L2
Pl H

2. So any kind
of corrections to the entropy-area law should imply corrections to
the Friedmann equations. It is worth mentioning that emergence
of cosmic space has been further studied with braneworld scenar-
ios and many other aspects in [19–28]. In the next section, we are
going to generalize the framework of emergence of cosmic space
for any general form of entropy as a function of area which can
host every possible correction to entropy-area law.

3. General modified Friedmann equation

In this section, we study the impact of the most general form
of entropy as a function of area on the emergent cosmic space
and derive the modified dynamical Friedmann equation. First, let
us consider the most general form of entropy-area law. The general
form takes the form as follows:

S = Aeff

4�2
P

(9)

where Aeff is a general function of the area A = 4πr2 = 4π/H2.
In emergence of cosmic space framework, the entropy plays a cen-
tral role in calculating the surface degrees of freedom and the area
(which is proportional to the entropy) plays the central role in cal-
culating the bulk degrees of freedom in terms of Komar energy.
Since the surface degrees of freedom is equal to 4S and the bulk
degrees of freedom is equal to Komar energy which is proportional
to the cosmic volume and hence the cosmic area. This tells us that
the corrections to degrees of freedom (bulk or surface) should fol-
low solely from the entropy-area law which may be modified by
quantum gravity corrections as we shall consider in this paper.1

Notice that we assumed the existence of effective area Aeff in
Eq. (9) instead of normal area A. This definitely assumes an ex-
istence of effective cosmic volume V eff instead of normal cosmic
volume V . Making use of the definitions of cosmic (Hubble) area
A = 4π/H2 and the cosmic volume V = 4π/(3H3), we can ob-
tain a general relation between the Hubble area A and cosmic
volume as V = A3/2/(3

√
4π). This relation could be generalized

in the case of effective area and effective cosmic volume to be as
follows:

V eff = A3/2
eff

3(4π)1/2
(10)

Now, to establish the emergence of cosmic space in the exis-
tence of generic form of entropy as a function of area, we should

1 We thank the referee for paying our attention for this important note.



A. Farag Ali / Physics Letters B 732 (2014) 335–342 337
have the time evolution of the effective cosmic volume dV eff/dt ,
the number of degrees of freedom on the surface Nsur = 4S and fi-
nally the number of degrees of freedom in the bulk Nbulk. Let us
first calculate the time evolution of effective cosmic volume

dV eff

dt
= dV eff

dAeff

dAeff

dt
= 1

2(4π)1/2
A1/2

eff

dAeff

dt
(11)

By looking at Eq. (11) and comparing it with previous stud-
ies in [20,21], we observe that the authors did not consider
the most generic form of the time evolution of cosmic vol-
ume (d(V eff)/dt) where they used in their derivation the relation
d(V eff)/dAeff = 1/2H which is completely inconsistent, but as we
shown in Eq. (11) that this expression in general takes the form
d(V eff)/dAeff = (1/2(4π)1/2)A1/2

eff , and for a special case in which
Aeff = A = 4π/H2, the changing of cosmic volume reduced to
be d(V eff)/dAeff = 1/2H . This of course affects the calculations in
[20,21] to be non-exact.

We use Eq. (9) to write the last equation in terms of the generic
form of the entropy S as follows:

dV eff

dt
= 4�3

P

(4π)1/2

√
S

dS

dA

dA

dt
(12)

Since we have A = 4π/H2, then the time derivative of the area A
is given by

dA

dt
= −8π H−3 Ḣ (13)

By substituting Eq. (13) into Eq. (12), we got the following:

dV eff

dt
= 4�3

P

(4π)1/2

√
S

dS

dA

(−8π H−3 Ḣ
)

(14)

Now, we calculate the number of degrees of freedom on the
surface Nsur in terms of the generic form of the entropy

Nsur = 4S = Aeff

�2
p

(15)

Turning to calculating the number of degrees of freedom in the
bulk for the generic entropy:

Nbulk = 2
Ekomar

T
(16)

The most generic form of the Komar energy takes the following
form:

Ekomar = −(ρ + 3p)V eff = (ρ + 3p)
A3/2

eff

3(4π)1/2
(17)

where we have added minus sign in the Komar energy to have
positive Nbulk which makes sense in an accelerating universe
where ρ + 3p < 0.

The general form of the Hawking temperature for a generic
form of entropy takes the following expression:

T = κ

8π�2
P

dA

dS
= H

8π�2
P

dA

dS
(18)

where κ is the surface gravity, and in cosmological apparent hori-
zon it becomes H [5]. So, the generic form of the number of
degrees of freedom in the bulk for a generic form of the entropy S
is given by:

Nbulk = −16π�2
P A3/2

eff
1/2

dS
(ρ + 3p) (19)
3H (4π) dA
Using the argument by Padmanabhan [1] which proposes that
the dynamical equation which describes the emergence of space
should relate the emergence of space to the difference between
the number of degrees of freedom in the holographic surface (Nsur)
and the number of degrees of freedom in the emerged bulk Nbulk.
We use Eq. (5) and find that the dynamical equation of FRW uni-
verse filled with perfect fluid with the generic form of entropy is
given as follows:

dV

dt
= �2

p(Nsur − Nbulk) (20)

By substituting Eq. (14), Eq. (15) and Eq. (19) into Eq. (20), we then
get the generic dynamical equation of FRW universe filled with
perfect fluid which corresponds to a generic form of the entropy.
This generic dynamical equation takes the following expression:

4�3
P

(4π)1/2

√
S

dS

dA

(−8π H−3 Ḣ
)

= �2
p

(
Aeff

�2
p

+ 16π�2
P

3H

A3/2
eff

(4π)1/2

dS

dA
(ρ + 3p)

)
(21)

If we set S = A
4�2

p
, we get the standard dynamical Friedmann equa-

tion

ä

a
= −4π�2

P

3
(ρ + 3p) (22)

So we get the most general dynamical equation of FRW universe
filled with perfect fluid in the framework of emergence of cosmic
space. Our general equation in Eq. (21) is different from the result
that has been obtained in [20] for the following reasons:

• The authors in [20] did not consider the most generic form of
the time evolution of cosmic volume (d(V eff)/dt) where they
used in their derivation the relation d(V eff)/dAeff = 1/2H , but
as we shown in our paper in Eq. (11) that this expression in
general takes the form d(V eff)/dAeff = 1

2(4π)1/2 A1/2
eff , and for a

special case in which Aeff = A = 4π/H2, the changing of cos-
mic volume reduced to be d(V eff)/dAeff = 1/2H . This of course
affects the calculations in [20] to be non-exact.

• The other thing which is not exact in [20], the authors calcu-
lated Komar energy in terms of V instead of V eff. But in our
paper, we considered in Eq. (17) that the Komar energy is de-
fined in terms of the effective volume V eff.

• The last non-exact thing in [20], the authors considered in
their calculations for Nbulk that the Hawking temperature T =
H/2π but this is only valid if we choose only S = A/4�2

p . This,
in fact, is not exact choice, because the Hawking temperature
should follow from the entropy, and Hawking temperature that
corresponds to the general form of the entropy is given in our
paper as we shown in Eq. (18).

Due to the above reasons, we think that our Eq. (21) is the exact
general equation which describes the dynamics of FRW universe
filled with perfect fluid for a general form of the entropy using
emergence of cosmic space framework. We find that Eq. (21) could
take a more compact form in terms of a general form of the en-
tropy as follows:

�P√
4π

dS

dA

(−8π Ḣ

H3

)
= √

S + 32π�5
p

3H
√

4π
S

dS

dA
(ρ + 3p). (23)

In the next section, we are going to apply our equation (21) or
(23) with the entropy-area relation that follows from the general-
ized uncertainty principle (GUP).
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4. Emergence of cosmic space and Gauss–Bonnet gravity

We investigate in this section the approach that we introduced
in the previous section and we derive the modified Friedmann
equation in Gauss–Bonnet gravity. Since the entropy-area law plays
the central role in the emergence of cosmic space framework, we
use the one proposed in Gauss–Bonnet gravity for static and spher-
ically symmetric black hole which is given as follows [29]:

S = A

4�n−1
P

(
1 + n − 1

n − 3

2α̃

r2

)
, (24)

where A = nΩnrn−1 is defined as horizon area and r is called a
horizon radius [29], and the parameter α̃ = (n − 2)(n − 3)α where
α is the Gauss–Bonnet coefficient which takes positive value. By
assuming that the modified entropy-area law due to Gauss–Bonnet
gravity would work for the apparent horizon of FRW universe.
Based on this, we may replace the horizon radius r with apparent
horizon radius rA . The entropy-area law for the apparent horizon
will be as follows:

S = A

4�n−1
P

(
1 + n − 1

n − 3

2α̃

r2
A

)
. (25)

We use this modified entropy-area law in the emergence of cosmic
space framework. The effective area will be given as follows:

Aeff = A

(
1 + n − 1

n − 3

2α̃

r2
A

)
= nΩnrn−1

(
1 + n − 1

n − 3

2α̃

r2
A

)
. (26)

We use Eq. (11) to calculate the time evolution of effective cosmic
volume. By substituting Eq. (26) into Eq. (11), we get up to the
first order of α the following expression:

dV eff

dt
= 1

2(4π)1/2
A1/2

eff

dAeff

dt
(27)

= nΩnrn−1
A ṙA

[
1 + n − 2

n − 3
2α̃r−2

A + O
(
α̃2)] (28)

Now, we calculate the modified surface degrees of freedom Nsur
using Eq. (15), and we get

Nsur = 4S = nΩnrn+1
A

�n−1
P

[
r−2

A + n − 1

n − 3
2α̃r−4

A

]
(29)

The bulk Komar energy in (n + 1)-dimensions is given by [30]:

Ekomar = (n − 2)ρ + np

n − 1
V eff, (30)

where we replaced V with V eff in the above equation. After few
calculations, it is found the bulk degrees of freedom is given by

Nbulk = 2
Ekomar

T
(31)

= −4πΩnrn+1
A

[
1 + n

n − 3

2α̃

r2
A

]
(n − 2)ρ + np

n − 1
. (32)

By employing Eqs. (28), (29), (32), in the formula of emergence of
cosmic space that is suggested in [22], we get

dV eff

dt
= �n−1

P
rA

H−1
(Nsur − Nbulk) (33)

We get the following equation

ṙ A
H−1

rA

(
r−2

A − 2(2α̃r−4
A )

n − 3

)
−

(
r−2

A − 2α̃r−4
A

n − 3

)
+ O

(
α̃2)

= 4π�n−1
P

−2ρ − ρ̇/H
(34)
n(n − 1)
where we have used the continuity equation in (n + 1)-dimensions
which is given by

ρ̇ + nH(ρ + p) = 0 (35)

By multiplying both sides of Eq. (34) with the factor 2ȧa, and
integrate both sides we get the modified Friedmann equation as
follows:

d

dt

[
a2

(
H2 + k

a2
− 2α̃

n − 3

(
H2 + k

a2

)2)]
+ O

(
α̃2)

= 16π�n−1
P

n(n − 1)

d

dt

(
ρa2) (36)

By integrating the above equation, we end with(
H2 + k

a2

)
− 2

n − 3
α̃

(
H2 + k

a2

)2

+ O
(
α̃2)

= 16π�n−1
P

n(n − 1)
ρ (37)

This equation is similar to the Friedmann equation in Gauss–
Bonnet gravity [5] with slight difference in the factor which de-
pends on 1/(n − 3)α̃ = (n − 2)α which shows that the correction
term will be vanishing for n = 2. This shows that the approach we
are considering may be useful to derive the modified Friedmann
equation in Gauss–Bonnet gravity. However, we should note here
that our proposal in Eq. (11) FRW for Gauss–Bonnet gravity with
slight difference in numeric factor from the one derived in [5] in
contrast with FRW of Gauss–Bonnet gravity that been derived in
[20,22] which agrees in the numeric factor with the one derived
in [5].2

5. Modified entropy-area law due to GUP

We review first in this section the generalized uncertainty prin-
ciple (GUP) [7] and secondly we review its effect on the area-
entropy law [31–36]. We then show a derivation of the entropy-
area law if GUP is taken into consideration [31,32]. Based on this,
we write the exact dynamical equation of FRW universe if GUP is
taken into consideration using Eq. (23).

The GUP is considered as an intriguing prediction of various
frame works of quantum gravity such as string theory and black
hole physics [7] leading to the existence of a minimum measur-
able length. This in turn leads to a modification of the quantum
uncertainty principle [7–10]:

�x � h̄

�p

[
1 + β�2

P

h̄2
(�p)2

]
, (38)

where �P is the Planck length and β is a dimensionless constant
which depends on the quantum gravity theory. The new correction
term in Eq. (38) turns to be effective when the momentum and
length scales are of order the Planck mass and of the Planck length,
respectively. It was found that Eq. (38) implies the existence of
minimal length scale as follows:

�x � �xmin = 2β�P (39)

Recently, a new form of GUP was proposed in [11,12], which
predicts maximum observable momentum, besides the existence of
minimal measurable length, and is consistent with doubly special

2 We thank the referee for paying our attention to calculate FRW of Gauss–Bonnet
gravity which helped us substantially to write this section.
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relativity theories (DSR) [13], string theory and black holes physics
[7–10]. It ensures [xi, x j] = 0 = [pi, p j], via the Jacobi identity.

[xi, p j] = ih̄

[
δi j − α

(
pδi j + pi p j

p

)
+ α2(p2δi j + 3pi p j

)]
(40)

where α = α0/Mpc = α0�p/h̄, Mp = Planck mass, �p = Planck
length, and Mpc2 = Planck energy. In a series of papers, various
applications of the new model of GUP were investigated [14]. For
a recent detailed review along the mentioned lines can be found
in [15].

The upper bounds on the GUP parameter α has been derived
in [16]. Moreover, it was investigated that these bounds can be
measured using quantum optics techniques and gravitational wave
techniques in [17,18]. This would put several quantum gravity pre-
dictions to test in the laboratory [17,18]. Definitely, this is consid-
ered as a milestone in the road of quantum gravity phenomenol-
ogy.

It has been found in [33,34], that the inequality which would
correspond to Eq. (40) can be written as follows:

�x�p � h̄

2

[
1 − α0�P

(
4

3

)√
μ

�p

h̄
+ 2(1 + μ)α2

0�2
P
�p2

h̄2

]
. (41)

The last inequality is (and as far as we know the only one) follow-
ing from Eq. (40). The parameter μ is defined in [33]. Solving it as
a quadratic equation in �p results in

�p

h̄
�

2�x + α0�P ( 4
3
√

μ)

4(1 + μ)α2
0�2

p

×
(

1 −
√√√√1 − 8(1 + μ)α2

0�2
p

(2�x + α0�P ( 4
3 )

√
μ)2

)
. (42)

The negatively-signed solution is considered as the one that refers
to the standard uncertainty relation as �P /�x → 0. Using the Tay-
lor expansion, we obviously find that

�p � 1

�x

(
1 − 2

3
α0�P

√
μ

1

�x

)
. (43)

There have been much studies devoted to study the impact of GUP
on the black hole thermodynamics and to the Bekenstein–Hawking
(black hole) entropy (e.g., [31–36]). These studies are based on
the argument that Hawking radiation is a quantum process and
it should respect the uncertainty principle. According to [31,32],
a photon is used to ascertain the position of a quantum particle
of energy E and according to the argument in [37] which states
that the uncertainty principle �p � 1/�x can be translated to the
lower bound E � 1/�x, one can write for the GUP case:

E � 1

�x

(
1 − 2

3
α0�P

√
μ

1

�x

)
(44)

During absorption process of quantum particle with energy E and
size R by the black hole, it supposed for black hole area to increase
by the following amount

�A � 8π�2
P E R. (45)

The quantum particle itself implies the existence of finite bound
given by

�Amin � 8π�2
P E�x. (46)

Using Eq. (44) in the inequality (46), we get

�Amin � 8π�2
P

(
1 − 2

α0�P
√

μ
1

)
(47)
3 �x
The value of �x is taken to be inverse of surface gravity �x =
κ−1 = 2rs where rs is the Schwarzschild radius, where this is prob-
ably the most sensible choice of length scale in the context of
near-horizon geometry [31–36]. This implies the following

�x2 = A

π
(48)

Substituting Eq. (48) into Eq. (47), we get

�Amin � λ�2
p

[
1 − 2

3
α0�P

√
μπ

A

]
, (49)

where the parameter λ will be fixed later from the Bekenstein–
Hawking entropy formula. According to [2,3], the black hole’s en-
tropy is conjectured to depend on the horizon’s area. From the
information theory [38], it has been found that the minimal in-
crease of entropy should be independent on the area. It is just one
“bit” of information which is �Smin = b = ln(2).

dS

dA
= �Smin

�Amin
= b

λ�2
p[1 − 2

3α0�P

√
μπ

A ]
. (50)

According to [31], the Bekenstein–Hawking entropy formula has
been used to calibrate the constants b/λ = 4, so we have

dS

dA
= �Smin

�Amin
= 1

4�2
p[1 − 2

3α0�P

√
μπ

A ]
(51)

In this paper, we are interested with the modified Bekenstein–
Hawking entropy law due to GUP and its impact on dynamical
Friedmann equation in emergence of cosmic space framework. By
integrating Eq. (51), to yield the modified Bekenstein–Hawking en-
tropy law due to GUP up to the first order of α, we get

S = A

4�2
P

+ 2

3
α0

√
πμ

A

4�2
P

. (52)

We find that the entropy is directly related to the area and gets a
correction when applying GUP-approach.

We note here the considered model of GUP introduces correc-
tions to the entropy-area law proportional to first order of Planck
length as in Eq. (52) in our revised version of the paper. This equa-
tion says that GUP introduces a correction at the first order of
Planck length, where Eq. (52) can be written as follows:

S = A

4�2
P

[
1 + 2

3
α0

√
πμ�P A−1/2

]
(53)

The other well known corrections to the entropy-area law are
known as logarithmic corrections and they arise from the loop
quantum gravity due to thermal equilibrium fluctuations and
quantum fluctuations [39]. The logarithmic correction plays its role
starting from the second order of Planck length as it is shown in
the following equation [20,39]

S = A

4�2
P

[
1 + c

4

A
�2

P ln
A

4�2
P

+ d�4
P

4

A2

]
(54)

So they are not relevant to study them at the same order with
the GUP, where GUP plays its role at the first order of Planck scale
but the logarithmic corrections play their role starting from the
second order of Planck length. This means that the GUP corrections
could be reliable up to the first order of Planck length. For more
details on the logarithmic correction and the numeric values of
dimensionless constants c and d, this Ref. [40] may be consulted.

In the next section, we implement Eq. (52) in our derived
Eq. (23) to derive the modified Friedmann equation due to GUP,
then we derive the corresponding Raychaudhuri equation to study
whether the FRW universe has a singularity or not using the fixed
point method [41].
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6. Modified Friedmann equation due to GUP

In this section, we are going to implement the modified
Bekenstein–Hawking entropy area law of Eq. (52) with the general
dynamical Friedmann equation that we derived in Eq. (23). First,
we set γ = 2/3α0

√
πμ. After few calculations and using Eqs. (51)

and (52), the modified Freidmann equation due to GUP will be as
follows:

ä

a
= Ḣ + H2 = −4π�2

P

3
(ρ + 3p)

(
1 + 2γ �P√

4π
H

)
(55)

To find the modified Friedmann equation which is analogue to
Eq. (8), we just multiply Eq. (55) by aȧ and then integrate the
equation. We get the following:

d

dt

(
ȧ2)(1 − 2γ �P√

4π

ȧ

a

)
= 8π�2

P

3

d

dt

(
ρa2) (56)

By integrating the last equation, we get:

ȧ2
(

1 − 2γ �P

ȧ2a
√

4π

∫
ȧd

(
ȧ2)) = 8π�2

P

3
ρ (57)

H2
(

1 − 4γ �P

3
√

4π
H

)
+ k

a2
= 8π�2

P

3
ρ (58)

To study the applicability of the modified Friedmann equations
that we obtained in Eqs. (55) and (58), we derive the Raychaudhuri
equation that corresponds to the modified Friedmann equations
and study the solutions if they have singularities.

It is constructive to discuss the general conditions that lead to
a nonsingular cosmology. The general Raychaudhuri equation for a
general form of the entropy in emergence of cosmic space frame-
work could take the following form

Ḣ = −F (H), (59)

where F (H) for standard Friedmann equation takes the form
F (H) = −3/2(1+ω)H2 for equation of state ρ = ωp and this defi-
nitely has a singularity. For a general F (H), it introduces first-order
system which is well studied in dynamical system (see e.g., [41],
or see [42] for more general applications) in cosmological con-
texts. Knowing the fixed points of the function F (H), (i.e., its zeros,
let us call them Hi) and its asymptotic behavior enables one to
qualitatively describe the behavior of the general solution without
actually solving the system. Fixed points are classified according to
their stability to stable, unstable, or half-stable. In [41] a very sim-
ilar system has been studied which was expressed in terms of the
Hubble rate. It is straightforward to use the same analysis to study
the density ρ instead of the Hubble rate H .

Our basic idea for resolving finite-time singularities is to show
the existence of an upper bound for the density H (through hav-
ing a fixed point H1) which is reached at an infinite time, or to
show the existence of a point at which the density is unbounded
(a potential singularity) but reached in an infinite time, i.e., not
a physical singularity. Therefore, following the discussion in [41],
one can show that finite-time singularities are absent if F (H) has
a fixed points that can be reached in infinite time.

Turning into our modified Friedmann equations of Eqs. (55) and
(58), and with considering equation of state of the perfect fluid
as ρ = ωp and by setting the constant k = 0, the corresponding
Raychaudhuri equation will be

Ḣ = −3

2
(1 + ω)H2

(
1 + 2γ �P (1 + 3ω)

9
√

4π(1 + ω)
H

)
(60)

One can observe that the above Raychaudhuri equation (60)
might be able to resolve the FRW singularities since it has two
Fig. 1. Ḣ versus H .

fixed points. To see that let us first plot Ḣ versus H in Fig. 1, where
we consider the case ω = −2/3 and 2γ �P /

√
4π = 1. From the plot

or simple analysis one can observe that the Hubble parameter has
a maximum bound which introduces a cutoff proportional to the
GUP parameter α.

One can observe that the above system has two fixed points,
H1 = 0 and H2 ∼ 1/γ �P = H P , which is showing that the solution
is nonsingular and interpolate between H = 0 and H P . Let us con-
sider the case ω = −2/3, where the relation between Ḣ and H is
depicted in Fig. 1. In fact this behavior is the same for values of ω
between −1 < ω < −1/3 which introduces a range of nonsingular
solutions. One can show the absence of finite-time singularities by
calculating the time necessary to reach any of the two fixed point
H f = 0 or H P = 1/(γ �P ) (starting from any finite value of Hubble
parameter H�)

t = − 2

3(1 + ω)

H f∫
H�

dH

H2(1 + 2γ �P (1+3ω)

9
√

4π(1+ω)
H)

= ∞ (61)

which means that the time necessary to reach a fixed point is infi-
nite. This introduces a possible resolution for singularity in FRW
universe for specific range of ω. This gives solutions which are
non-singular and have two fixed points. We got a similar nonsingu-
lar solutions [43] in a different framework which is called gravity
rainbow [44]. Also similar nonsingular behavior can be obtained in
the framework of nonsingular viscous fluids in Cosmology in refer-
ences [41,45].

7. Conclusions

In this paper, we tackle the idea of generalizing the frame-
work of emergence of cosmic space for a general form of the
entropy as a function of area. We got an exact and general dy-
namical equation of FRW universe filled with a perfect fluid and
we compared our general equation with the previous studies in
[20,21]. We investigated the Einstein–Gauss–Bonnet (EGB) theory
which gives a correction to the entropy-area law by a term which
is proportional to A2 as indicated in Ref. [28], and calculated the
modified Friedmann equation in Gauss–Bonnet gravity. We derived
a modified Friedmann equation similar to the corresponding Fried-
mann equation in Gauss–Bonnet gravity that has been derived in
[5,20,22] with slight difference in the numeric factor in front of
(H2 + k/a2)2-term.

We then apply this general equation with the corrected entro-
py-area law due to GUP. We note that the derived correction terms
for Friedmann equation vanishes rapidly with increasing of the
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apparent radius (r = 1/H), as expected. This means that the cor-
rections become relevant at the early universe, in particular, with
the inflationary models where the physical scales are few ordered
of magnitude less than the Planck scale. When the universe be-
comes large, these corrections can be ignored and the modified
Friedmann equation reduces to the standard Friedmann equation.
We can understand that when a(t) is large, it is difficult to excite
these modes and hence, the low-energy modes dominate the en-
tropy. But at the early universe, a large number of excited modes
can contribute causing a modification to the area law [46,47] and
hence modified Friedmann equations according to the emergence
of cosmic space framework. But could we observe the impact of
these corrections on the early universe. Since these corrections
modify the standard FRW cosmology, especially in early times, it
is expected to have some consequences on inflation. One of the
interesting results reported in the Planck 2013 [48] is that ex-
act scale-invariance of the scalar power spectrum has been ruled
out by more than 5σ . Meaning that, the early universe tiny quan-
tum fluctuations, which eventually cause the formation of galaxies,
not only depend on the mode wave number k, but also on some
physical scale! This shows that scalar power spectrum and other
inflation parameters could depend on physical scale. The energy
scale of inflation models has to be around Grand Unified Theo-
ries (GUT) scale or larger, therefore, this cutoff scale could be the
Planck scale. This indicates that GUP could be an important to be
studied with Friedmann equation as a quantum correction where
GUP introduces an existence of minimal length scale which may
be the Planck length.

When studying the modified Friedmann equation due to GUP,
we got non-singular solutions for a range of values for the equation
of state parameter −1 < ω < −1/3. Using the analysis in [41] we
find the system exhibits two fixed points, one of them is around
the GUP parameter (i.e. Planck scale). Also the system takes infinite
time to reach the fixed points which represents a non-singular so-
lution. So we find a possible resolution of FRW singularities due to
the effect of GUP.

It would be appropriate to apply our general dynamical equa-
tion of FRW universe in cases of the quantum corrections to the
entropy-area law such as logarithmic corrections and power-law
corrections which follows from string theory and loop quantum
gravity, etc. We hope to report on these in the future.
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