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SUMMARY

Cellular mRNAs exist in messenger ribonucleopro-
tein (mRNP) complexes, which undergo transitions
during the lifetime of the mRNAs and direct posttran-
scriptional gene regulation. A final posttranscrip-
tional step in gene expression is the turnover of the
mRNP, which involves degradation of the mRNA
and recycling of associated proteins. How tightly
associated protein components are released from
degrading mRNPs is unknown. Here, we demon-
strate that the ATPase activity of the RNA helicase
Upf1 allows disassembly of mRNPs undergoing
nonsense-mediated mRNA decay (NMD). In the
absence of Upf1 ATPase activity, partially degraded
NMD mRNA intermediates accumulate in complex
with NMD factors and concentrate in processing
bodies. Thus, disassembly and completion of
turnover of mRNPs undergoing NMD requires ATP
hydrolysis by Upf1. This uncovers a previously unap-
preciated and potentially regulated step in mRNA
decay and raises the question of how other mRNA
decay pathways release protein components of
substrate mRNPs.

INTRODUCTION

mRNA decay is a critical step in the regulation of gene expres-

sion. The stability of mRNAs can vary by orders of magnitude

and is dictated by the composition of the messenger ribonucleo-

protein (mRNP) (Balagopal and Parker, 2009; Moore, 2005). How

decay-promoting mRNP components activate mRNA turnover is

poorly understood. Several studies have shown evidence that

the recruitment of mRNA decay enzymes is a critical step in

mRNA turnover (Cho et al., 2009; Gherzi et al., 2004; Lykke-An-

dersen and Wagner, 2005; Moraes et al., 2006). Yet, it is

unknown how recruited mRNA decay enzymes access the

mRNA through stably associated protein components of the
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mRNP. In an analogous manner, early models for transcription

activation focused on the recruitment of RNA polymerase,

whereas later studies demonstrated the importance of chro-

matin modification and remodeling (Campos and Reinberg,

2009). Does the mRNP constitute an obstacle to mRNA turnover

as chromatin does to transcription?

Evidence primarily from the yeast Saccharomyces cerevisiae

suggests that mRNA degradation generally initiates with removal

of the mRNA poly(A)-tail by deadenylases, which stimulates

either mRNA decapping and subsequent 50-to-30 exonucleolytic
decay by Xrn1 (Doma and Parker, 2007; Garneau et al., 2007) or

degradation in the 30-to-50 direction by the exosome (Schmid and

Jensen, 2008). In addition, some mRNA decay pathways trigger

endonucleolytic cleavage followed by 30-to-50 and 50-to-30 exo-
nucleolytic decay of the mRNA fragments by the exosome and

Xrn1, respectively (Wilusz, 2009). However, although much has

been learned about the enzymes that degrademRNAs, it remains

unknown how the mRNA decay enzymes negotiate the mRNP.

Nonsense-mediatedmRNAdecay (NMD) is anmRNA turnover

pathway that targetsmRNAswith premature translation termina-

tion codons (PTCs) for rapid degradation, thereby suppressing

protein expression from aberrant mRNAs, as well as a subset

of normal NMD-regulated mRNAs (Amrani et al., 2006; Behm-

Ansmant et al., 2007; Chang et al., 2007; Isken and Maquat,

2007; Mühlemann et al., 2008; Rebbapragada and Lykke-

Andersen, 2009). How a termination codon is recognized as

premature remains under investigation, but it appears to occur

when a ribosome terminates translation sufficiently upstream

of a normal 30 UTR to prevent 30 UTR-associated proteins,

including cytoplasmic poly(A)-binding protein (PABPC), from

stimulating a proper termination event (Amrani et al., 2006; Müh-

lemann et al., 2008; Rebbapragada and Lykke-Andersen, 2009).

This initiates the assembly of anNMDmRNPwith the recruitment

of the NMD factor Upf1 and its cofactors Upf2 and Upf3 to the

terminating ribosome. In vertebrates, NMD is strongly stimulated

when an exon junction complex (EJC), which interacts with the

Upf complex, is positioned downstream of the termination event

(Behm-Ansmant et al., 2007; Isken and Maquat, 2007; Moore

and Proudfoot, 2009; Mühlemann, 2008; Rebbapragada and

Lykke-Andersen, 2009). In metazoans, the NMDmRNP is further
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modulated by a phosphorylation-dephosphorylation cycle of

Upf1 mediated by the kinase Smg1 and by protein phosphatase

2A in association with the NMD factors Smg5 and Smg7 (Fuku-

hara et al., 2005; Glavan et al., 2006; Ohnishi et al., 2003; Page

et al., 1999; Yamashita et al., 2001). The assembled NMD

mRNP subsequently recruits mRNA decay enzymes to initiate

mRNA degradation. Depending on the specific organism, decay

can initiate by decapping, deadenylation, and/or endonucleo-

lytic cleavage (Mühlemann and Lykke-Andersen, 2010). Recent

evidence suggests that in human and Drosophila cells, decay

of the NMD substrate is primarily initiated by endonucleolytic

cleavage by the NMD factor Smg6 followed by 30-to-50 and

50-to-30 exonucleolytic decay of the mRNA fragments by the

exosome and Xrn1, respectively (Gatfield and Izaurralde, 2004;

Glavan et al., 2006; Huntzinger et al., 2008; Eberle et al., 2009).

However, it remains an unresolved question how the NMD

factors are recycled from the degrading NMD mRNP. Are they

released by the activity of the mRNA decay enzymes or do

they require active removal prior to or during mRNA decay?

A central component of the NMD pathway, Upf1, belongs to

helicase superfamily 1 and shows RNA-dependent ATPase

and 50-to-30 RNA helicase activities in vitro (Bhattacharya et al.,

2000; Chamieh et al., 2008; Cheng et al., 2007; Czaplinski

et al., 1995). The ATPase activity of Upf1 is critical to the NMD

pathway (Kashima et al., 2006; Weng et al., 1996a); however,

its specific role remains unresolved. Although helicases were

first described as ATPases that unwind polynucleotide duplexes,

several helicases of superfamily 2 have more recently been

shown to function as RNPases that promote ATP-dependent

mRNP remodeling in the absence of double-stranded RNA (Fair-

man et al., 2004; Jankowsky et al., 2001). Early studies impli-

cated the Upf1 ATPase at the translation termination step of

yeast NMD (Weng et al., 1998), but more recent observations

in yeast show that ATPase-deficient mutant Upf1 accumulates

with NMD substrates in cytoplasmic mRNP granules called pro-

cessing bodies (PBs) (Cheng et al., 2007; Sheth and Parker,

2006). This suggests that the failure of Upf1 to hydrolyze ATP

causes the accumulation of an NMD mRNP in association with

mRNA decay factors. Here, we demonstrate that the Upf1

ATPase stimulates the removal and recycling of NMD factors

from mRNPs targeted for NMD. This is required for the comple-

tion of exonucleolytic decay of the NMD substrate. In the

absence of Upf1 ATPase activity, NMD factors become trapped

with partially degraded 30 NMD mRNP intermediates. This

demonstrates the importance of mRNP disassembly in mRNA

turnover, and raises the questions of whether this is a regulated

step in NMD and to what extent mRNP disassembly is a critical

step in other mRNA decay pathways.

RESULTS

The 30 Fragment Generated upon Endonucleolytic
Cleavage of NMD mRNA Substrates Accumulates
in the Presence of ATPase-Deficient Upf1
To investigate the function of Upf1 ATPase activity in NMD, we

tested the effect of impairing human (h)Upf1 ATP binding

and hydrolysis on the degradation of NMD substrate mRNAs.

A b-globin mRNA with a PTC at position 39 (b-39) was subjected
to pulse-chasemRNA decay assays in humanHeLa Tet-off cells,

in which endogenous hUpf1 was depleted with an siRNA and

replaced with exogenous siRNA-resistant wild-type hUpf1

(hUpf1R), or mutants thereof that fail to hydrolyze (hUpf1 DEAAR)

or fail to bind (hUpf1 K498AR) ATP (Bhattacharya et al., 2000;

Cheng et al., 2007). As expected, the b-39 NMD substrate is

significantly more stable in the presence of hUpf1 ATPase

mutants than with wild-type hUpf1 (Figure 1A, top panel; see

band labeled b-39). Surprisingly, however, a fast migrating

mRNA species (indicated by an arrow in Figure 1A) accumulates

when hUpf1 ATPase mutant proteins are expressed, but is not

observed in the presence of wild-type hUpf1 (Figure 1A, top

panel; quantified in Figure 1B). This product corresponds to

the 30 fragment of the NMD substrate following endonucleolytic

cleavage by Smg6, because it is not observed with a probe

specific to the 50 end of b-globin mRNA and is strongly reduced

under Smg6 knockdown conditions (see Figures S1A–S1C

available online). In contrast to the 30 fragment, no 50 fragment

was detectable upon hUpf1 ATPase mutant expression (Fig-

ure 1A and Figure S1D). Thus, ATPase-deficient hUpf1 allows

endonucleolytic cleavage of the NMD substrate, followed by

exonucleolytic decay of the resulting 50 product, but impairs

the degradation of the 30 product.
How can the failure of hUpf1 to bind or to hydrolyze ATP

specifically affect the NMD substrate 30 decay intermediate?

One possibility is that the 30 intermediate requires Upf1

ATPase activity to be accessible to Xrn1, the 50-to-30 exonu-
clease that normally degrades this fragment (Gatfield and Izaur-

ralde, 2004; Huntzinger et al., 2008; Eberle et al., 2009). If so, the

same fragment should accumulate upon depletion of Xrn1 in the

presence of both wild-type and ATPase-deficient hUpf1. To test

this idea, Xrn1 was depleted with siRNAs that modestly (Xrn1 #1)

or strongly (Xrn1 #2) reduce Xrn1 levels (Figure 1C), and the

effect on the decay of the b-39 mRNA was monitored. As seen

in Figure 1A (middle panel), when Xrn1 is modestly depleted,

the b-39 mRNA 30 fragment accumulates strongly in the pres-

ence of ATPase-deficient hUpf1, but not with wild-type hUpf1.

Only when Xrn1 is strongly depleted does the 30 b-39mRNA frag-

ment accumulate in cells expressing wild-type hUpf1 (Figure 1A,

bottom panel; quantified in Figure 1B). However, even under

these conditions, the resulting 30 mRNA fragment is rapidly

degraded with an apparent half-life 2–4-fold shorter than that

observed when hUpf1 ATPase mutants are expressed. A similar

pattern of NMD substrate 30 fragment accumulation was

observed when a different NMD substrate, GPx1-46, was tested

(Figure 1D). These observations are not a result of globally

impaired Xrn1 activity, because Xrn1-mediated degradation of

the 30 fragment of a b-globin reporter mRNA subjected to endo-

nucleolytic cleavage by endogenous let-7 microRNA is not

impaired in the presence of ATPase-deficient hUpf1 (Figure S1E).

Thus, although it is well established that the Upf1 protein plays

a key role in the recognition step of NMD (Amrani et al., 2006;

Kashima et al., 2006; Mühlemann et al., 2008; Ohnishi et al.,

2003; Rebbapragada and Lykke-Andersen, 2009), the observa-

tions shown here suggest that the ATPase activity of Upf1 is

required at a later step in NMD (Figure 1). Consistent with this,

when mRNA decay is initiated by tethered hUpf1, thereby by-

passing the Upf1 recruitment step of NMD (Lykke-Andersen
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Figure 1. The 30 Fragment Generated upon Endonucleolytic Cleavage of NMD Substrates Accumulates When hUpf1 Fails to Hydrolyze ATP

(A) Northern blots showing the decay of b-globin mRNA with a PTC at position 39 (b-39) in HeLa Tet-off cells depleted of endogenous hUpf1 using an siRNA and

expressing exogenous siRNA-resistant wild-type hUpf1 (hUpf1R), or hUpf1 ATPase (hUpf1 DEAAR) or ATP-binding (hUpf1 K498AR) mutants. siRNAs targeting

Xrn1 were included in the experiments in the bottom two panels. Time points above each lane represent the elapsed time following transcriptional shut-off of

b-39 mRNA by tetracycline addition. The 30 endonucleolytic cleavage fragment of b-39 (b-39 30 ) is indicated by arrows.

(B) Quantification showing the percentage b-39 30 mRNA fragment of total b-39 mRNA immediately after the transcriptional pulse (t = 0) for each condition

indicated. Percentages and standard deviations are calculated from three experiments.

(C) Western blots showing Xrn1 levels in HeLa Tet-off cells treated with a control siRNA (FLuc) (100%, 50%, or 20% total protein was loaded) or with the two Xrn1

siRNAs used in (A) (Xrn1 #1 or Xrn1 #2). hUpf3b served as a loading control.

(D) Northern blots showing GPx1 mRNA with a PTC at position 46 (GPx1-46) after a 6 hr transcriptional pulse in HeLa Tet-off cells treated as described in (A).

See also Figure S1.
et al., 2000), ATP binding-deficient hUpf1 causes accumulation

of a 30 fragment that is not observed with tethered wild-type

Upf1 unless Xrn1 is efficiently knocked down (Figure S1F).

ATPase-Deficient hUpf1 Accumulates on the 30 NMD
Intermediate
How does the Upf1 ATPase stimulate degradation of the 30 NMD

fragment by Xrn1? One possibility is that the Upf1 ATPase

triggers removal of protein from the 30 NMDmRNP intermediate,

thereby allowing access for Xrn1. If so, it is predicted that wild-

type hUpf1 should cycle off the 30 NMD intermediate, whereas

ATPase-deficient hUpf1 should fail to do so. This ideawas tested

using hUpf1 immunoprecipitation (IP) followed by Northern
940 Cell 143, 938–950, December 10, 2010 ª2010 Elsevier Inc.
blotting for associated NMD substrate mRNA under strong

Xrn1 knock-down conditions. As seen in Figure 2A, both wild-

type and mutant hUpf1 proteins associate with full-length b-39

NMD substrate produced by a short transcriptional pulse (lanes

6–8). However, the association of the accumulating 30 b-39

fragment with ATPase-deficient hUpf1 is strongly enhanced

(4.1-fold relative to full-length b-39) as compared with wild-

type hUpf1 (Figure 2A; compare lanes 7 and 8 to lane 6; band

marked by arrow). These interactions occur in the cell and do

not form after cell lysis, because b-39 mRNA does not copurify

with wild-type ormutant hUpf1 when expressed in separate cells

and combined during cell lysis (Figure 2B; compare lanes 6 to 5

and lanes 12 to 11), and the mRNA substrate does not copurify
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Figure 2. The 30 NMD Endonucleolytic Cleavage Fragment Is Stuck with ATPase-Deficient Upf1 and Is Resistant to 50-to-30 Exonucleolytic
Decay In Vitro

(A) Northern blot for b-39 mRNA from pellet (lanes 5-8) or 5% of total extract (lanes 1–4) fractions from anti-myc IP assays from cells transiently expressing

myc-tagged hUpf1 proteins indicated on the top or no exogenous protein (none). Cells were treated with Xrn1 #2 siRNA to promote the accumulation of the

b-39 mRNA 30 fragment.

(B) Same as (A), but b-39mRNAwas expressed either in the same cells as wild-type (WT) or DEAAmutant (DE) hUpf1 (lanes 2, 5, 8, and 11), or in different cells and

mixed prior to extract preparation (lanes 3, 6, 9, and 12). Lanes 1–3 and 7–9: 5% of total extracts; lanes 4–6 and 10–12: IP pellets. Lanes 1, 4, 7, and 10 are from

cells not expressing Myc-hUpf1. All cells were treated with Xrn1 #2 siRNA to promote the accumulation of the b-39 mRNA 30 fragment.

(C) Northern blots showing in vitro Terminator-mediated decay of b-39 30 mRNA fragment from extracts (left panels) or total RNA (right panels) from HeLa Tet-off

cells depleted of endogenous hUpf1 using an siRNA and expressing exogenous siRNA-resistant wild-type hUpf1 (hUpf1R) or hUpf1 ATPase mutants. An siRNA

targeting Xrn1 (Xrn1 #2) was included in all experiments. Time points above each lane represent the time of Terminator incubation. Bottom panels: incubation in

the absence of Terminator.

(D) Quantification for each of the experiments in (C). Percentages and standard deviations are calculated from three experiments.

See also Figure S2.
with the antibody in the absence of exogenous hUpf1 (Figure 2A,

lane 5, and Figure 2B, lanes 4 and 10). These observations

are consistent with the idea that ATPase activity is not critical

for recruitment of hUpf1 to the NMD substrate, but is required

for the release of hUpf1 from the 30 fragment that forms after

initiation of mRNA decay.
The 30 NMDmRNP Fragment Generated in the Presence
of ATPase-Deficient Upf1 Is Resistant to 50-to-30

Exonucleolytic Decay In Vitro
If the 30 NMD intermediate that forms in the presence of hUpf1

ATPase mutants is resistant to Xrn1 because of a failure in

mRNP disassembly, it should become sensitive to 50-to-30
Cell 143, 938–950, December 10, 2010 ª2010 Elsevier Inc. 941



exonucleolytic decay if protein is removed from the mRNP. To

test this idea in vitro, b-39 mRNA was expressed along with

exogenous wild-type or ATPase-deficient hUpf1 proteins in

HeLa Tet-off cells depleted for endogenous Xrn1 and hUpf1.

Cells were subsequently permeabilized, and the resulting cell

extracts were incubated with the Terminator enzyme, a commer-

cially available 50-to-30 exonuclease. As seen in Figure 2C (left

panels), although the 30 NMD mRNA fragment that accumulates

as a result of Xrn1 knock-down in the presence of wild-type

hUpf1 is degraded efficiently (t1/2 z 18 min), a large fraction

(60%–70%) of the same RNA produced in cells expressing

ATPase-deficient Upf1 proteins is highly resistant to 50-to-30 exo-
nucleolytic decay (quantified in Figure 2D, top panel). In contrast,

when mRNPs were disrupted and protein removed from the cell

extracts by phenol extraction prior to incubation with the

nuclease, the 30 NMD fragment is degraded efficiently regardless

of the ability of Upf1 to hydrolyze ATP (Figure 2C, right panels;

quantified in Figure 2D, bottom panel). As expected, full-length

b-39 mRNA is resistant to the Terminator enzyme, which is

specific for 50 monophosphate-containing RNA and thus does

not target capped RNA (Figure 2C; upper bands), and the 30 frag-
ment does not degrade in the absence of Terminator (bottom

panels). When the endonuclease RNase A was used in place of

Terminator, all RNAs rapidly degrade (Figure S2). Thus, when

Upf1 fails to hydrolyze ATP, the 30 NMD fragment generated by

Smg6-mediated endonucleolytic cleavage becomes trapped in

an mRNP that includes hUpf1 and is resistant to exonucleolytic

decay from the 50 end.

The 30 NMD Intermediate Accumulates in PBs
in the Presence of ATPase-Deficient Upf1
Anumberof studieshavedemonstrated that cytoplasmicmRNPs

that accumulate in association with 50-to-30 mRNA decay

complexes concentrate in PBs (Eulalio et al., 2007; Franks and

Lykke-Andersen, 2008; Parker and Sheth, 2007). Thus, if hUpf1

ATPase activity is critical for NMD mRNP disassembly during

mRNA decay, it is predicted that the NMD intermediate should

accumulate in PBs when hUpf1 fails to hydrolyze ATP. Indeed,

as seen in the fluorescence in situ hybridization (FISH) assays in

Figure 3A, both b-39 (panels 2 and 3) and GPx1-46 (panels 5

and 6) mRNAs accumulate strongly in PBs in the presence of

ATPase-deficient hUpf1, but are rarely detected when wild-type

hUpf1 is expressed (panels 1 and 4). This finding is consistent

with previous observations in yeast (Sheth and Parker, 2006). In

contrast, wild-type b-globin mRNA accumulated only at very

low levels in PBs upon mutant hUpf1 expression (Figure S3).

We next used individual probes hybridizing to different regions

along the b-globin mRNA to ask which part of the NMD substrate

accumulates in PBs. Remarkably, although the region 30 of the
PTC of b-39mRNAwas readily detectable in PBs in the presence

of ATPase-deficient hUpf1, the 50 end remained completely

undetectable in PBs (Figure 3B, compare panels 4 and 5 with

panels 1 and 2; quantifications below), despite the fact that the

full-length mRNA under these conditions is 6–10-fold more

abundant than the 30 fragment (Figures 1A and 1B). A probe

that hybridizes across the mapped Smg6 endonucleolytic

cleavage sites (Eberle et al., 2009) modestly detects the mRNA

in PBs (panel 3). The observed differences in PB detection are
942 Cell 143, 938–950, December 10, 2010 ª2010 Elsevier Inc.
not due to different efficiencies of the FISH probes, because,

in contrast to the b-39 mRNA, each FISH probe equally detected

in PBs a b-globin mRNA targeted for the ARE-mRNA decay

pathway (b-ARE) (compare panels 6–10 with panels 1–5; quanti-

fications below). The observed localization pattern is not unique

to the b-39 mRNA, as in the presence of ATPase-deficient hUpf1

the 30 end of an unrelated NMD substrate, GPx1-46, could also

be observed in PBs in contrast to its 50 end (Figure 3C). Thus,

the 30 NMD mRNA decay intermediate that accumulates when

Upf1 fails to hydrolyze ATP forms an mRNP that concentrates

in PBs.

Multiple NMDFactors Accumulate in PBs in theAbsence
of Upf1 ATPase Activity
What are the protein components of the accumulating 30 NMD

mRNP intermediate? On the basis of the observations above,

such proteins are predicted (1) to accumulate in PBs in the pres-

ence of ATPase-deficient Upf1, (2) to copurify more strongly with

ATPase-deficient Upf1 than with wild-type Upf1 in coimmuno-

precipitation (co-IP) assays, and (3) to copurify the NMD mRNA

30 fragment when immunoprecipitated. We tested these predic-

tions for multiple NMD factors. Consistent with hUpf1 being part

of the 30 NMDmRNPandwith previous observations in yeast and

human cells (Sheth and Parker, 2006; Cheng et al., 2007; Cho

et al., 2009; Stalder and Muhlemann, 2009), indirect immunoflu-

orescence assays revealed that ATP binding- and ATPase-

deficient mutant hUpf1 proteins, but not wild-type hUpf1, accu-

mulate strongly in PBs (Figure 4, compare panels 4, 7, 10, 13 to

panel 1). This is consistent with the observation that ATPase

activity is required for the release of hUpf1 from the degrading

NMD mRNP (Figure 2A).

What about other NMD factors? Remarkably, exogenously ex-

pressed ATPase-deficient hUpf1 (Figure 5A), but not wild-type

hUpf1 (Figure 5B), induces strong accumulation of endogenous

Smg5, Smg6, and Smg7 in PBs (panels 4, 7, and 10; transfected

cells identified by the coexpression of NLS-DsRed are marked

by arrowheads) but has no observable effect on the localization

of an unrelated RNA-binding protein, HuR (panel 28). Smg1,

hUpf2, and the EJC components Y14 and eIF4A3moremodestly

accumulate in PBs (panels 13, 16, 19, and 22), whereas hUpf3a

and hUpf3bwere only rarely observed in PBs (unpublished data).

None of the NMD factors localized strongly in PBs in untrans-

fected cells (Figures 5A and 5B; cells not indicated by arrow-

heads), which in all cases looked similar to those expressing

exogenous wild-type hUpf1 (Figure 5B). Similarly to NMD

factors, Xrn1 consistently showed enhanced accumulation in

PBs in cells expressing ATPase-deficient hUpf1 (Figure 5A,

panel 25; cell marked by arrowhead) as compared with cells

expressing exogenous wild-type hUpf1 (Figure 5B, panel 25) or

no exogenous hUpf1 (Figures 5A and 5B, panel 25; unmarked

cells). Thus, multiple NMD factors and Xrn1 coaccumulate with

NMD intermediates in PBs in the presence of ATPase-deficient

hUpf1 (Figure 5).

ATPase-Deficient hUpf1 Shows Enhanced
Copurification with Multiple NMD Factors
We next tested the prediction that proteins that require Upf1

ATPase activity for release from the NMDmRNP should copurify
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Figure 3. The 30 NMD Intermediate Accumulates in PBs in the Presence of ATPase-Deficient hUpf1

(A–C) FISH assays showing localization of b-39, b-ARE and GPx1-46 mRNAs in HeLa cells in which endogenous hUpf1 was replaced with exogenous hUpf1,

hUpf1 DEAA, or hUpf1 K498A as indicated above the panels. Individual Texas-Red–labeled 50-nt probes targeting various regions of b-globin and GPx-1mRNAs

were used in (B) and (C) as indicated below images, whereas equimolar amounts of all probes were used in the experiments in (A). GFP-hDcp1a was used as a PB

marker. Merged images are displayed (RNA:red, GFP-hDcp1a:green), whereas selected enlarged regions are shown unmerged below. Percentage of cells

displaying mRNA signal in PBs is shown in the bottom right corner of images (with the number of cells counted from at least three experiments in parentheses),

and graphed for individual probes against b-39 or b-ARE mRNA below cell images, with standard deviation from three experiments, in (B). Note: plasmids that

express b-39, b-ARE, and GPx1-46 mRNAs also express GFP; thus, some nuclear staining can be observed in the green channel.

See also Figure S3.
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Figure 4. Mutant hUpf1 Proteins Deficient in ATP Binding or ATP

Hydrolysis Accumulate in PBs

Indirect immunofluorescence assays showing localization ofmyc-taggedwild-

type hUpf1, ATPase mutant (DEAA), or ATP-binding mutants (K498A, G494R,

and G496E) hUpf1 proteins transiently expressed in HeLa cells (left panels).

Human IC-6 serum, which detects the decapping factor Hedls and the nuclear

envelope component Lamin, was used as a PB marker (middle panels).

Merged images (hUpf1: green; IC-6: red) are shown in the right panels.

Enlarged images of the indicated boxed areas are shown in the upper left

corner for each image.
more strongly with ATPase-deficient hUpf1 mutant proteins

than with wild-type hUpf1 in co-IP assays. In striking correlation

with the immunofluorescence assays above, the co-IP assays

in Figure 6A (lanes 1–8), in which cell extracts were not treated

with RNase, show strong enrichment of endogenous Smg5

and Smg7 and exogenous Smg6 in hUpf1 ATPase mutant

protein complexes, compared with wild-type hUpf1 complexes

(compare lanes 3 and 4 with lane 2) (see also Figure S4). Other

NMD factors, hUpf2, hUpf3b, and eIF4A3 show modestly

enhanced accumulation with hUpf1 ATPase mutant complexes

(Figure 6A), which correlates well with their moderate accu-

mulation in PBs under the same conditions (Figure 5A) (our

anti-hSmg6 and anti-hSmg1 antibodies failed to detect the

endogenous proteins on western blots). These observations

are consistent with previous observations of enhanced associa-

tion of ATP binding-deficient hUpf1 with Smg7, hUpf3a, and

hUpf2 (Kashima et al., 2006). b-actin served as a negative control

and did not copurify with wild-type or mutant hUpf1 proteins

(Figure 6A, bottom panel), and none of the endogenous NMD
944 Cell 143, 938–950, December 10, 2010 ª2010 Elsevier Inc.
factors nonspecifically copurified with the IP resin (lane 1).

When the same assays were repeated in the presence of RNase,

Smg5 and Smg7 were the only NMD factors that remained en-

riched in the mutant hUpf1 complexes, suggesting the accumu-

lation of an RNA-independent interaction between these factors

when hUpf1 fails to hydrolyze ATP (Figure 6A, lanes 9–16). In

addition to NMD factors, both Xrn1 and PABPC1 showed

enhanced association with ATPase-deficient hUpf1 proteins

over wild-type hUpf1, although this wasmore evident in the pres-

ence than in the absence of RNase-treatment (compare lanes 11

and 12 to lane 10 and lanes 3 and 4 to lane 2). Unlike Xrn1 and

NMD factors, PABPC1 was not observed to concentrate in

PBs upon ATPase-deficient hUpf1 expression (unpublished

data), perhaps because of the high cytoplasmic abundance of

PABPC1 overwhelming detection in PBs. Taken together, these

observations are consistent with the idea that the hUpf1 ATPase

stimulates disassembly of the NMD mRNP. However, some

NMD factors show stronger accumulation than others in the

trapped mRNP complexes (Figures 5 and 6).

NMD Factors Are Associated More Strongly with the 30

NMDFragment in thePresenceofATPase-DeficientUpf1
Finally, to test whether NMD factors can be directly observed in

complex with the NMD 30 intermediate, individual NMD factors

were immunoprecipitated from cells depleted of Xrn1 and ex-

pressing the b-39 NMD substrate as well as exogenous wild-

type or ATPase-deficient hUpf1 in place of endogenous hUpf1.

As seen in the Northern blots in Figure 6B, all tested NMD

factors, EJC components, and PABPC1 are found in complex

with the 30 NMD intermediate (upper panels, band marked by

arrow). For the tested NMD factors, the association with the 30

intermediate relative to that of full-length b-39 mRNA was

enhanced 2.1–6.2-fold in the presence of ATPase-deficient

over wild-type hUpf1 (quantifications shown below blots). In

contrast, EJC components and PABPC1 showed little or no

difference in their association with the 30 fragment whether or

not hUpf1 can hydrolyze ATP (right panels). These observations

suggest that NMD factors are released from the 30 fragment by

the action of the Upf1 ATPase, whereas release of EJC compo-

nents and PABPC1 appear to require Xrn1 activity.

DISCUSSION

The Upf1 ATPase Allows NMD mRNP Disassembly
Here we have provided several lines of evidence showing that

ATP hydrolysis by Upf1 is critical for the disassembly and

completed degradation of mRNPs undergoing NMD (Figure 7).

First, mutant Upf1 proteins unable to bind or to hydrolyze ATP

cause impaired degradation of NMD substrates and accumula-

tion of a 30 intermediate (Figure 1). Second, the 30 intermediate

(Figure 2A) and multiple NMD factors (Figure 6) accumulate in

complex with Upf1 when it fails to bind or hydrolyze ATP. Third,

the NMD mRNA intermediate (Figure 3) and multiple NMD

factors (Figures 4 and 5) accumulate in PBs in the presence of

ATP binding- or ATPase-deficient mutant Upf1. The accumula-

tion of the 30 intermediate in the presence of ATPase-deficient

Upf1 is likely a result of the inability of Xrn1 to degrade the

RNA in the absence of mRNP disassembly (Figure 7). Consistent



with this, Xrn1 appears to be trapped with the NMD mRNP that

accumulates upon expression of ATPase-deficient Upf1, as

evidenced by the enhanced association of Xrn1 with Upf1

complexes and with PBs under those conditions (Figures 5A

and 6) (Cho et al., 2009; Isken et al., 2008). Moreover, the 30

NMD mRNP generated in the presence of ATPase-deficient

Upf1 is resistant to 50-to-30 exonucleolytic decay in vitro unless

protein is first removed by phenol extraction (Figure 2C). It is

unclear where on the accumulating 30 NMD mRNP that Upf1

and the NMD complex are positioned. Site-specific RNase H

cleavage followed by IP-Northern assays indicated that

ATPase-deficient Upf1 is associated with both 50 and 30 frag-
ments of the b-39 NMD 30 mRNP (unpublished data), perhaps re-

flecting interactions of Upf1 with the EJC and PABPC1 (Fig-

ure 6A) as well as directly with the RNA. On the basis of our

observations, a simple hypothesis for why NMD shuts down in

the presence of ATPase-deficient Upf1 (Figure 1A) (Kashima

et al., 2006; Weng et al., 1996a, 1996b) is that the entrapment

of NMD factors on partially degraded NMD mRNPs renders the

pathway noncatalytic as a result of the failure of NMD factor re-

cycling. Alternatively, the Upf1 ATPase could be rate-limiting for

a more upstream mRNP remodeling step, in which case the

accumulation of full-length NMD substrate and 30 intermediates

in the presence of ATPase-deficient Upf1 reflects a stronger

defect in 50-to-30 decay than in endonucleolytic cleavage. The

effect of the Upf1 ATPase on other mRNA decay activities trig-

gered by NMD, such as decapping and deadenylation, remains

to be tested. In either case, our studies illustrate the importance

of mRNP disassembly in mRNA turnover.

Although most NMD factors accumulate in PBs (Figure 5) and

in association with Upf1 (Figure 6) when Upf1 fails to hydrolyze

ATP, Smg5, Smg6, and Smg7 show stronger accumulation

than do Upf2, Upf3, and EJC proteins. These weaker associated

NMD proteins may either be more loosely associated with the

NMD mRNP intermediate, are found at lower stoichiometry in

the complex, or are found only on a subset of substrates that

require Upf1 ATPase activity for mRNP disassembly. Consistent

with the latter idea, Upf1 has been implicated independently of

Upf2 and Upf3 in the degradation of mRNAs other than NMD

substrates, including histone mRNAs (Kaygun and Marzluff,

2005) and mRNAs associated with Staufen (Kim et al., 2005).

Moreover, evidence has been presented for Upf2-, Upf3-, and

EJC-independent NMD pathways in human cells (Bühler et al.,

2006; Chan et al., 2007; Gehring et al., 2005). The relatively

weak accumulation of EJC components could also be a result

of EJC disassembly by the recently discovered EJC disassembly

activity of the protein PYM (Gehring et al., 2009).

The mechanism by which the Upf1 ATPase leads to NMD

mRNP disassembly remains to be determined. Upf1 could act

as a processive RNPase that uses ATPase activity to traverse

the mRNA while displacing NMD factors and other RNA-binding

proteins from the NMD substrate (Fairman et al., 2004; Jankow-

sky and Bowers, 2006). Alternatively, Upf1 could remain

stationary and hydrolyze ATP to release itself and other associ-

ated factors from the mRNA (Ballut et al., 2005). Yet another

possibility is that ATPhydrolysis byUpf1 acts upstreamof a chain

of mRNP remodeling events that in the end lead to NMD mRNP

disassembly. The observations that Upf1 has highest affinity for
RNA in the absence of ATP and shows ATP-dependent 50-to-30

RNA translocation activity in vitro (Cheng et al., 2007; Weng

et al., 1998) favor the former possibility. However, the observa-

tion that the level of NMD intermediate associated with PABPC1

and EJC components, in contrast to NMD factors, is indepen-

dent of Upf1 ATPase activity (Figure 6B), suggests that these

factors are not released directly by the Upf1 ATPase but rather

at a downstream step, perhaps by the activity of Xrn1 (Figure 7).

Either way, our observations demonstrate a previously unappre-

ciated step in mRNA decay by which mRNP disassembly allows

the completion of exonucleolytic decay and the recycling of

mRNP components. The specific mRNP components respon-

sible for blockage of exonucleolytic decay of the NMD substrate

in the presence of ATPase-deficient Upf1 remain to be deter-

mined. Possible candidates could be the NMD factors them-

selves or, perhaps, unreleased ribosomes or ribosomal subunits.

Is mRNP Disassembly a Regulated Step in NMD?
Taken together, our observations uncover a previously unappre-

ciated ATP-dependent mRNP disassembly step in mRNP

turnover. A key question is what controls the timing of mRNP

disassembly in NMD, because slow disassembly would cause

accumulation of decay intermediates whereas rapid disas-

sembly could potentially release the NMD mRNP even before it

initiates decay. The ATPase activity of human Upf1 is stimulated

by the Upf2-Upf3 complex (Chamieh et al., 2008), and the yeast

Upf1 ATPase is repressed by translation release factors eRF3

and eRF1 (Czaplinski et al., 1998). Thus, a transition in the

NMDmRNP in which Upf1 is released from eRFs and associates

with Upf2-Upf3 may precede activation of the Upf1 ATPase and

subsequent mRNP disassembly. Consistent with this, ATP

binding-deficient Upf1 has been observed to copurify less effi-

ciently than wild-type Upf1 with eRF1 and eRF3 (Czaplinski

et al., 1998; Kashima et al., 2006; Isken et al., 2008), suggesting

that it becomes trapped in a complex lacking eRFs. Moreover,

analyses of NMD complexes stalled by NMD factor mutation or

depletion have indicated a transition in the human NMD mRNP

from a complex between Upf1, Smg1, and eRFs (called SURF)

to a complex of NMD factors lacking eRFs (called DECID)

(Kashima et al., 2006). In addition, the phosphorylation and

dephosphorylation of metazoan Upf1 seems to be coordinated

with the Upf1 ATPase, because ATPase-deficient Upf1 accumu-

lates in a hyperphosphorylated form (Isken et al., 2008; Kashima

et al., 2006; Page et al., 1999), which has been reported to

prevent translation reinitiation on the NMD mRNP (Isken et al.,

2008).

Why would mRNP disassembly be under such tight control

during NMD? This could possibly ensure that NMD factors are

released only after mRNA decay factors have already been

recruited and/or mRNA decay initiated. This also raises the

possibility that ATPase-mediated mRNP disassembly could

serve as a previously proposed proofreading step in the NMD

pathway (Sheth and Parker, 2006), in which rapid hydrolysis of

ATP by Upf1 would allow the release of the NMD machinery

from the mRNA even before initiation of mRNA decay, thus

allowing mRNAs wrongly targeted for NMD to be released prior

to decay (Figure 7). Several lines of evidence suggest that the

composition of the mRNP downstream of the translation
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Figure 6. Multiple NMD Factors Accumulate in

Complex with ATPase-Deficient hUpf1 and the

NMD Substrate 30 Fragment

(A) Western blots for the proteins indicated on the left

from pellet (left panels) or 2% of total extract (right panels)

fractions from anti-myc IP assays from HEK293T cells

transiently expressing proteins shown on the top, or no

exogenous protein (none). Cell extracts in lanes 9–16

were treated with RNase A prior to IP.

(B) Northern blots for b-39 mRNA isolated from pellets (IP;

top panels) or 5% total extract (Total; bottom panels)

fractions from immunoprecipitation reactions for tagged

exogenous, or in the case of hUpf2, endogenous, NMD,

EJC or PABPC1 factors, as shown on the top, in the pres-

ence of coexpressed wild-type (WT) or ATPase-deficient

(DEAA) hUpf1. Endogenous hUpf1 and Xrn1were knocked

down using siRNAs. (-) indicates a reaction using anti-HA

beads in the absence of HA-tagged protein. Anti-FLAG

and anti-Myc beads looked similar (not shown). Below

each panel is shown the calculated enrichment of the 30

fragment relative to full-length b-39 mRNA in IP pellets in

the presence of mutant hUpf1 (DEAA) over that in the

presence of wild-type hUpf1. Representative of three

independent experiments is shown.

See also Figure S4.
termination event controls NMD (Amrani et al., 2006; Mühle-

mann, 2008; Rebbapragada and Lykke-Andersen, 2009). A key

question for future studies is whether the downstream mRNP

controls NMD not just by NMD factor recruitment as has been
Figure 5. Multiple NMD Factors Accumulate in PBs in the Presence of ATPase-Deficien

(A and B) Indirect immunofluorescence assays showing localization in HeLa cells of endogenous NMD

NMD, HuR, in the presence of exogenously expressed hUpf1 DEAA (A) or wild-type hUpf1 (B). Middle

with a nuclear localization signal to mark transfected cells (indicated by white arrowheads). Merged im

in right panels. An enlarged cell section representing the boxed area of each image is shown in the upp

in PBs over the general cytoplasm was quantified in transfected cells and given with standard devia

Cell 143, 938–
generally assumed, but also in part by regulating

the Upf1 ATPase.

Is mRNP Disassembly Critical for mRNA
Turnover Pathways Other Than NMD?
Another important question for future studies is

whether mRNP disassembly is a critical step in

mRNA decay pathways other than NMD. There

have been several observations of mRNA and

mRNP structures impairing exonucleolytic

decay. For example, in S. cerevisiae, both

50-to-30 and 30-to-50 exonucleolytic decay is

impaired by strong RNA secondary structures

(Vreken and Raué, 1992; Decker and Parker,

1993; Muhlrad et al., 1995), and 50-to-30 exonu-
cleolytic decay is inhibited by ribosomes stalled

by cycloheximide or by rare codons (Beelman

and Parker, 1994; Cereghino et al., 1995;

Hu et al., 2009). In Caenorhabditis elegans,

50-to-30 decay intermediates of lin-41mRNA tar-

geted by let-7 microRNA have been observed

with the 50 end mapping immediately upstream
of the let-7-binding sites (Bagga et al., 2005). Even a heterolo-

gous RNA-binding protein, the MS2 coat protein, appears

capable of stalling 50-to-30 exonucleolytic decay in C. elegans

(Liu et al., 2003). In addition to exonucleolytic decay, PABPC
t hUpf1

factors as indicated on the left, or a protein not involved in

panels show human IC-6 serum as a PBmarker and DsRed

ages (NMD factor: green; IC-6/NLS-DsRed: red) are shown

er left corner. The average enrichment of the protein factor

tion in each of the panels on the left.
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Figure 7. mRNP Disassembly during NMD

How mRNP disassembly, dependent on Upf1 ATPase activity, is required for completion of NMD and recycling of NMD factors. See Discussion for details.
and the cap-binding protein, eIF4E, can inhibit initiation of mRNA

decay by deadenylation and decapping, respectively (Schwartz

and Parker, 2000; Tucker et al., 2002). Thus, disassembly of the

mRNP is likely to be a critical step in both the initiation and

the completion of mRNA turnover. Future studies should reveal

the extent to which helicases are involved in these processes.

Several helicase proteins have been identified in association

with mRNA decay enzymes, including Rck/p54 of the decapping

complex and Ski2 of the exosome (Anderson and Parker, 1998;

Coller et al., 2001; Fischer and Weis, 2002; Fenger-Grøn et al.,

2005), as well as in association with bacterial and mitochondrial

exonucleases (Carpousis, 2007). Future studies should reveal

whether such helicases are important for mRNP disassembly

to allow for processivity of their associated mRNA decay

enzymes, and whether pathway-specific mRNP disassembly

factors are common in mRNA turnover pathways in addition to

NMD.
EXPERIMENTAL PROCEDURES

mRNA Decay and RNA Immunoprecipitation Assays

Expression of NMD reporter b-39 or GPx1-46 mRNAs was induced for 6 hr by

incubation in tetracycline-free medium of HeLa Tet-off cells, depleted of

endogenous hUpf1 and/or Xrn1 using siRNAs, and transiently transfected

with plasmids expressing tetracycline-regulated b-39 or GPx1-46 mRNAs,

and constitutively expressed control b-GAP mRNAs (Figure 1 only), as well

as plasmids expressing siRNA-resistant wild-type or mutant (DEAA or

K498A) hUpf1 protein, and in Figure 6B, other tagged NMD factors as indi-

cated (see Extended Experimental Procedures for details). In endogenous

mRNA decay assays (Figure 1), total RNA was prepared from cells using Trizol

reagent (Invitrogen), 0, 2, 4, or 6 hr after addition of 1 mg/ml tetracycline to

repress NMD reporter mRNA transcription. In in vitro decay assays mediated

by Terminator (Figure 2C), cell extracts prepared in hypotonic gentle lysis

buffer, or total RNA prepared from extracts using Trizol, were incubated with

Terminator 50-to-30 exonuclease (Epicenter) for 0, 5, 10, 20 or 40 min followed

by RNA preparation using Trizol. In RNA-immunoprecipitation assays (Figures

2A and 2B and Figure 6B), cell extracts prepared in isotonic lysis buffer were
948 Cell 143, 938–950, December 10, 2010 ª2010 Elsevier Inc.
subjected to immunoprecipitation against the indicated NMD factors, and

RNA from immunoprecipitated samples was isolated using Trizol. NMD

substrate levels were analyzed by Northern blotting.

Indirect Immunofluorescence and Fluorescence

In Situ Hybridization Assays

Human HeLa cells transiently expressing wild-type or mutant myc-tagged

hUpf1 proteins were fixed with formaldehyde and permeabilized with Triton

X-100 (Figures 4 and 5) or ethanol (Figure 3). For indirect immunofluorescence

assays, cells were incubated with antibodies against Myc-tag (Figure 4) or

against endogenous NMD factors, Xrn1 or HuR (Figure 5), as well as with

human IC-6 serum, which recognizes endogenous Hedls (P body marker)

and Lamin, followed by fluorescently labeled secondary antibodies (anti-

mouse or –rabbit, Alexa 488; anti-human, Texas Red). Cells in Figure 5 express

nuclear DsRed to mark transfected cells. For fluorescence in situ hybridization

(FISH) assays, cells were hybridized with a mixture of (Figures 3A and 3C), or

individual (Figure 3B), TexasRed-50-labeled 50-nucleotide NMD substrate

mRNA antisense DNA probes. Cells for FISH assays express GFP-tagged

hDcp1a to mark P bodies (see Extended Experimental Procedures for details).

Coimmunoprecipitation Assays

Lysates from HEK293T cells transiently expressing Myc-tagged wild-type or

mutant (DEAA or K498A) hUpf1 were subjected, in the presence or absence

of RNase A, to anti-Myc immunoprecipitation followed by Western blotting

for endogenous NMD factors, Xrn1, PABPC1, or b-actin, or in the case of

Smg6, coexpressed HA-tagged Smg6.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures

and four figures and can be found with this article online at doi:10.1016/

j.cell.2010.11.043.
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