
Theoretical Computer Science 75 (1990) 335-346
North-Holland

9, ‘.

__

Eric ALLENDE
Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, U.S.A.

Christopher WILSON**
Department of Computer and Information Science, University of Oregon, Eugene, OR 97403, U.S.A.

Communicated by J. Diaz
Received April 1989
Revised October ‘989

Abstract. In this paper we construct oracles relative to which DTIME(T(n)) equals NTIME(T(n))
and DTIME(t(n)) does not equal NTIME(t(n)), for t(n) sufficiently smaller than T(n). A stronger
result than this is also obtained, though for fewer T(n), expressed in two parts. For T(n) d 2”,

there is an oracle relative to which DTIME(T(n)) equals NTIME(T(n)! and NTIME(2n) contains
a set not in DTIME(t(n)) for any t(n) growing more slowly than T(n). For T(n) d 2*“+““‘, there
is an oracle relative to which DTIME(T(n)) equals NTIME(T(n)) and NTIME(log T(n))
contains a set not in DTIME(t(n)) for t(r) growing more slowly than T(n). These results expand
on those obtained by Dekhtyar (1976), Book et al. (1982), and Allendcr (1989).

A common feature of complexity classes is that equality of two classes generally
implies equality of classes at some corresponding higher level. For example, if
P=NP,thenE=NE fckw~ i~~ectly from a padding argument. A natural question,
then, is the converse. If we know that E = NE, does this necessarily im
P= NP? If not, what can be concluded?

There have been various approaches to this problem. PI
E = NE if and only if N -P contain no tally sets; [6] shows that E =

only if NP- P contains no sparse sets.
Another approac to the issue has been t

there are exhibited oracles relative to which P#
constructs an oracle relative to w

National Science F
y National Science

0304-3975/90/$03.50 @ 1990--Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82726995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

336 E. Allender, C. Wilson

Since the methods [6] relativize, this is seen to be equivalent to the results

presented in [5] an 1. Related oracle constructions can be found
The techniques in the papers above have not been applicable to corn

above the expo ential level. In [I], however, there is an oracle relative to which
E # NE and EE = NEE, where EE refers to doubly exponential time. Thus, we have
two relativized situations where there is equality at a high level and inequality at a
lower one. These results imply that any proof of E = NE*P = NP or EE = NEE*

uire a proof technique which will not relativize, as most standard

The results of this paper address the extent to which the oracle construcilons
mentioned above can be generalized and strengthened. The main result of this paper
is that if t(n) is suflkiently smaller than T(n), then there is an oracle relative to
which DTIME(t(n)) # NTIME(t(n)) and DTIME(T(n)) = NTIME(T(n)). It is
interesting that two different constructions are required, depending on the growth
rate of T(n). If T(n) = 0(2”), then we can generalize the construction of [4].
However, if T(n) = w(2”), then we adapt the construction of [l]. Neither technique
alone appears appropriate for the entire range of time bounds T(n).

We are able to obtain stronger results as well. Suppose DTIME(T(n)) equals
NTIME(T(n)) and t(n) is smaller than T(n) (the precise notions of smaller growth
rates will be formalized later). Clearly NTIME(log t(n)) c DTIME(t(n)), but it is
not a priori obvious that NTIME(log T(n)IJ) s OTIME(t(n)). We construct oracles
which show that such containment need not be the case. If T(n) s 2”, then there is
an oracle for which DTIME(T(n)) equals NTIME(T(n)) and NTIME(2n) -
DTIME(t(n)) is not emnty, If T(n) 3 22”+o”), their there is an oracle relative to
which DTIME(T(n)j”equals NTIME(T(n)) and NTIME(log T(n)) contains a set
not in DTIME(t(n)).

An interecthg gap has appeared in the range of T(n) for which we can show the
stronger result. Our techniques do not hold for 2” < T(n) s 22”. For example, it is
open whether there is an oracle where DTIME(2”*) =NTIME(2”*) and
NTIME(n2) - E is not empty. We conjecture that such an oracle exists. However,
at this point, it still conceivable that conventional (relativizable) techniques could
show that DTI E(2”*) = NTIhlE(2”*) implies that NTIl+vlE(rr2) cl E.

reli ies

It k expected that the reader will be familiar with basic concepts from complexity
theory, such as Turing machines, oracle Turing machines, and complexity classes

d and definitions, see e.g. [a, l&2]. We will use

), respectively. EE and NEE

Downward translations of equality 337

Given any sets A and B, the set {lx: XE A} u {Ox: XE B} is denoted by A@B.
We make frequent use of “Big Oh” notation, and follow the conventions of [fj].

Thus, forexample,f(n)=o(g(n)) @Vc[f(n)>cg(n) fbi 5; ‘large n],andf(@=

o(g(n)) CLS Vc [cf(p1) < g(n) for almost all n].
Some of the proofs in this paper make tis~ or‘ some simple notions from Kol-

mogorov complexity theory. The definitions and facts relating to Kolmogorov

complexity which arc used in this paper are standard and elementary; background
information can be obtained e.g. from the introduction to [131. More extensive
background and an excellent history of the area can be found in [lo]. We will let
K(x) denote the Kolmogorov complexity of x (i.e., the length of its shortest
description on some universal Turing machine).

Although the model of oracle Turing machine which we use is standard [7,16,2],
there is one peculiarity of this formalism which needs to be pointed out. Namely,
it is well known that the Linear Speed-Up Theorem (see e.g., [7,2]) does not hold
for this model [12,15]. The Linear Speed-Up Theorem requires the tape alphabet
to grow in order to achieve speed-up. However, there is no way to compress the
oracle tmpe. Thus, fo r instance, it is easy to show that {x: ~0% A} is in
DTIME(4n) - DTIME(3n) relative to almost all oracles A. In [121 there is presented
an oracle access mechanism under which the Linear Speed-Up Theorem does hold.

This quality of the oracle Turing machine model makes it somewhat awkward to
talk about relativized time classes DTiMEA(T(n)), since, for instance, it is quite
possible that there are sets recognizable in time T(n) + 1 relative to oracle A, but
which cannot be recognized in time T(n). In order tc simplify the statement of our
results, we find it useful to define relativized time-complexity classes in the following

slightly nonstandard way.

nition 2.1. For any oracle A and any integer function T, DTI E*(TCn)) denotes
the class of languages L for which there is a deterministic oracle Turing machine
A4 and a constant c such that L = L(M*j and on all inputs af length n, 1M runs
for at most T(n)+ c steps on input x with orac!e A. NT1 EA(T(n)) is defined

similarly.

3.1. If t(n) i5 a function aid T(is) is a time constructible movlotone function

such that 8n s T(n) =S 2” and T& - - t(n) = o(l), then there
L SXrr trhat NTIMEA(2n) - DTI and

constructed oracle, and if an unreserved string is queried, the oracle will answer no

to that string.
An index 1= lO”10’ will be cancelled when we ensure that the deter

Turing machine PA does not accept L(A) in time t(n) + c. Initially, all indices are
uncanceiled. YVe aiso iet be an enumeration of all nondeterministic oracle Turing

machines.
In the proof we use a diagonal set L(A) and a complete set (A), both based on

hey are defined as follows:

I= ix: 3Y I Y I = 1x1, XY (2 4,

§(A) = (xlG’i0’: n/r: accepts x in s ~(1x1) + c steps}.

We will separate the stages of the construction into ado and even stages. At
even stages we ensure that L(A) s? DTIME.4(t(n)), and at
odd stages we ensure that y = xlO”I0’ E S(A) @ y107’1”1’-l”i E A.

Since L(A) E NTIMEA(2n) for any A, the even stages ensure that

NTIMEA(2n) - DTIMEA(t(n)) # 0.

The odd stages guarantee that

DTIMEA(T(n)) = NTIMEA(T(n))

via the following argument. Suppose that LE NTIMEA(T(n)). Then there are i and
c so that M: accepts L within T(n) + c steps. By construction, x E L if and only if
xlO’lO’IO~‘l”l)-l.~l E A. Th’ IS query can be made in deterministic time T(1x1) + i+ c + 3

since T is constructible. Since i and c are constant, LE DTIMEA(T(n)).
The stages of the construction are numbered n = 0, 1,2, . . . Stage 0 is an initializ-

ation stage where vve set L! to be V. We perform only those odd stages of the form
n = 4k + 1. At even stages n = 4k + 2 something is done only if certain preconditions
are met. Nothing will be done at a stage n = 4k or 4k + 3.

obstruction of
Stage 0: A +(b.

Even Stage n = 4k+2: Find the least uncancelled index 1= 10’10’. In order to
cancel 1, it will suffice to consider the run-time of Pi to be t(n)+ c. If the foiiowing
four preconditions are satisfied, then we will cancel index 1.

(Cl) t(n)+c is less than T(i(n+2)-1)+-l. (Note that T(i(n+2)-l)+l is the
length of the skrtest string of the form ~10” which may have to be left unreserved

earlier even stage.
) t(n)S-c<2”

ngth of the longest string ueried or reserved at any

Dowrrward translikons of equality 339

To cancel index l, find an x(1x1= n) such that for no y((y] = 1x1) has xy been .
reserved. Run PA on x for t(n) + c steps and place all unreserved strings queried
into A. If PA accepts x, then put all jcy (Iyl= 1x1) into ,J (thus xe L(A)). Otherwise,
put some unqueried xy (Iyl = 1x1) into A (thus x E L(A)).

Odd Stage n = 4k + 1: For each string y of the form rIOi 10’ satisfying T(k - 1) <
~(1~1) + i + c + 3 s T(k), simulate MA on :Y as described below. Handle these strings
y in order of increasing ~(1x1) + i + c+3.

Run MA on x for T(~x[)+ c steps. If it accepts, then put ylOT’txl)-lxl into A and
reserve for A’ all unreserved strings queried on one accepting path.

If it rejects, then see if adding at most T(1x1) + c < T(k) strings to A will force
Mf to accept x. If so, then reserve those strings for A, reserve ylOT’t”I’-t”l for A,

and reserve the remaining unreserved strings on some accepting path for A. Bther-
wise, the behavior of MA is independent of later changes to the oracle set, so reserve

YlO
~cl+l~l for A_

end construction

We now have to prove that the construction is possible.
Point 1: An odd stirge does not impede the construction at the next odd stage. At

odd stage 4k + 1, only strings of length at most T(k) are queried and reserved by
the simulation; similarly only strings of length at most T(k) are reserved by the
encoding. ‘4t the next odd stage 4(k + 1) + 1 performed, only strings of length greater
than T(k) will be considered for membership in A. None of these strings will have
been reserved in stage 4k + 1.

Point 2: During any odd stage n = 4k + 1, fewer than 2” strings are reserved, Any

y = x10’10’ causes at most ~‘(1x1) + c < T(k) strings to be reserved. For any j, there
are at most 2” strings x of length j. There are at most (T(k))2 possible strings 0’ 10”.
An upper bound on the number of strings reserved at this stage is thus

Point 3. At an even numbered stage n = 4k+2, fewer than 2” strings have been

reserved by previous odd stages. This follows from Point 2 and noticing that

k 4k+l

c2 4i+l c c 2.&24k+Ll=y_l.
i=O j=O

PoLrt 4: An even stage does not reserve any y0 T(lxl’-lxl which will be examined (

possibly reserved) at the next odd stage. This follows fro
Point 5: The construction at the odd stages is possible.

Notice also that the strings are processed in order of nondecreasing
This prevents the simulation initiate
a different y, which may need to be reserve

349 E. Allender, C. Wilson

for any f= ~10”05 ealt with later. Further, the simulation initiated

reserve y 10 T~‘X’~+!
Point 6. An even stage does not aflect the construction at the next ezen stage. By

precondition C3.
ve that the construction at the even stages is possible. Now only
e concern, by Point 6. So we must show that at stage n = 4k + 2,
some x such that for no y has xy been reserved. There are 2”

= {xy: 1x1= lyl= n). By Point 3, the numbe of strings reserved
by all previous even stages is less than 2”. Thus there must exist an x of length n
fov which no member of H(x) is reserved.

once such an x is found, we may still need to find some xy not queried at the
end of the stage (this xy may be placed in A). The number of strings reserved at
this stage is, for some c, at most t(n) + c < 2” = 11 H(x) 11, by precondition C4. So
there will always exist a y for which my is not reserved.

Finally, note that for each index !, the preconditions U-64 will be satisfied
infinitely often, so every index will eventually be cancelled. The eventual satisfaction
of Cl and C4 follow from the assumptions T(fn -$) - t(n) = W(1) and T(n) G 2”.
C2 follows since T(n) Z 8n.

Notes on the proof. (1) The conditions on T(n), such as T(n) s 2”, need only hold
asymptoticaiiy. That is, we need only that for some !V and all n 3 N, T(n) s 2”.
The construction would then start at stage n = 41v + 1. The proof that
DTIMEA(T(n)) = NTIMEA(T(n)) would involve a patching lemma whereby a
deterministic machine simulating a non-deterministic one would use a table look-up
for short strings (length s N).

(2) The separation of NTIME(2n) from a deterministic class can be shown for
a wider class of time bounds than those of the form t(n) +0(1). In particular, let
F be a countable class of functions such that V t E F, T($n -i) - t(n) = o (1). Ths::n
we can build A SO that NTIMEA(2n) contains a set not in UIFF DTIME”(t(n)).
If 6= is a class of* recursive functions and F is recursively enumerable (as a set of
indices), then A is recursive. 0

ary 3.2. mere is an oracle A such that

EA = NEA ancl NTIME”(2n) - DTIMEA(2”‘“) # 0.

Follows from Theorem 3.1 with T(n) = 2”. It follows by a straightforward
g argument that DTIMEA(2”) = NTIMEA(2”) implies that EA = ?iEA. Cl

oak et al. [4]). There is an oracle A such that

ere is an om~le

“(2 pOly-‘Og) f

Downwurd translations qf qrsaiit_v 341

Corollary 3.5. 7kre is an oracle A such that

DTIMEA(Q(nb) Z NT1 and DTIMEA(n2) = NTIMEA(n’).

ary 3.4. mere is an oracle A such that

DTIMEA(2n) # NTIMEA(2n) and DTIMEA(9n) = NTI

In [I41 there is proof of the fact that in the unrelativized case DTIME(O(n)))
does not equal NTIME(O(n) j. Since it is not too hard to construct an oracle for
which these two classes are equal, the result in [14] provides an excellent example
of a proof technique which does not relativize. Corollary 3.5 indicates that the
inequality in [14] does not easily translate upwards. Thus, it will require another
nonrelativizing technique to prove that determinist;\= and nondeterministic quadratic
time dialer.

The proof of the previous theorem alternates between encoding stages and
diagonr.lization stages. The encoding stages ensure that the higher classes are equal,
while the diagonalization guarantees the separation at the lower level. If T(n) were
larger than 2”, the stages would interfere with each other. To handle the larger time
bounds, the encoding is done all at once, and the diagonalization is against all
possible encodings.

Theorem 3.7. Let T(n) and t(n) be nondecreasing time-constructitle ftinctions such

that T(n) =0(2”) and Vk 3n 6 t(n) =o(T(n -k)). Then there exists an oracle B

relative to which DTIME(T(n)) = NTIME(T(n)) and NTIME(t(n)) is not contained

in DTIME(Q(t(n))).

roof. First, we claim that, under the conditions given above, there is a slowly
grswing function s satisfying certain properties.

There is a monotone nondecreasing, unbounded function s such that

Vj [T(n-s(j* t(n)))>je t(n)foralllargen], (1)

Vj [(s(jn))22T-‘~~n’+&-alllargen].

(where by “T-“’ we mean the function which maps n to the largest m such that

T(m) c n).

342 E. Mender, C. Wilson

For any set A G Z’“, define

(A) = (xl(l’(“1 r(C)OT~~X~‘-~X~: MAeQfA’ accepts x in S I-(Ix

Note that Q(A) i any Y of the form xlor(i)ep-(r)OT(I.~I)-I-~l it

follows that lyi> cannot query y in

We claim that for every set A, DT A@Q(A’(T(n)) = N

be accepted by some machin in time T(n) + c with
n x E L a x10”“1 r(c’OT(‘x”-‘X’E). This query can be as

time T(1x1) + v(i) + r(c) + 2. Since i and c are constants depending only on L, it
follows that L can be recognized in time T(n) +O\), and thus is in
DTIMEA@Q’A’(T(n)).

Let L(A) = {x: 3y [xy~ A and lyl = t(lxl) -]xI]}. For all sets A, L(A) E
NTIMEA@Q’A’ (t(n)). It, Gill thus suffice to build a set A such that for all j, the set
accepted by Pi with oracle A@ Q(A) differs from L(A). For each j, we will build
a finite oracle Ai so that A,_, C_ Aj, and we will choose a number n = nj SO that

there is a set C E Zrtn) such that Aj = Aj-1 u C.
The language accepted by 4 with oracle Aj@ Q(A,) differs from L(Aj) on some
string of length n.

In addition, nj+l will be chosen to be larger than j - t(nj), so that all queries by Pj
to the oracle Aj+l@ Q(Aj+,) on inputs of length n will be answered the same as
they are with o -a& -4.@ Q(z4j). Thus the diagonalization performed during stage
j is not damaged by later stages of the construction. The oracle A will be Uj Aj.

Let K be a large constant. At a certain point in the proof, we will use the fact
that K is larger than the description of some simple Turing machines.

Stuge 0: A,+@

Stage j: TO construct Aj (j 2 l), first choose n = nj SO that

j* t(n)s T(n-l-2logs(j= t(n))), (3)

s(j . t(n))*2 T-‘(je ‘(“)) > it(n), (4)

j - t(nj-1) < n, (5)

$t(n)>(6+2s(j* t(n)))log(j* t(n))+n+2logn

+4 l 2’(“1-1)+2 log j+2K. (6)

(Note that all largs n satisfy all of these cL iteria, by (1) and (2), and by the fact
that t(n) 2 3n.)

= {z: izl sj* t(n) and z is of the form ylOr~i~lr~C~O~~~y~~~Ivl

Down v:ard translations of equality 343

Q(A) for all elements of is sufficient to enable us to answer all queries to the
Q(A) part of the oracle. e that 11 Qll s s(j l t(~1))’ 2Te’(im’(rr)‘. By (3), 11 Qll c 2”-l.

An element 4 E (0, l}ll”li will be called a Q-vector. We will write PJeoy(x) to denote
the outcome of the computation of 4 on input x, where all queries to the Q(A)

part of the oracle are answered according to the vector 4. That is, if 4 asks the
) part of its oracle about a string not in Q, the oracle responds negatively, and
asks about the ith element of Q, then the oracle responds with the ith bit of 4.

Let W={wOn+~: IwI= [lcg]lQII]+l}. S’ mce II Qlls 2”-‘, this definition makes
sense. Since elements of W all end with a long string of trailing zeros, every element
of W has a fairly short description. La&e L r, we will make use of the fact that W is
a set of atrings of Eow Kolmogorov complexity; we will carry out our diagonalization
by making pi fail on W.

Given any Q-vector 4, we associate with it a set F(4) c_ as follows:

F(4) = w A {x: I+‘@Y(X) = 1).

Since there are only 21101’ < 211wli Q-vectors, there must be some BE W such that
for all q E Q, F(q) # B. Choose one such B, and let z be a string of length t(n) - n
of maximal Kolmogorov complexity (i.e., K (2) 2 121).

Let Aj = Aj-1 u { WZ: w E B}, and let 4 be the Q-vector encoding Q(/$). Note that
Wn L(Aj) = B # F(q) = (Wn{x: P,“f-S@‘(X) = 1)). Thus in order to show that I_li
with oracle Aj@ Q(Aj) does not accept L(A.j), it will suffice to show that for all
x E w, p;\-I@q (x) = P,“l@“(x). If this can be shown, then for ali x E IX, x is accepted
by pi with oracle Aj @ Q(Aj) @ x E F(q), and thus the set accepted by Pj with oracle
Aj@ Q(Aj) differs from L(Ai j on at least one element of W.

w

laim 3.9. Vx E IV, PTf-l”“(x) = PTf”“(x).

Since A,_,@ q and Aj@q differ only on the strirkgs of the form wz
s w in W, the outcome of P.J’f-@ (x) and P,“l”‘(x) can only differ

if some such string wz is queried on each of these computations. We will show that

no such string can be queried.
Note that K(z)sK(rrtz)+2logn+K, so (wz)>(r(n)-n)-2logn-K. Note

also that any query asked during the computation of P,Tf -I@“(X) can be recomtmted

from
*. 1,
a description of Aj-1 (W ich can be given by a bit vector of

q (which h :s length
a number between d
a description of x
3 log r(n), since x E

and j* t(n), indicating the st
(which need be no longer

and thus x is of t

344 E. Allender, C. Wilson

a description of t e values of f(I), r(2), . . . , r(s(j l t(n))) (this s
s(j l t(n)) values, each no greater than j* t(n), can be enco

2s(j l t(iz)) log(j 0 t(n)) bits).
We can now co e Kolmogorov complexity of any query is at most

$t(n)+2s(j* t(n)) 6log(j= t(n))+K+210gj+4*2’(‘11-1’. By (6), this

is less than (t(n)-n)-2logn-rcs K(wz). Thus no such string wz is queried. Cl

Using an essentially identical proof, one can also prove the following result.

Let T(n) and t(n) be nondecreasing time-constructible functions such

that Vk [t(n) < T(l log T(n) - k) a.e.], and 33 > 1 [t(n)” < T(n)]. Then there
exists an oracle relative to which DTIME(T(n)) = NTIME(T(n)) and

NTIME(log T(n)) is not contained in DTIME(t(n)).

Let T(n) and t (n) be nondecreasing time-constructible f unctions such
a.e.] and 36 > 1 [t(n)” < T(n)]. Then there exists an oracle

B relative to which DTIME(T(n)) = NTIME(T(n)) and NTIME(log T(n)) is not
contained in DTIME(t(n)).

onclMsi0~

In the results above, we have shown that in the relativized case, it can be true
that equality of certain complexity classes does not imply equality of lower classes.
Even stronger, we have exhibited an oracle relative to which DTIiVIE(T(n)) equals
NTIME(T(n)) while NTIME(t(n)) contains a set not in DTIME(2n) so long as
t(n) is sufficiently less than T(n) and T(n) s 2”. Similarly, we have an oracle for
which DTIME(t(n j) equals NTIME(T(n)) while NTIME(t(n)) contains a set not
in DTIME(log T(n)) so long as t(n) is sufhciently less than T(n) and T(n) 2 32”+“(“-
These resu!ts tell us that in almost all cases, a very strong statement of inequality
involving complexity classes of small trme bounds will not yield an inequality of
complexity classes of large time bounds, at least not without using a proof technique
immune to relativization.

he main open q;lestion is to close the gap in the bounds on T(n) foe the stronger
result, when 2” < T(n) s 2*“. For example, is there an oracle for which

TIME(2”‘) = N”I E(2n2) and NTIME(n2) - E is not empty?

esent the proof of Claim s convenient to

oto

Downward translations of equality 345

(2) Assume Pdk T(n - k) = o(t(n)). Then there is a monotone, unbounded func-
tion 8 such that, for all j, (T(n - g(j* t(n))) 3 j * t(ra) for all large n).
The claim follows y taking s(n) = min{Jfm, g(n)}.

We prove the first claim first. By assumption, for all c, T(n) > c2” for all large n.
Thus T-‘(n) =S log(n/ c) for all large n, so we have that for all j and c, 2 T-‘(jn) s (j/c)n

for all large n.
Define$(n) = max{O) u {b: bh 2 n 62 Tm-‘(inl) s im}. Clearly, each J is nondecreas- !

ing and unbounded, and j, <j, -J, A, 24,. Define f and i recursively as follows:

f(0) = 0, i(0) = 0.

for nzl (let j=i(n-I)).

ifJ+Anl(j+ O)>f(n - 1)
then i(n):=j+l, and_f(n):=J+,(n/(ji-1))
else i(n):=j andf(n):=f(n-1).

It is easily verified that f is nondecreasing and unbounded, and that for all
j,f(j l rl) sjJ n) for all large n. This proves the first claim.

The second claim is proved in a very similar manner. By assumption we have
that for all k and j, T(n - k) > j(t(n)) for all large n. Let gj(n) = max{O} u {k: Wm 3 n
T(m - 2) 2 j?(m)}. Clearly, each gj is nondecreasing and unbounded, and j, <j2 s

& 3 gj?. Define g and i recursively as follows:

g(0) = 0, i(0) = 0.

for n 2 1, (let j = i(n - 1))

if gj+l(?-'(n/(j+ l)))>g(n-1 j
then i(n):=j+l, and g(n):=g,+,(C*(n/(j+l)))
else i(n) := j and g(n) := g(n - 1).

As above, g is nondecreasing and unbounded and for all j, g(j 9 t(n)) s gj(n) for
all large n. This proves the second claim. El

eferences

[l] E. Allender, Limitations of the upward separation technique (preliminary version), in: Proc. 86th
Internat. Colloquium on Automata, Lartguages, and Programming, Lecture Notes in Computer Science
372 (Springer, Berlin, 1989) 18-30.

[2] J. Balcazar, J. Diaz and J. Gaberr6, Structural Complexity I (Springer, Berlin, 1988 I.

[3] R. Book, Talley languages and ccmplexity classes, injiorm. and Control
[4] R.V. Book, C.B. Wilson and M.R. Xu, Relativizing time, space, and tim

II (1982) 571-581.

[5] M. Dekhtyar, On the relativization of deterministic and nondeterministic co
Proc. 5th Symp. on Mathematical Foundatiorls of C’omputer Science, Lecture tes in Computer

Berlin, 1976) 255-259.

WI
and Contra

346 E. Allender, C. Wilson

[7] J. Hopcroft and J. Ullman, introduction Jo Automata Theory, Languages, and Computation (Addison-

Wesley, Reading, MA, 1979).
[S] D.E. Knuth, Big omi cron and big omega and bit theta, SIGACT News 18(2! (1976) 18-24.

[9] S. Kurtz, Sparse sets in NP- P: relativizations, SIAM J. Comput. 14 (1985) 113-l 89.
[lo] M. Li and Paul VisGnyi, Two decades of applied Kolmogorov complexity, in: Proc. 3rd Structure

in Complexity Theory ConJ: (IEEE, Washington, DC, 1988) 80-101.

[ll] 6. Lischke, Oracle-constructions to prove all possible relationships between relativizations of P,

NP, EL, NEL, EP and NEP, 2. Math. Logik Grundlag. Math. 32 (1986) 257-270.
[121 S. Moran, Some results on relativized deterministic and nondeterministic time hierarchies, J. Compur.

System Sci. 22 t.1981) l-8.
[131 W.J. Paul, On-line simulation of k + 1 tapes by k tapes requires nonlinear time, Inform. and Control

53 (1982) l-8.
1141 W.J. Pa:!!, N. Pippenger, E. Szemeredi and W.T. Trotter, On nondeterminism versus determinism

and related problems, in: Proc. 24th Symp. on Foundations of Computer Science (IEEE, Washington,
DC, 1983)429-438.

[151 C. Rackoff and J. Seiferas, Limitations on separating nondeterministic complexity classes, SIAM
J. Compur. 18 (1981) 742-745.

[161 U. Schiining, Compiexiry and Structure, Lecture Notes in Computer Science 211 (Springer, Berlin,
1986).

