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1. Introduction

Gromov introduced the notion of asymptotic dimension [Gr1] to study finitely generated groups.
It turns out that groups with finite asymptotic dimension satisfy many famous conjectures like the
Novikov Higher Signature Conjecture [Yu1,Ba,CG,Dr1,DFW,BaRo]. Many of the popular types of groups
have finite asymptotic dimension like hyperbolic groups [Gr1], virtually polycyclic groups (hence
nilpotent groups), and solvable groups with finite rational Hirsch length [BD,DS], Coxeter groups [DJ],
arithmetic subgroups of algebraic groups over Q [Ji], any finitely generated linear group over a field
of positive characteristic [GTY], relatively hyperbolic groups [Os] with parabolic subgroup of finite
asymptotic dimension, mapping class groups [BBF], group acting “nicely” on finite dimensional CAT(0)
cubical complexes [W], etc. Examples of asymptotically infinite dimensional groups include Thompson
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group F , Grigorchuk’s groups, Gromov’s group containing an expander. The infinite dimensionality of
F easily follows from the fact that for every n, F contains Zn as a subgroup. Grigorchuk group does
not contain Z since it is a torsion group. It is infinite dimensional because for every n it coarsely con-
tains Rn+ [Sm]. This argument does not apply to Gromov’s groups containing expanders, since they
can have finite cohomological dimension [Gr2]; the infinite dimensionality of them follows from the
fact that these groups do not coarsely embed into Hilbert spaces while all groups of finite asymptotic
dimension embed [HR].

The dimension theoretic approach still could be useful in the case of asymptotically infinite di-
mensional groups. Thus, in [Dr2] the notion of asymptotic dimension growth was introduced. It was
shown there that the groups with polynomial asymptotic dimension growth have property A. In par-
ticular, the Novikov conjecture holds true for them. Examples of infinite dimensional groups with
polynomial asymptotic dimension growth were constructed in [Dr2].

Property A was introduced by Guoliang Yu [Yu2] and it is a deep generalization of amenability.
Thus, any question about amenability of a given group has a relative: Does the group satisfy prop-
erty A? In particular, if one tries to show that Thompson group F is amenable, first question to answer
would be if F has property A. Property A implies a coarse embeddability of a group into the Hilbert
space. In view of D. Farley’s result [Fa], the R. Thompson group F is coarsely embeddable into the
Hilbert space. The compression number of such embeddings was computed in [AGS], and unfortu-
nately the answer lies exactly on the border (= 1/2) where it does not allow to derive property A
[GK]. Note that low compression number of a group does not imply high dimension growth. For ex-
ample, groups constructed in [ADS] have finite asymptotic dimension and compression number 0.

Thus the question about dimension growth of the R. Thompson group is very relevant to the
famous amenability problem of F .

Definition 1.1. Let λ be a positive number, X be a metric space. We say that λ-dim X � n if there is a
uniformly bounded cover U of X which can be decomposed U = U 0 ∪ · · · ∪ U n into n + 1 λ-disjoint
families.

Thus, U i = {U i
α}α∈A and dist(U i

α, U i
β) � λ for α �= β , and diam(U i

α) � C for some constant C and
all α ∈ A and all i.

Often we will refer to the above decomposed cover as to an (n + 1)-colored cover with colors
0,1, . . . ,n. So we assume that the set U i

α is painted by color i.
Two functions f , g : R+ → R+ have the same growth if there are positive constants a, t0 such

that f (at) � g(t) and g(at) � f (t) for t > t0. Clearly, this is an equivalence relation on the set of all
monotone functions. The equivalence class of a function f is called the growth of that function.

Definition 1.2. The growth of the function dX (λ) = λ-dim X is called the dimension growth of X .

Note that the definition of dimension function in [Dr2] is similar but different: the asymptotic
dimension growth adX (λ) from [Dr2] is minimal dimension of the nerve of a uniformly bounded cover
of X with the Lebesgue number � λ. By taking a λ/2-enlargement of a colored cover with λ-disjoint
colors one can construct a cover of the same multiplicity with the Lebesgue number � λ/2. This yields
the inequality adX (λ/2) � dX (λ). Therefore, the growth of adX does not exceed the growth of dX . In
particular, a polynomial growth of dX implies the polynomial growth of adX and in view of [Dr2] the
property A. We did not investigate here when the opposite inequality is true. Certainly it is true when
adX is a constant. In that case both functions give alternative definitions of the asymptotic dimension.
Thus, the functions dX and adX generalize two definitions of asymptotic dimension to metric spaces
with infinite asymptotic dimension.

Another dimension function was defined in [CFY]: the asymptotic dimension growth f (λ) of a
metric space X is the infimum over all n for which there is a uniform bounded cover U such that,
for every x ∈ X , the ball Br(x) intersects at most n + 1 members of U . It is easy to see that f (λ/2) �
adX (λ) � f (2λ) and hence f and adX have the same growth.

Both the dimension growth and asymptotic dimension growth (dX and adX ) are quasi-isometry
invariants and therefore they are invariants of finitely generated groups.
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In this paper we answer the question about the dimension growth dF of the R. Thompson group F .
The dimension growth of F turns out to be exponential, the worst theoretically possible for a finitely
generated group. We were not able to find any amenable subgroup of F with exponential dimension
growth, although F contains pretty large (elementary) amenable groups. Moreover, our methods do
not give any example of a finitely generated amenable group with exponential dimension growth. The
largest dimension growth of an amenable group we are able to prove is e

√
λ . Thus there is a possibility

that the dimension growth separates F from the class of amenable groups (see Question 6.7 below).
We realize that this possibility is very remote because so many previous attempts to prove non-
amenability of F failed, but still it is a possibility. The difference between F and amenable groups that
we employ is the following: F contains copies of Z2k

that are (λ, ck)-quasi-isometrically embedded
(for fixed λ, c, and every k � 1), while we could not find amenable groups with this property.

Remark 1.3. Note that in [GTY], another generalization of the finite asymptotic dimension property
was introduced, the so-called finite decomposition complexity. It turned out that many groups have fi-
nite decomposition complexity and these groups satisfy strong rigidity properties including the stable
Borel conjecture. It would be interesting to “crossbreed” the finite decomposition complexity with,
say, polynomial or subexponential dimension growth.

2. Preliminaries

We recall that the chromatic number of a graph is the minimal number of colors (if exists) such
that the vertices of the graph can be colored in a way that adjacent vertices have different colors.

Proposition 2.1. Let K be a possibly infinite graph of valency � c. Then its chromatic number � c + 1.

Proof. Take a maximal c +1-colorable complete subgraph K ′ of K . Any vertex v of K that is not in K ′
has at most c-colored neighbors and hence it can be colored and added to K ′ . That would contradict
with the maximality of K ′ . �

A version of the next proposition for the function ad is proved in [Dr2].

Proposition 2.2. The dimension growth of a finitely generated group G does not exceed its volume growth.

Proof. Let f be the volume growth function. We consider a graph with vertices elements of G where
every two vertices at distance < λ are joined by an edge (this is of course the 1-skeleton of the Rips
complex of G). Then the valency of this graph is < f (λ). By Proposition 2.1 the graph has chromatic
number � f (λ). Thus, a coloring of the graph in f (λ) colors defines a coloring of the cover of G by
(closed) 0-balls with λ-disjoint colors. �
Corollary 2.3. The dimension growth of any finitely generated group is at most exponential.

We call a map between metric spaces f : X → Y uniformly cobounded if for every r there is an
upper bound on diam f −1(Br(y)) uniform on y (here Br(y) is the closed ball of radius r and center y).
We note that any group embedding of a finitely generated group into a finitely generated group is
uniformly cobounded.

Proposition 2.4. Let φ : X → Y be a c-Lipschitz uniformly cobounded map between metric spaces. Then
λ-dim Y � λ

c -dim X for all λ.

Proof. Let λ-dim Y = n and let U = U 0 ∪ · · · ∪ U n be a uniformly bounded cover of Y by λ-disjoint
families U i . Then f −1(U ) = f −1(U 0) ∪ · · · ∪ f −1(U n), f −1(U i) = { f −1(U ) | U ∈ U i}, is a uniformly
bounded cover of X . Since f is c-Lipschitz, each family f −1(U i) is λ/c-disjoint. Thus, λ

c -dim X � n. �
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For a metric d on a discrete space X and r > 0 we denote by d + r a new metric d̄ defined as
d̄(x, y) = d(x, y) + r provided x �= y and d̄(x, x) = 0. We call it the metric d shifted by a constant r.

The following is obvious.

Proposition 2.5. For r such that 0 < r < λ,

λ-dim(X,d + r) = (λ − r)-dim(X,d).

Proposition 2.6. Let φ : X → Y be a (c, r)-quasi-isometric embedding: dY (φ(x),φ(x′)) � cdX (x, x′) + r for
all x, x′ ∈ X. Then

λ-dim Y � λ − r

c
-dim X .

Proof. Note that φ : (X,dX + r
c ) → (Y ,dY ) is a uniformly cobounded c

r -Lipschitz map. Then we apply
Proposition 2.4 and Proposition 2.5 to obtain the required inequality

λ-dim Y � λ

c
-dim

(
X,dX + r

c

)
� λ − r

c
-dim X . �

3. Dimension growth of direct sums of ZZZ

Example 3.1. Using the checker coloring of vertices of Zn (the color of the point (x1, . . . , xn) of Zn is
the sum

∑
xi modulo 2) one gets

2-dim
(
Zn, �1

) = 1.

Less obvious is the following

Exercise 3.2.

3-dim
(
Z3, �1

) = 3.

Proposition 3.3. Rn does not admit a uniformly bounded open cover of multiplicity � n.

Proof. Such a cover would define a uniformly cobounded map f : Rn → N onto an at most (n − 1)-
dimensional polyhedron (the nerve of the cover). For every vertex v ∈ N we fix a point g(v) ∈ f −1(v)

and extend it linearly to a map g : N → Rn . Clearly, g ◦ f is on a finite distance to idRn and hence
properly homotopic. Therefore

(g ◦ f )∗ = id : Hn
c

(
Rn) → Hn

c

(
Rn)

on the n-cohomology with compact supports. Since (g ◦ f )∗ = f ∗ ◦ g∗ and f ∗ is zero homomorphism
by dimensional reason, we have a contradiction. �

Two points x, y ∈ X in a metric space X are called r-connected if there is a chain x0, . . . , xn of
points in X such that x = x0, y = xn , and d(xi, xi+1) � r. This chain of points is called an r-path. Note
that the r-connectivity is an equivalence relation. Thus, every metric space X can be decomposed into
equivalence classes called r-components of X . A metric space X is called connected on scale r if there is
only one r-component. Otherwise, X is called r-disconnected. Note that a path connected metric space
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is connected on all scales. Despite the obvious conflict with notations in algebraic topology, we will
call spaces connected on the scale r, r-connected.

We use the notation Vert(In) for the set of vertices of the nth cube In . We always take �1-metric
on In .

Definition 3.4. For every λ � 1, n ∈ N, let

cλ(n) = max
{
m

∣∣ ∀ f : Vert
(

In) → {1, . . . ,m}, ∃i: f −1(i) is (λ − 1)-connected
}
.

Proposition 3.5.

cn(n) = 2n−1 − 1.

Proof. First we note that any pair of points in Vert(In) at distance > n − 1 is the endpoint set of a
long diagonal. Therefore, every (n − 1)-disconnected subset of Vert(In) consists of the endpoints of a
long diagonal. Since there are 2n−1 long diagonals in In , 2n−1 − 1 colors are not enough. Clearly, 2n−1

colors is enough to have the set of vertices of each color (n − 1)-disconnected (paint the endpoints of
each long diagonal in a separate color). �

The following statement is obvious.

Proposition 3.6. For every λ and n

cλ(n + 1) � cλ(n).

Lemma 3.7. λ-dim(Zn, �1) = n for any n < 2λ−1 .

Proof. Assume that λ-dim Zn < n. Then there is a uniformly bounded λ-disjoint coloring f : Zn →
{1, . . . ,n}. The colors define families of λ-disjoint clusters of given color: U 1, . . . , U n , U i = {U i

α}, and
f −1(i) = ⋃

α U i
α . We regard Zn as the 0-skeleton of the standard cube lattice in Rn . For every unit

cube C = Ik with vertices in Zn and every vertex v ∈ In we define an open neighborhood W (v, C) of
v in C such that

1. W (v, C) ∩ F = W (v, F ) for every face F ⊂ C ;
2. If v, u ∈ C have the same color and are in different (λ − 1)-components of that color, then

W (u, C) ∩ W (v, C) = ∅;
3.

⋃
v∈C W (v, C) = C .

Then for every i and α we define

Ũ i
α =

⋃
v∈U i

α,C

W (v, C).

Property 1 implies that each Ũ i
α is open (since it allows us to consider only the top dimensional

cubes C in the union of W (v, C)). Property 2 implies that the family {Ũ i
α}α is disjoint for each i.

Property 3 implies that {Ũ i
α}i,α is a cover of Rn . It is uniformly bounded, since it is an n-enlargement

of a uniformly bounded family {U i
α}i,α . Clearly, the multiplicity of this cover is at most n. This would

give a contradiction with Proposition 3.3.
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We construct W (v, C) by induction on dim C . If dim C = 0, then we set W (v, C) = v . Assume that
the sets W (v, C) are constructed for k-dimensional cubes and let dim C = k + 1. Let v be a vertex
in C and b be its barycenter. Denote by

Av = Cone

(
b,

⋃
v∈F⊂C

W (v, F )

)

the cone with the vertex b and the base the union of W (v, F ) over all proper faces of C that
contain v . We define W (v, C) = Av \ {b} if the set of vertices of C with the same color as v is
(λ − 1)-disconnected in Zn . Define W (v, C) = Av ∪ Bε(b) otherwise. Here Bε(b) is an open ε-ball
centered at b and ε is small. Then 1 and 2 are satisfied by definition. By the construction C \ {b} is
covered by the sets W (v, C). To prove 3 it suffices to show that there is color i such that the vertices
of C colored by i are (λ − 1)-connected. Then b will be covered by Bε(b) ⊂ W (v, C) for a vertex v of
that color. Clearly this is the case when k + 1 � λ − 1. If k + 1 = λ, then by Proposition 3.5 and the
hypothesis, cλ(λ) = 2λ−1 − 1 � n. Therefore, there is such a color. For k + 1 > λ such a color exists
since the function cλ(n) is monotone in n (by Proposition 3.6). �

Lemma 3.7 implies that the dimension growth of the infinite sum of Z with the �1-metric is at
least exponential. Indeed, for n = 2λ−2 < 2λ−1 we obtain

λ-dim

( ∞⊕
Z

)
� λ-dim

( n⊕
Z

)
� 2λ/4.

Answering our question Dmitri Panov and Justin Moore [Pa] gave two proofs that in fact

3-dim

( ∞⊕
Z

)
= ∞.

Here we include a proof by Justin Moore.

Theorem 3.8. 3-dim(
⊕∞

Z) = ∞.

Proof. Every finite subset M of N corresponds to a vector v(M) from Z∞ with coordinates 0, 1
in the natural way (v(M) is the indicator function of M). Choose any k � 1. Let Pk(N) denote the
set of all k-element subsets of N. Every finite coloring of Z∞ induces a finite coloring of Pk(N). By
the classic result of Ramsey [GRS] there exists a subset M ⊆ N of size 2k such that all k-element
subsets of M have the same color. Therefore we can find subsets T1, T2, . . . , Tk of size k from M
such that the symmetric distance between Ti and Ti+1 is 2, i = 1, . . . ,k − 1, and T1, Tk are disjoint.
Then the vectors v(T1), . . . , v(Tk) from Z∞ form a monochromatic 2-path of diameter � 2k. Thus for
every finite coloring of Z∞ and every k there exists a monochromatic 2-path of diameter � k, hence
2-connected monochromatic clusters must have arbitrary large diameters. This immediately implies
the statement of the theorem. �

The following questions seem to be interesting and non-trivial.

Question 3.9. For every k � 1 let f (k) be the 3-dim(Zk). What is the rate of growth of f ? Is this
function bounded? Is f (k) = k + 1 for every k � 1?

Note that this question is similar in spirit to the famous game of Hex [Ga]. Recall that the
n-dimensional Hex board of size k consists of all vertices z = (x1, . . . , xn) ∈ Zn such that 1 � zi � k,
i = 1, . . . ,n, that is all vertices of an n-dimensional cube In

k of size k. A pair of vertices (z1, . . . , zn),
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(z′
i, . . . , z′

n) is called adjacent if maxi(|zi − z′
i |, 1 � i � n) = 1 and all differences zi − z′

i are of the same
sign. For every i = 1, . . . ,n let H−

i = {(z1, . . . , zn) | zi = 1}, H+
i = {(z1, . . . , zn) | zi = k}. The following

theorem can be found, for example, in [Ga].

Theorem 3.10. For every k,n and every coloring of In
k in n colors there exists a monochromatic path of color i

(for some i = 1, . . . ,n) connecting H−
i and H+

i .

In order to answer Question 3.9 one needs to consider the following modified game Hex1 with the
same board but calling two vertices adjacent if the l1-distance between them is 1 (in the standard
Hex game the distance is l∞). It is easy to see that the function f (k) from Question 3.9 would be
equal to k + 1 if we had a statement similar to Theorem 3.10 for the game Hex1.

4. Wreath products

We use notation for the wreath product A � B which is for us the semidirect product

⊕
b∈B

A � B.

We want to warn the reader that sometimes in the literature the notation B � A is used for the same
group.

If S is a generating set for A and T is a generating set for B , then S ⊂ Ae ⊂ ⊕
b∈B A together with

T ⊂ B generate A � B . Note that the summand Ab indexed by b ∈ B in
⊕

b∈B A ⊂ A � B has a form
b Ab−1 and therefore the metric on d (with respect to these generators) is the metric dS on A shifted
by 2‖b‖.

The following lemma is obvious.

Lemma 4.1. The identity map

id :
⊕
i∈ J

(
Z, | · |) →

⊕
i∈ J

(
Z, | · | + r

)

is (r + 1)-Lipschitz for �1-metrics on the direct sums for any index set J .

In case of infinite sum of Z with shifted metrics we have the following estimate from above on
the dimension growth.

Proposition 4.2.

λ-dim
⊕
k∈N

(
Z, | · | + k

)
� eaλ

for some a > 0.

Proof. This sum is quasi-isometrically embedded into the finitely generated group Z � Z. Then Propo-
sition 2.2 implies the estimate. �

We note that this estimate is not optimal. A sharper estimate will be obtained in Corollary 7.8.

Theorem 4.3. Let G be a group of exponential growth. Then the group Z � G has dimension growth � e
√

λ .
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Proof. It suffices to show that the subgroup
⊕

G Z ⊂ Z � G with the induced metric has dimension

growth � e
√

λ . By the above remark this subgroup as a metric space is the sum
⊕

G(Z, | · | + 2‖g‖)
with �1-metric of copies of Z indexed by g ∈ G with the standard metric | · | shifted by 2‖g‖. In view
of Proposition 2.4, Lemma 4.1 and Lemma 3.7 we obtain

λ-dim

(⊕
g∈G

(
Z, | · | + 2‖g‖)

)
� λ-dim

(⊕
g∈Br

(
Z, | · | + 2‖g‖)

)

� λ-dim

(⊕
g∈Br

(
Z, | · | + 2r

))
� λ

2r + 1
-dim

(⊕
g∈Br

Z

)
� |Br |

whenever |Br | < 2
λ

2r+1 −1 where Br is an r-ball in G and |Br | denotes the cardinality of the ball. There
are α > 0 and β > 0 such that 2αr � |Br | � 2βr . Then for r with βr < λ

2r+1 − 1 the inequality holds.

Therefore, it holds for r = a
√

λ for a = √
3. Thus, λ-dim(Z � G) � 2

√
3λ . �

Corollary 4.4. The dimension growth of the solvable of class 3 group Z � (Z � Z) is at least e
√

λ .

Proof. Indeed, the volume growth function of Z � Z is exponential. �
5. Low bound for dimension growth of Thompson group

In this section, it will be convenient to view the R. Thompson group as a diagram group over the
semigroup presentation 〈x | x2 = x〉.

Let us recall the definition of a diagram group (see [GS1,GS3] for more formal definitions). A (semi-
group) diagram is a planar directed labeled graph tesselated into cells, defined up to an isotopy of
the plane. Each diagram � has the top path top(�), the bottom path bot(�), the initial and terminal
vertices ι(�) and τ (�). These are common vertices of top(�) and bot(�). The whole diagram is
situated between the top and the bottom paths, and every edge of � belongs to a (directed) path in
� between ι(�) and τ (�). More formally, let X be an alphabet. For every x ∈ X we define the trivial
diagram ε(x) which is just an edge labeled by x. The top and bottom paths of ε(x) are equal to ε(x),
ι(ε(x)) and τ (ε(x)) are the initial and terminal vertices of the edge. If u and v are words in X , a cell
(u → v) is a planar graph consisting of two directed labeled paths, the top path labeled by u and
the bottom path labeled by v , connecting the same points ι(u → v) and τ (u → v). There are three
operations that can be applied to diagrams in order to obtain new diagrams.

1. Addition. Given two diagrams �1 and �2, one can identify τ (�1) with ι(�2). The resulting
planar graph is again a diagram denoted by �1 + �2, whose top (bottom) path is the concatenation
of the top (bottom) paths of �1 and �2. If u = x1x2 . . . xn is a word in X , then we denote ε(x1) +
ε(x2) + · · · + ε(xn) (i.e. a simple path labeled by u) by ε(u) and call this diagram also trivial.

2. Multiplication. If the label of the bottom path of �2 coincides with the label of the top path
of �1, then we can multiply �1 and �2, identifying bot(�1) with top(�2). The new diagram is
denoted by �1 ◦�2. The vertices ι(�1 ◦�2) and τ (�1 ◦�2) coincide with the corresponding vertices
of �1,�2, top(�1 ◦ �2) = top(�1),bot(�1 ◦ �2) = bot(�2).
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3. Inversion. Given a diagram �, we can flip it about a horizontal line obtaining a new dia-
gram �−1 whose top (bottom) path coincides with the bottom (top) path of �.

Definition 5.1. A diagram over a collection of cells P is any planar graph obtained from the trivial
diagrams and cells of P by the operations of addition, multiplication and inversion. If the top path of
a diagram � is labeled by a word u and the bottom path is labeled by a word v , then we call � a
(u, v)-diagram over P .

Two cells in a diagram form a dipole if the bottom part of the first cell coincides with the top
part of the second cell, and the cells are inverses of each other. In this case, we can obtain a new
diagram removing the two cells and replacing them by the top path of the first cell. This operation
is called elimination of dipoles. The new diagram is called equivalent to the initial one. A diagram is
called reduced if it does not contain dipoles. It is proved in [GS1, Theorem 3.17] that every diagram is
equivalent to a unique reduced diagram.

If the top and the bottom paths of a diagram are labeled by the same word u, we call it a spherical
(u, u)-diagram. Now let P = {c1, c2, . . .} be a collection of cells. The diagram group D(P , u) corre-
sponding to the collection of cells P and a word u consists of all reduced spherical (u, u)-diagrams
obtained from the cells of P and trivial diagrams by using the three operations mentioned above. The
product �1�2 of two diagrams �1 and �2 is the reduced diagram obtained by removing all dipoles
from �1 ◦ �2. The fact that D(P , u) is a group is proved in [GS1].

Example 5.2. If X consists of one letter x and P consists of one cell x → x2, then the group D(P , x)
is the R. Thompson group F [GS1].

Here are the diagrams representing the two standard generators x0, x1 of the R. Thompson
group F . All edges are labeled by x and oriented from left to right, so we omit the labels and orien-
tation of edges.

It is easy to represent, say, x0 as a product of sums of cells and trivial diagrams:

x0 = (
x → x2) ◦ (

ε(x) + (
x → x2)) ◦ ((

x → x2)−1 + ε(x)
) ◦ ((

x → x2)−1)
.

There is a natural diagram metric on every diagram group D(P , u): dist(�,�′) is the number of
cells in the diagram �−1�′ .

Lemma 5.3. (See [Bu,AGS].) For the R. Thompson group F , the diagram metric is (6,2)-quasi-isometric to the
word metric corresponding to the standard generating set {x0, x1}.

Proposition 5.4. There are constants C1, C2 > 0 such that for every n there is a group embedding of ξn :
Z2n → F into the Thompson group F such that ξn is a (C1, C2n)-quasi-isometric embedding:

dF
(
ξn(x), ξn

(
x′)) � C1

∥∥x − x′∥∥
1 + C2n

where ‖ · ‖1 is the standard l1-metric on Z2n
.
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Proof. We are going to use the following construction from [AGS]. For any n � 0, let us define 2n

elements of F that commute pairwise. All these elements will be reduced (x, x)-diagrams over P =
〈x | x2 = x〉. For n = 0, let � be the diagram that corresponds to the generator x0 (see above). It has
4 cells.

Suppose that n � 1 and we have already constructed diagrams �i (1 � i � 2n−1) that commute
pairwise. For every i we consider two (x2, x2)-diagrams: ε(x)+�i and �i + ε(x). We get 2n spherical
diagrams with base x2 that obviously commute pairwise. It remains to conjugate them to obtain 2n

spherical diagrams with base x having the same property. Namely, we take π ◦ (ε(x) + �i) ◦ π−1 and
π ◦ (�i + ε(x)) ◦ π−1.

Let us denote the elements of F obtained in this way by gi (1 � i � 2n). It is easily proved, say,
by induction on n, that there exists an (x2n

, x)-diagram un with n cells and (x2n
, x2n

)-diagrams vn,i =
ε(xi) + � + ε(x2n−i−1), i = 0, . . . ,2n − 1, such that each gi is equal to u−1

n vn,iun . Hence each gi has
2n + 4 cells and its word length in F is bounded between n/C and Cn where C is a constant. Hence
the subgroup An generated by g1, . . . , g2n is isomorphic to Z 2n

.

Now if we consider the diagram gk1
1 . . . g

k2n

2n for any integers k1, . . . ,k2n , the number of cells in that
diagram is between 4(|k1| + · · · + |k2n |) and 2n + 4(|k1| + · · · + |k2n |). Now it follows from Lemma 5.3
that the restriction of the word metric of F on the subgroup An is between 1

C1
| · |−C2n and C1| · |+C2n

where | · | is the standard l1-metric on Z 2n
, C1, C2 are constants > 1. �

Remark 5.5. Note that the constants C1 and C2 in Proposition 5.4 do not exceed 25 and do not depend
on n.

Theorem 5.6. The asymptotic dimension growth of the Thompson group F is exponential.

Proof. Let An = ξn(
⊕2n

Z). In view of Proposition 5.4, Proposition 2.4, Proposition 2.6, and Lemma 3.7
we obtain

λ-dim(F ) � λ-dim(An) �
(

λ − C2n

C1

)
-dim

2n⊕
i=1

Z = 2n

provided 2n < 2(λ−C2n)/C1−1 or equally, n < λ−C1
C2+C1

. Thus,

λ-dim(F ) � 1

2
2

1
C1+C2

λ

for all λ. �
6. The dimension growth of an elementary amenable subgroup of the R. Thompson group F

It is known [Ch] that the R. Thompson group F is not elementary amenable, i.e. it cannot be
constructed from finite and Abelian groups using extensions, passing to subgroups, increasing unions
and homomorphisms. Nevertheless it contains large elementary amenable subgroups: solvable of any
degree [GS2] and non-solvable [Br]. In Section 7, we shall show that every solvable subgroup of F
has polynomial dimension growth. Here we prove that the elementary amenable subgroup of F con-
structed in [Br] has dimension growth � e

√
λ .

We define Bk to be the kth iterated wreath product of Z. Formally, B0 = Z = 〈b0〉 and if Bk =
〈b0, . . . ,bk〉 is already constructed, then
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Bk+1 = Bk � Z =
(⊕

i∈Z

Bk

)
� Z

where the “top” Z is generated by bk+1. We will use the first.
By induction we define a canonical subgroup Dk

∼= ⊕
Z ⊂ Bk: D0 = B0 = Z and Dk+1 = ⊕

i∈Z
Dk .

Next, we define by induction a proper metric dk+1 on Dk+1 as �1-metric on the direct sum:

Dk+1 =
⊕
i∈Z

(
Dk,dk + 2|i|).

Thus,

Dk =
⊕
ī∈Zk

(
Z, | · | + 2|i1| + · · · + 2|ik|

)

is the direct sum of infinitely many Z with �1-metric where each summand has the standard metric
modified by a constant. Here we use the notation ī = (i1, . . . , ik). Clearly, the embedding Dk → Dk+1
is isometric. Let D = lim→ Dk be the group direct limit with the corresponding metric d = ⋃

dk and
similarly let B̄ = lim→ Bk . Let B be the HNN extension of B̄ with a free letter b that conjugates bi
with bi+1, i = 0,1,2, . . . . Clearly, B is generated by b0 and b.

Let P ⊂ Rk be a polytope with integral vertices. The Ehrhart polynomial L(P , t) of P is defined as

L(P , t) = ∣∣t P ∩ Zk
∣∣

where t P is dilation of P and | | denotes the cardinality. It is known that L(P , t) is a polynomial of
degree k with positive coefficients [BeRo].

The regular cross-polytope in Rk is the polytope spanned by the vertices {±ei | i = 1, . . . ,k} where
{ei} is the orthonormal basis. The Ehrhart polynomial for the regular cross-polytope Pk ⊂ Rk is known
[BeRo]:

L(Pk, t) =
k∑

i=0

2i x(x − 1) . . . (x − i + 1)

i! .

This formula implies the following

Proposition 6.1. For the regular cross-polytope in Pk,

L(Pk,k) = 3k.

Lemma 6.2. For each k,

λ-dim(Dk,dk) � min

{
2

√
λ

4 , L

(
Pk,

√
λ

2

)}
;

and

λ-dim D � 2
√

λ
4 .
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Proof.

λ-dim Dk = λ-dim
⊕
ī∈Zk

(
Z, | · | + 2|i1| + · · · + 2|ik|

)

� λ-dim

( ⊕
‖ī‖1�

√
λ−1/2

(
Z, | · | + 2‖ī‖1

))
� λ-dim

⊕
‖ī‖1�

√
λ−1/2

(
Z, | · | + 2

√
λ − 1

)

�
√

λ

2
-dim

⊕
‖ī‖1�

√
λ−1/2

Z � min
{

2
√

λ
2 −1 − 1,

∣∣{ī ∈ Zk
∣∣ ‖ī‖1 �

√
λ − 1/2

}∣∣}

� min

{
2

√
λ

4 , L

(
Pk,

√
λ

2

)}
.

Here the first inequality is due to the transition to a subgroup, the second is in view of a 1-Lipschitz
map (the identity map)

id :
⊕

‖ī‖1�
√

λ−1/2

(
Z, | · | + 2

√
λ − 1

) →
⊕

‖ī‖1�
√

λ−1/2

(
Z, | · | + 2‖ī‖1

)

and Proposition 2.4, the third inequality is due to a 2
√

λ-Lipschitz map

id :
⊕(

Z, | · |) →
⊕(

Z, | · | + 2
√

λ − 1
)

and Proposition 2.4, the forth inequality is by Lemma 3.7, the fifth is obvious. Thus, the first part is
proven.

To derive the second part we take k =
√

λ
2 in the above inequalities and apply Proposition 6.1. We

obtain

λ-dim D � λ-dim Dk � min
{

2
√

λ
4 ,3

√
λ
2
} = 2

√
λ

4 . �
Corollary 6.3. The dimension growth of (B̄,d) is at least e

√
λ .

Proposition 6.4. (See M. Brin [Br].) There is an embedding φ : B → F such that for every n the inequality

dF
(
φ(x),φ(y)

)
� dn(x, y) + 2n

holds for all x, y ∈ Dn.

Proof. We view F as the group of piecewise-linear increasing homeomorphisms of [0,1] with dyadic
break points and slopes powers of 2. A support of a map from F is the subset of [0,1] where F is
not the identity. Let f be a function from F with support (1/2,1) that takes (1/2,7/8) to (1/2,5/8)

and let g be any function from F with support (1/4,7/8) that takes (1/2,5/8) to (5/8,6/8). Then
the map b0 �→ f ,b �→ g induces an isomorphism from B to the subgroup 〈g, f 〉 from F [Br]. �

Since the embedding of B̄ into F is not Lipschitz, the dimension growth of B̄ in F could be lower.
In the following theorem we show that it has the same low bound.
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Theorem 6.5. The dimension growth of the group B taken with the subgroup metric in the Thompson group F

is at least e
√

λ .

Proof. We establish this low bound for the group D with the metric induced from F . By Proposi-
tion 6.4 and Lemma 6.2,

dB(λ) � (λ − 2n)-dim Dn � min

{
2

√
λ−2n

4 , L

(
Pn,

√
λ − 2n

2

)}

for all n. Take λ = 2n2 + 2n. Then n =
√

λ−2n
2 and by Proposition 6.1

dB(λ) � min
{

2
n

2
√

2 ,3n} � 2
n

2
√

2 � CeC
√

λ

for some constant C . �
Since Brin’s embedding is quasi-isometric, we obtain the following

Corollary 6.6. The dimension growth of the group B is at least e
√

λ .

Question 6.7. Is the dimension growth of every amenable finitely presented group subexponential?

A positive answer to this question would imply, in view of Theorem 5.6, that F is not amenable.

7. Estimates from above

We recall that a family U of sets of X is m-colored if U = U 1 ∪ · · · ∪ Um and each U i is a collection
of disjoint sets. Each of the families U i is called a color (i-color). A colored family U is called a k-cover
if every k colors in it form a cover of X . Also, we recall that in a metric space X we call an i-color
λ-disjoint if dist(U , U ′) � λ for all different sets U , U ′ ∈ U i .

Definition 7.1. We say that a metric space X satisfies the Kolmogorov–Ostrand condition (KO-condition)
for a function n(λ) if for every λ and m � n(λ) there is a uniformly bounded m-colored n(λ)-cover
with λ-disjoint colors.

The origin of this condition can be traced to the work of Kolmogorov and Ostrand on Hilbert’s
13th problem [K,Ost].

Clearly, if there is an m′-colored such cover, then there is an m-colored such a cover with m < m′
and m � n(λ).

Example 7.2. R satisfies KO-condition for n(λ) = 2.

Proof. We define

U 0 = {(
2mλi,2mλ(i + 1) − λ

) ∣∣ i ∈ Z
}

and

U i = U 0 + 2λi = {
U + 2λi

∣∣ U ∈ U 0}

for i = 1, . . . ,m − 1. Clearly for any i �= j, U i ∪ U j is a cover. �
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Exercise 7.3. Every metric space X with finite asymptotic dimension satisfies the KO-condition with
n(λ) = asdim X + 1. Any metric space X satisfying the KO-condition with n(λ) satisfies λ-dim X �
n(λ) − 1 for every λ.

The following statement is obvious.

Proposition 7.4. Suppose that a discrete metric space (X,ρ) satisfies the KO-condition with nX (λ). Then for
all r > 0 the “shifted” space (X,ρ + r) satisfies the KO-condition with n(λ) = nX (λ − r).

Proposition 7.5. Suppose that metric spaces X and Y satisfy the KO-condition with nX (λ) and nY (λ) respec-
tively. Then X × Y supplied with �1-metric satisfies the KO-condition with n(λ) = nX (λ) + nY (λ) − 1.

Proof. Fix λ and m. We take m-colored nX (λ)-cover U of X and m-colored nY (λ)-cover V of Y and
form m families

W i = U i × V i = {
U × V

∣∣ U ∈ U i, V ∈ V i, i = 1, . . . ,m
}
.

Clearly, every color W i is λ-disjoint. Let us show that it is an n-cover of X × Y with n = n(λ). Let
W i1 , . . . , W in be a collection of n families. It suffices to show that it covers X × Y . Let (x, y) ∈ X × Y .
Since U is an nX -cover, so is U i1 , . . . , U in . Therefore, there are at least n −nX (λ)+ 1 = nY (λ) elements
from U i1 , . . . , U in that cover x. Otherwise, if x is covered only by � n − nX (λ) elements, the nX (λ)

elements would not cover x and hence would not form a cover of X . Denote them by U j1 , . . . , U js ,
s = nY (λ), jk ∈ {i1, . . . , in}. Note that V j1 , . . . , V js is a cover of V . Thus, y is covered by a family V jk

for some k � s. Then (x, y) is covered by the family W jk . �
Proposition 7.6. Let A and B be groups such that A � B is finitely generated. Suppose that A and B taken with
the restricted metric satisfy the KO-condition with nA and nB . Then the semidirect product A � B satisfies the
KO-condition with n(λ) = nA(λ) + nB(λ) − 1.

Proof. The proof is the same as in Proposition 7.5 with the use of the product structure on A � B
with fiber-wise isometric projection A � B → A and the direct projection A � B → B . �
Proposition 7.7. Suppose that B satisfies the KO-condition with a monotone function nB(λ). Then B �Z satisfies
the KO-condition with n(λ) = ∫ λ+2

0 nB(t)dt + 1.

Proof. We show that the group

⊕
i∈Z

(
B,ρ + 2|i|)

satisfies the KO-condition with n(λ) = ∫ λ+2
0 nB(t)dt and apply Proposition 7.6. For every λ our metric

space is the product with the �1-metric of the partial direct sum and a λ-discrete space Z :

⊕
i∈Z

(
B,ρ + 2|i|) =

( ⊕
|i|�λ/2

(
B,ρ + 2|i|)

)
× Z .

Thus, it suffices to show, by Exercise 7.3, that the space

⊕
|i|�λ/2

(
B,ρ + 2|i|)
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satisfies the KO-condition with n(λ). By Proposition 7.5 and Proposition 7.4,
⊕

|i|�λ/2(B,ρ + 2|i|) sat-
isfies the KO-condition with

∑
|i|�λ/2

nB
(
λ − 2|i|) = 2

∑
0�i�λ/2

nB(λ − 2i)

= 2
(
nB(1) + nB(3) + nB(5) + nB(7) + · · · + nB(λ)

)
�

λ+2∫
0

nB(t)d(t). �

Corollary 7.8. The dimension growth of Bk is at most λk.

Proof. Induction on k. �
Note that it was proven before (Proposition 6.2) that the dimension growth of Bk is at least λk/2.

Question 7.9. What is the actual dimension growth of Bk? In particular, what is the exact dimension
growth of Z � Z?

Let PL0(I) be the group of orientation-preserving piecewise-linear homeomorphisms of the unit
interval with finitely many breaks in slope under the operation of composition. Obviously, F < PL0(I).

Theorem 7.10. The dimension growth of every solvable finitely generated subgroup of PL0(I) is polynomial.

Proof. Consider the class R of subgroups of PL0(I) constructed in Bleak [Bl]. This is the smallest
class of groups containing Z, and closed under taking direct products A × B if A, B ∈ R, and taking
wreath products A �Z if A ∈ R. By [Bl], every finitely generated solvable group in PL0(I) is a subgroup
of a finitely generated group of R. By Propositions 7.5, 7.7 every finitely generated group of R has
polynomial dimension growth. �
8. Two questions about the dimension growth of expanders

Question 8.1. What is the dimension growth of an expander? Does it depend on the choice of the
expander?

Here an expander is an infinite connected graph obtained by attaching Xn to R+ at n ∈ N for all n
where Xn is a sequence of (finite) expanding graphs. Since an expander is not coarsely embeddable
in a Hilbert space, the dimension growth of any expander is greater than any polynomial.

We suspect that the dimension growth of at least some expanders are exponential. The following
question may clarify the situation.

Question 8.2. Is it true that a metric space (a finitely generated group) with subexponential dimension
growth coarsely embeds in a uniformly convex Banach space?

Note that there are expanders which do not embed coarsely into any uniformly convex Banach
spaces [La] (compression numbers and compression functions of coarse embeddings of groups into
such Banach spaces have been considered in [ADS]).

Remark 8.3. Answering questions posed in this paper Ozawa proved that a metric space with subex-
ponential dimension growth satisfies property A (see [Ozawa]). In particularly, it uniformly embeds
into a Hilbert space. This gives positive answer to Question 8.2 and shows that every expander has
exponential dimension growth (answer to Question 8.1).
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