View metadata, citation and similar papers at core.ac.uk brought to you by .i CORE
provided by Elsevier - Publisher Connector

COIC d *...,U pu er
North-Holland

P
(27
=3
O
[¢]
&
|
Q

Crd

NOTE

DOWNWARD TRANSLATIONS OF EQUALITY

Eric ALLENDER*
Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, U.S.A.

Christopher WILSON**
Department of Computer and Information Science, University of Oregon, Eugene, OR 97403, U.S.A.

Communicated by J. Diaz
Received April 1989
Revised October 989

Abstract. In this paper we construct oracles relative to which DTIME(T(n)) equals NTIME(T(n))
and DTIME(¢(n)) does not equal NTIME(t(n)), for t(n) sufficiently smaller than T(n). A stronger
result than this is also obtained, though for fewer T(n), expressed in two parts. For T(n)<2",
there is an oracle relative to which DTIME(T(n}) equals NTIME{ T(n)) and NTIME(2n) contains

+O(1)

a set not in DTIME(#(n)) for any 1(n) growing more slowly than T(n). For T(n)<2%"" , there
is an oracle relative to which DTIME(T(n)) equals NTIME(T(n)) and NTIME(log T(n))
contains a set not in DTIME(#(n}) for 1(n) growing more slowly than T(n). These results expand
on those obtained by Dekhtyar (1976), Book et al. (1982), and Allend=r (1989).

1. Imtroduction

A common feature of complexity classes is that equality of two classes generally
implies equality of classes at some corresponding higher level. For example, if
P=NP, then E = NF {ollows uiectly from a padding argument. A natural question,
then, is the converse. If we know that E= NE, does this necessarily imply that
P= NP? If not, what can be concluded?

There have been various approaches to this problem. In [3] it was shown that
E=NE if and only if NP—P contain no tally sets; [6] shows that E=NE if and
only if NP—P contains no sparse sets.

Another approach to the issue has been the use of relativization. In [5] and [4],
there are exhibited oracles relative to which P# NP and E = NE. Incidentally, [9]
constructs an oracle relative to which P# NP and NP-—-P contains no sparse sets.

* Supported in part by National Science Foundation Research Initiation Grant number CCR-8810467.
** Supported in part by National Science Foundation Grant number CCR-8310051.

0304-3975/90/%03.50 © 1990—Elsevier Science Publishers B.V. (North-Holland)

https://core.ac.uk/display/82726995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

336 E. Allender, C. Wilson

Since the methods of [6] relativize, this is seen to be eguivalent to the results
presented in [5] and [4]. Related oracle constructions can be found in [11].

The techniques in the papers above have not been applicable to complexity classes
above the exponential level. In [1], however, there is an oracle relative to which
E # NE and EE = NEE, where EE refers to doubly exponential time. Thus, we have
two relativized situations where there is equality at a high level and inequality at a
lower one. These results imply that any proof of E= NE=P= NP or EE=NEE=
E = NE will require a proof technique which will not relativize, as most standard
techniques do.

The results of this paper address the extent to which the oracle construciions
mentioned above can be generalized and strengthened. The main result of this paper
is that if t(n) is sufficiently smaller than T(n), then there is an oracle relative to
which DTIME(#(n))# NTIME(t(n)) and DTIME(T(n))=NTIME(T(n)). It is
interesting that two different constructions are required, depending on the growth
rate of T(n). If T(n)=0(2"), then we can generalize the construction of [4].
However, if T(n) =w(2"), then we adapt the construction of [1]. Neither technique
alone appears appropriate for the entire range of time bounds 7(n).

We are able to obtain stronger results as well. Suppose DTIME(7(n)) equals
NTIME(T(n)) and ¢(n) is smaller than T(n) (the precise notions of smaller growth
rates will be formalized later). Clearly NTIME(log t(n)) =« DTIME(¢(n)), but it is
not a priori obvious that NTIME(log T(n))» = DTIME(¢(n)). We construct oracles
which show that such containment need not be the case. If T(n)<2", then there is
an oracie for which DTIME(T(n)) equals NTIME(T(n)) and NTIME(2n)—
DTIME(t(n)) is not empty. If T(n)=2%""" then there is an oracle relative to
which DTIME(T(n)) equals NTIME(T(n)) and NTIME(log T(n)) contains a set
not in DTIME(t(n)).

An interesting gap l.as appeared in the range of T(n) for which we can show the
stronger result. Our techniques do not hold for 2" < T(n)<2?". For example, it is
open whether there is an oracle where DTIME(2"™)=NTIME(2") and
NTIME(n®)—E is not empty. We conjecture that such an oracle exists. However,
at this point, it is still conceivable that conventional (relativizable) techniques could
show that DTIME(2™) = NTIME(2"’) immplies that NTIME(n?) E.

2. Preliminaries

It is expected that the reader will be familiar with basic concepts from complexity
theory, such as Turing machines, oracle Turing machines, and complexity classes
such as P, NP, etc. For background and definitions, see e.g. [7, 16, 2]. We will use
E and NE to refer to DTIME(2°) and NTIME(2°™), respectively. EE and NEE
denote DTIME(2°") and NTIME(2°®"), respectively.

For any string x, the length of x is denoted by |x|. For any set S, || S|| denotes the
cardinality of S. All languages considered in this paper are subsets of {0, 1}*.

Downward translations of equality 337

Given any sets A and B, the set {1x: xe A}u{0x: xe B} is denoted by A® B.

We make frequent use of *“‘Big Oh” notation, and follow the conventions of [8].
Thus, for example, f(n) =w(g(n)) & Ve[f(n)>cg(n) fe. »iilarge n], and f(n) =
o(g(n)) © Ve [¢f(n) < g(n) for almost all n].

Some of the proofs in this paper make us¢ of some simpie notions from Kol-
mogorov complexity theory. The definitions and facts relating to Kolmogorov
comglexity which are used in this paper are standard and elementary; background
information can be obtained e.g. from the introduction to [13]. More extensive
background and an excellent history of the area can be found in [10]. We will let
K(x) denote the Koimogorov compiexity of x (i.e., the iength of its shortest
description on some universal Turing machine).

Although the model of oracle Turing machine which we use is standard [7, 16, 2],
there is one peculiarity of this formalism which needs to be pointed out. Namely,
for this model [12,15]. The Linear Speed-Up Theorem requires the tape alphabet
to grow in order to achieve speed-up. However, there is no way to compress the
oracle t~pe. Thus, for instance, it is easy to show that {x: x0*¥e A} is in
DTIME(4n) — DTIME(3n) relative to almost all oracles A. In [12] there is presented
an oracle access mechanism under which the Linear Speed-Up Theorem does hold.

This quality of the oracle Turing machine model makes it somewhat awkward to
talk about relativized time classes DTIME*(T(n)), since, for instance, it is quite
possible that there are sets recognizable in time T(n)+1 relative to oracle A, but
which cannot be recognized in time T(n). In order tc¢ simplify the statement of our
results, we find it useful to define relativized time-complexity classes in the following
slightly nonstandard way.

Definition 2.1. Forany oracle A and any integer function T, DTIME*(T(n)) denotes
the class of languages L for which there is a deterministic oracle Turing machine
M and a constant ¢ such that L= L(M") and on all inputs x of length n, M runs
for at most T(n)+ c steps on input x with oracle A. NTIME?(T(n)) is defined
similarly.

3. Main results

Theovem 3.1. If i{#n) is a function and T(#) is a time constructible monotone function
such that 8n< T(n)<2" and T{}i—3)—t(n) =w(1), then there exists arn oracle A
such that NTIME*(2n)-DTIME*(¢(n))## and DTIME*(T(n))=
NTIME*(T(n)).

Proof. The oracle A will be constructed in stages. Ai various points, strings will be
reserved for (i.e., placed into) A or A. Once a string is reserved, iss status will never
change. Occasionally we will simulate a machine that will query the partially

338 E. Allenaer, {" *%iion

constructed oracle, and if an unreserved string is queried, the oracle will answer no
to that string.

An index [/ =10°10° will be cancelled when we ensure that the deterministic oracle
Turing machine P does not accept L(A) in time t(n)+ c. Initially, all indices ar
uncanceiled. We aiso iet M, be an enumeration of all nondeterministic oracle Turing
machines.

In the proof we use a diagonal set L(A) and a complete set S(A), both based on
the oracle A. They are defined as follows:

L(A)={x:3y|y|=Ix|, xy € A},
S(A)={x16'10°: M accepts x in < T(|x|) + c steps}.

We will separate the stages of the construction into odd and even stages. At
® cven stages we ensure that L(A)g DTIME®(¢(n)), and at

e odd stages we ensure that y = x10'10€ S(A) & y10T-e 4

Since L(A)e NTIME*(2n) for any A, the even stages ensure that

NTIME”(2n) — DTIME*(¢(n)) # 0.
The odd stages guarantee that
DTIME?(T(n)) = NTIME*(T(n))

via the following argument. Suppose that L e NTIME”(T(n)). Then there are i and
¢ so that M{' accepts L within T(n)+ c steps. By construction, x € L if and only if
x10'10°107*)~le A This query can be made in deterministic time T(|x|)+i-Fc+3
since T is constructible. Since i and ¢ are constant, L€ DTIME*(T(n)).

The stages of the construction are numhered n=0, 1, 2, ... Stage 0 is an initializ-
ation stage where we set A to be ¢). We perform only those odd stages of the form
n=4k+1. At even stages n =4k + 2 something is done only if certain preconditions
are met. Nothing will be done at a stage n =4k or 4k+3.

Construction of A
Stage 0: A<¢.

Even Stage n=4k+2: Find the least uncancelied index I=10'106. in order to
cancel /, it will suffice to consider the run-time of P, to be t(n)+ c. If the foliowing
four preconditions are satisfied, then we will cancel index L

(C1) t(n)+c is less than T(j(n+2)—1)+1. (Note that T(A(n+2)—1)+1 is the
length of the sh<rtest string of the form y10* which may have to be left unreserved
for the next odd stage.)

(C2) 2n<T@E(n+2)—-1)+1.

(C3) 2n is greater than the length of the longest string queried or reserved at any
earlier even stage.

(C4) t(n)y+c<2"

Downward translations of equality 339

To cancel index [, find an x(|x|=n) such that for no y(|y|=|x|) has xy been
reserved. Run P{ on x for #(n)+c steps and place all unreserved strings queried
intc A. If P{* accepts x, then put all xy (|y|=|x|) into A (thus x & L(A)). Otherwise,
put some unqueried xy (|y|=|x|) into A (thus x € L(A)).

Odd Stage n =4k +1: For each string y of the form x10'10° satisfying T(k—1) <
T(|x|)+i+c+3<T(k), simulate M{ on x as described below. Handle these strings
y in order of increasing T(|x|)+i+c+3.

Run M{ on x for T(|x|)+c steps. If it accepts, then put y107"*P~* jnto A and
reserve for A all unreserved strings queried on one accepting path.

If it rejects, then see if adding at most T(|x|)+c < T(k) strings to A will force
M3 to accept x. If so, then reserve those strings for A, reserve y10T*P - for A
and reserve the remaining unreserved strings on some accepting path for A. Other-
wise, the behavior of M is independent of later changes to the oracle set, so reserve
y10”‘*““~“ for A.
end construction

We now have to prove that the construction is possible.

Point 1: An edd sti:ge does not impede the construction at the next odd stage. At
odd stage 4k +1, only strings of length at most T(k) are queried and reserved by
the simulation; similarly only strings of length at most T(k) are reserved by the
encoding. At the next odd stage 4(k + 1)+ 1 performed, only strings of length greater
than T(k) will be considered for membership in A. None of these strings will have
been reserved in stage 4k + 1.

Point 2: During any odd stage n =4k + 1, fewer than 2" strings are reserved. Any
y =x10"10° causes at most T(|x|)+c < T(k) strings 10 be reserved. For any j, there
are at most 2’ strings x of length j. There are at most (T(k))> possible strings 0'10°.
An upper bound on the number of strings reserved at this stage is thus

S T(k)2(T(k)Y2<(T(k)) 2+ < (24)2+ = 2%+ =
j=0

Point 3. At an ever numbered stage n =4k +2Z, fewer than 2" strings have been
reserved by previous odd stages. This tollows from Point 2 and noticing that

k . ak+1
Z 24|+l< Z 2]=24k+2__1____2n_1‘
i=0 j=0

Point 4: An even stage does not reserve ary y0 TUxb=Ixl yhich will be examined (and

possibly reserved) ai the next odd stage. This follows from preconditions Ci and C2.

Point 5: The construction at the odd stages is possible. Because of Poinis 1 and 4.
Notice also that the strings are processed in order of nondecreasing T(|x|)+:+c+3.
This prevents the simulation initiated by y = x10°10’ from reserving 10701 for
a different y, which may need to be reserved for A later during this stage. This is since

T(x|)+e< T(x|)+i+c+3< TR+ T+E+3

349 E. Allender, C. Wilson

for any y=x10"'" dealt with later. Further, the simulation initiated by y cannot
reserve y10T(xD=l,

Point 6. An even stage does not affeci the construction at the next even stage. By
precondition C3.

It remains to prove that the construction at the even siages is possible. Now only
the odd stages cause concern, by Point 6. So we must show that at stage n =4k +2,
we can always find some x such that for no y has xy been reserved. There are 2"
different sets H(x)={xy: |x|=|y|=n}. By Point 3, the number of strings reserved
by all previous even stages is less than 2". Thus there must exist an x of length n
for which no member of H(x) is reserved.

Once such an x is found, we may still need to find some xy not queried at the
end of the stage (this xy may be placed in A). The number of strings reserved at
this stage is, for some ¢, at most t(n)+c¢<2"=|H(x)|, by precondition C4. So
there will always exist a y for which xy is not reserved.

Finally, note that for each index !/ the preconditions C1-C4 will be satisfied
infinitely often, so every index will eventually be cancelled. The eventual satisfaction
of C1 and C4 follow from the assumptions T(Gn—3)—t(n) =w(1) and T(n)<2".
C2 foilows since T(n)=8n.

Notes on the proof. (1) The conditions on T(n), such as T(n)<2", need on’y hold
asymptotically. That is, we need only that for some N and all n= N, T(n)<2".
The construction would then start at stage n=4N-+1. The proof that
DTIME?(T(n)) = NTIME*(T(n)) would involve a patching lemma whereby a
deterministic machine simulating a non-deterministic one would use a table look-up
for short strings (length < N).

(2) The separation of NTIME(2n) from a deterministic class can be shown for
a wider class of time bounds than those of the form #(xn)+O(1). In particular, let
F be a countable class of functions such that Vic F, T(Gn—3)—t(n) = w(1). Then
we can build A so that NTIME*(2n) contains a set not in {,. - DTIME*(¢(n)).
If F is a class of recursive functions and F is recursively enumerable (as a set of
indices), then A is recursive. [

Corollary 3.2. There is an oracle A such that
E*=NE" and NTIME"(2n)—DTIME"*(2"°) #.

Proof. Follows from Theorem 3.1 with T(n)=2". It follows by a straightforward
padding argument that DTIME*(2") = NTIME*(2") implies that E*=NE*. [

Corollary 3.3 (Dekhtyar [5], Book et al. [4]). There is an oracle A such that P* #
NP” and E* = NE*.,

Corollary 3.4. There is an oracle A such that
DTIME®(27%"°¢) % NTIME*(27*""*8) and E*=NE"

Downward translations of 2quality 341

Corollary 3.5. There is an cracle A such that

DTIME*(O(n)) # NTIME*(O(n)) and DTIME®(n? = NTIME*(n?).

Corollary 3.6. There is an oracle A such that

DTIME®(2n) # NTIME*(2n) and DTIME"(9n) = NTIME"(9n).

In [14] there is proof of the fact that in the unrelativized case DTIME(O(n)))
does not equal NTIME(O(n)). Since it is not too hard to construct an oracle for
which these two classes are equal, the result in [14] provides an excellent example
of a proof technique which does not relativize. Corollary 3.5 indicates that the
inequality in [14] does not easily translate upwards. Thus, it will require another
nonrelaiivizing technique to prove that deterministic and nondeterministic quadratic
time differ.

The proof of the previous theorem alternates between enceding stages and
diagonclization stages. The encoding stages ensure that the higher classes are equal,
while the diagonalization guarantees the separation at the iower level. If T(n) were
larger than 2", the stages would interfere with each other. To handle the larger time
bounds, the encoding is done all at once, and the diagonalization is against all
possible encodings.

Theorem 3.7. Let T(n) and t(n) be nondecreasing time-corstructible functions such
that T(n)=w(2") and Vk 3n<t(n)=0(T(n—k)). Then there exists an oracle B
relative to which DTIME(T(n)) = NTIME(T(n)) and NTIME(t(n)) is not contained
in DTIME(O(t(n))).

Proof. First, we claim that, under the conditions given above, there is a slowly
growing function s satisfying certain properties.

Claim 3.8. There is a monotone nondecreasing, unbounded function s such that
Vj [T(n—s(j-t(n)))>j- t(n) forall large n], (1)
Vi [(s(jn))22T ' <injorall large n). (2)

{where by “T™"" we mean the function which maps n io the largest m such that
T(m)<n).

Although Claim 3.8 is very elementary, iws proof is lengthy, and is given in the
Appendix. It should be mentioned that the function s need not be recursive.

Let r(n) = min(m: s(m) = n}; note that r is essentially s ~'. Let M,, M,,...be an
enumeration of nondeterministic Turing machines, and let P,, P,, ... be an enumer-
ation of deterministic Turing machines such that P, runs in time j- t(n).

342 E. Allender, C. Wilson

For any set Ac 2%, define
Q{A) = {x10"17©QTIxD-Ixl; ppASRA) gccepts x in < T(|x])+ ¢ steps}).

Note that Q(A) is well-defined, since for any y of the form x107"17(<g DIl 3
follows that | y|>> T(Jx|)+ ¢, and thus M; cannot query y in T(|x|)+c steps.

We claim that for every set A, DTIMEA®%(T(n)) = NTIME*®?*)(T(n)). To
see this, let L be accepted by some machine M, in time T(n)+c with oracle
A® Q(A). Then xe L & x10""1"<)9TxP-Ixlc Q(A). This query can be asked in
time T(|x|)+ r(i)+r(c)+2. Since i and ¢ are constants depending only on L, it
follows that L can be recognized in time 7T(n)+O(1), and thus is in
DTIME*®?*(T(n)).

Let L(A)={x:3y [xyeA and |y|=t(x])—|x|]}. For all sets A, L(A)e
NTIMEA®?"™)(¢(n)). It will thus suffice to build a set A such tkat for all j, the set
accepted by P; with oracle A® Q(A) differs from L(A). For each j, we will build
a finite oracle A; so that A;_, < A;, and we will choose a number n = n; so that
@ there is a set C < X" such that A;=A;_,uC.
® The language accepted by P; with oracle A;® Q(A;) differs from L(A;) on some

string of length n.

In addition, n;,, will be chosen to be larger than j- t(n;), so that all queries by P,
to the oracle A;,,® Q(A;.,) on inputs of length n will be answered the same as
they are with o acle A;® Q(4;). Thus the diagonalization performed during stage
Jj is not damaged by later stages of the construction. The oracle A will be |, A;.

Let « be a large constant. At a certain point in the proof, we will use the fact
that « is larger than the description of some simple Turing machines.

Construction of A
Stage 0: Ay <@.

Stage j: To construct A; (j=1), first choose n = n; so that

jrt(n)<sT(n—1-2log s(j- t(n))), 3
s+ 1(n))27 1 = 4e(n), 4)
jtni_)<n, (5)
3t(n)>(6+2s(j- t(n)))log(j- t(n))+n+2logn

+4 - 2'""-0+ 2 log j+ 2k, (6)

(Note that ail larg> n satisfy all of these c.iteria, by (1) and (2), and by the fact
that t(n)=3n.) D=4ne

Q={z:|z|<j- t(n) and z is of the form y107("1"()gTU»D-1
for some y, i and c}.

When P, computes on inputs of length n, all queries to the Q(A) part of the oracle
will be answered negatively for queries not in Q. That is, knowing membership in

Downv:ard translations of equality 343

Q(A) for all elements of Q is sufficient to enable us to answer all queries to the
Q(A) part of the oracle. Note that [| Q| <s(j- t(n))*27 /""" By (3), || Q| <2""".
By (4), Q[=<3i(#n).

An element q € {0, 1}'°! will be called a Q-vector. We will write P{®(x) to denote
the outcome of the computation of P, on input x, where all queries to the Q(A)
part of the oracle are answered according to the vector g. That is, if P; asks the
Q(A) part of its oracle about a string not in Q, the oracle responds negatively, and
if P; asks about the ith element of Q, then the oracle responds with the ith bit of g.

Let W={w0" ™ |w|=[leg]|Q|1+1}. Since ||Q||<2""", this definition makes
sense. Since elements of W all end with a long string of trailing zeros, every element
of W has a fairly short description. Later, we will make use of the fact that W is
a set of strings of low Kolmogorov complexity; we will carry out our diagonalization
by making P; fail on W.

Given any Q-vector g, we associate with it a set F(q)< W as follows:

F(q)=Wn{x: P}®9(x)=1}.

Since there are only 2/ < 2! Q.vectors, there must be some B< W such that
for all g€ Q, F(q)# B. Choose one such B, and let z be a string of length t(n)—n
of maximal Kolmogorov complexity (i.e., K(z)=|z]).

Let A;=A;_,u{wz: we B}, and let q be the Q-vector encoding Q(A;). Note that
WA L(A;))=B#F(q)=(Wn{x: P}+®(x)=1}). Thus in order to show that P,
with oracle A;® Q(A;) does not accept L(A4;), it will suffice to show that for all
x € W, P{-1®4(x) = P®9(x). If this can be shown, then for ali x€ W, x is accepted
by P, with oracle A;® Q(A;) © x e F(q), and thus the set accepted by P, with oracle
A;® Q(A) differs from L(A;) on at least one element of W.

Claim 3.9. Vxe W, P;'-®9(x) = P}®4(x).

Proof of claim. Since A;_,®q and A;@® g differ only on the str.ngs of the form wz
for some strings w in W, the outcome of P{-*®?(x) and P;'®'(x) can only differ
if some such string wz is queried on each of these computations. We will show that
no such string can be queried.

Note that K(z)< K(wz)+2logn+k, so K(wz)=(t(n)—n)-2logr—«. Note
also that any query asked during the computation of P}"-®?(x) can be reconstructed
from
°j
® a description of A,_, (which can be given by a bit vector of length 2"" "' —1);
® g (which h:s length || Q| <3t(n);
® a number between 1 and j- t(n), indicating the step at which the query is made;
® a description of x (which need be no longer than 2log n+[log |Q||1+1<

3 log t(n), since xe W and thus x is of the form u0" " for some u of length

el +1);

344 E. Allender, C. Wilson

® a description of the values of #(i),r(2),...,r(s(j- t(n))) (this sequence of
s(j- t(n)) values, each no greater than j-t(n), can be encoded using
2s(j- t(n)) log(j- t(n)) bits).
We can now conclude that the Kolmogorov complexity of any query is at most
Lt(n)+2s(j- t(n)) log(j- t(n))+6log(j- t(n))+x+2logj+4-2""". By (6), this
is less than (t(n}—n)—2log n —k < K(wz). Thus no such string wz is queried. [J

Using an essent:ally identical proof, one can also prove the following result.

Theorem 3.10. Let T(n) and t(n) be nondecreasing time-constiuctible functions such
that Yk [t(n)< T(loglog T(n)—k) a.e.], and 36>1 [t(n)’<T(n)]. Then there
exists an oracle B relative to which DTIME(T(n))=NTIME(T(n)) and
NTIME(log T(n)) is not contained in DTIME(t(n)).

Corollary 3.11. Let T(n) and t(n) be nondecreasing time-constructible functions such
that Vk [T(n)>2"" a.e] and 356>1 [t(n)* < T{n)]. Then there exists an oracle
B relative to which DTIME(T(n)) = NTIME(T(n)) and NTIME(log T(n)) is not
contained in DTIME(t(n)).

4. Conclusion

In the results above, we have shown that in the relativized case, it can be true
that equality of certain complexity classes does not imply equality of lower classes.
Even stronger, we have exhibited an oracle relative to which DTIME(T(n)) equals
NTIME(T(n)) while NTIME(t(n)) contains a set not in DTIME(2n) so long as
t(n) is sufficiently less than T(n) and T(n)<2". Similarly, we have an oracle for
which DTIME(#(n)) equals NTIME(T(n)) while NTIME(#(n)) contains a set not
in DTIME(log T(n)) so long as t(n) is sufficiently less than T(n) and T(n)=2>""""
These results tell us that in almost all cases, a very strong statement of inequality
involving complexity classes of small time buunds will not yield an inequality of
complexity classes of large time bounds, at least not without using a proof technique
immune to relativization.

The main open gaestion is to close the gap in the bounds on T(n) for the stronger
result, when 2"<T(n)<2”. For example, is there an oracle for which
DTIME(2"") = NTIME(2"") and NTIME(n?) ~E is not empty?

Appendix

Here, we present the proof of Claim 3.8. It is convenient to break this into two parts:
(1) Let T(n)= “’(,2“)' Then there is a monotone, unbounded function f such that,
for 211 j, (f(jn)27 "9 <!n for all large n).

Downward transiations of equality 345

Assume Yk k) hen there is a monotone, unbounded func-
tion g such that, for all j, (T(n—g(j- t(n)))=j- t(n) for 1l large n).
The clai"n follows by taking s(n)=min{vVf(n), g(n)}
We

prove the first claim first. By assumption, for all ¢, T(n) > ¢2" for all large n.
Thus T~ (n) <log(n/c) for all large n, so we have that forall jand ¢, 2" """ < (j/c)n
r all large n.
n)=max{0}u{b: Ym=nb2" V" <lm}. Clearly, each f; is nondecreas-
ounded, and j, <j, = f; =f,,. Define f and i recursively as foilows:

f(0)=0,i(0)=0.
Erm 2 > 1 S 1))
ior n=1 \lCtJ—l\" 1}

lff+.(n/(1+1))>f(n—l)

ot

The second claim is proved in a very similar manner. By assumption we have
that for all k and j, T(n — k)> j(t(n)) for all large n. Let g;(n) = max{0} u{k: YVm=n
T(m— k)= jt(m)}. Clearly, each g; is nondecreasing and unbounded, and j, <j, =
g, = g;,- Define g and i recursively as follows:

g(0)=0,i(0)=0
forn=1, letj=i(n—-1))
if g, (t7'(n/(j+1)))>g(n-1)
then i(n):=j+1, and g(n)==g;.,(t ' (n/(j+1)))
else i(n):=j and g(n):=g(n-—-1).

As above, g is nondecreasing and unbounded and for all j, g(j- t(n)) < g;(n) for
all large n. This proves the second claim. [

References

[1] E. Allender, Limitations of the upward separation technique (preliminary version), in: Proc. 16th
Internat. Colloquium en Automata, Languages, and Programming, Lecture Notes in Computer Science
372 (Springer, Berlin, 1989) 18-30.

[2] J. Balcdzar, J. Diaz and J. Gabarrd, Structural Complexity I (Springer, Berlin, 1988/.

[3] R. Book, Tailey languages and complexity classes, Inform. and Control 26 (1974) 186-193.

[4] R.V. Book, C.B. Wiison and M.R. Xu, Relativizing time, space, and time-space, SIAM J. Comjuut.
11 (1982} 571-581.

[5] M. Dekhtyar, On the relativization of deterministic and nondeterministic complexity classes, in:
Proc. 5th Symp. on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 45 (Springer, Berlin, 1976) 255-259.

[6] J. Hartmanis, N. Immerman and V. Sewelson, Sparse sets in NP-P: EXPTIME versus NEXPTIME,
Inform. and Control 65 (1985) 158-181.

346 E. Allerder, C. Wilson

[71 J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation { Addison-
Wesley, Reading, MA, 1979).
[8] D.E. Knuth, Big omicron and big omega and bit theta, SIGACT News 18(2) (1976) 18-24.
[9] S. Kurtz, Sparse sets in NP~ P: relativizations, SIAM J. Comput. 14 (1985) 113-119.
[10] M. Li and Paul Vizdnyi, Two decades of applied Kolmogorov complexity, in: Proc. 3rd Structure
in Complexity Theory Conf. (IEEE, Washington, DC, 1988) 80-101.
[11] G. Lischke, Oracle-constructions to prove all possible relationships between relativizations of P,
NP, EL, NEL, EP and NEP, Z. Math. Logik Grundlag. Math. 32 (1986) 257-270.
[12] S.Moran, Some results on relativized deterministic and nondeterministic time hierarchies, J. Comput.
System Sci. 22 (1981) 1-8. '
[13] W.J. Paul, On-line simulation of k + 1 tapes by k tapes requires nonlinear time, Inform. and Control
53 (1982) 1-8.
|14] W.J. Paul, N. Pippenger, E. Szemeredi and W.T. Trotter, On nondeterminism versus determinism
and related problems, in: Proc. 24th Symp. on Foundations of Computer Science (IEEE, Washington,
DC, 1983) 429-438.
[15] C. Rackoff and J. Seiferas, Limitations on separating nondeterministic complexity classes, SIAM
J. Comput. 10 (1931) 742-745.

[16] U. Schoning, Compiexity and Structure, Lecture Notes in Computer Science 211 (Springer, Berlin,
1986).

