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Abstract In this paper we consider a dispersive–dissipative nonlinear equation which can be

regarded as a dissipation perturbed modified KdV equation, governing the evolution of long waves

in an elastic rod immersed inside a viscoelastic medium. Using geometric singular perturbation the-

ory, a construction of traveling waves for the equation is shown. This also is illustrated by present-

ing some numerical calculations.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

When attempting to describing the propagation of small-

amplitude long waves in nonlinear dispersive media, it is fre-
quently necessary to take account of dissipative mechanisms
to accurately reflect real situations. In such cases one may con-

sider the following equation
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as model for long wave propagation in nonlinear media with
dispersion, dissipation and backward quadratic diffusion.
Here, a, b, c, s and d are constants. This model equation arises

in many physical systems and describes weakly waves with cer-
tain dissipative effects. The coefficients in (1.1) depend upon
parameters of the system. Similar equations [1–6] for (1.1)

ware studied by using the asymptotic expansion methods and
exact solutions, describing both the evolution of a solitary
om
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wave and kink-shaped waves, were obtained. In this paper
we consider (1.1) as dissipation perturbed modified KdV equa-
tion. We assume that all coefficients of the dissipative terms in
(1.1) are small relative to the other coefficients, i.e.,

b ¼ �b; s ¼ �r, d ¼ �s; �� 1. Then (1.1) may be written as
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With the methods of geometric singular perturbation
theory as attractive methods, developed in [7,8] and used in

[9–12], we provide a geometric construction of the traveling
solitary wave solutions for (1.2).

The paper is organized as follows. In Section 2, we present

preliminaries. In Section 3, we describe how geometric singular
perturbation theory is used to construct a locally invariant
manifold for the traveling wave equation when � > 0. In Sec-

tion 4 we use this manifold to obtain a traveling solitary wave
solution. In Section 5 we present some numerical calculations.
Section 6 contains a brief conclusion.

2. Preliminaries

In traveling wave form, with u(x, t) = u(z), z = x � ct, and
c P 0 without loss of generality, Eq. (1.2), after one integra-

tion and setting the integration constant equal to zero, reads
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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Here, the imposed boundary conditions u, du/dz, d2u/dz2, d3u/
dz3 fi 0 as z fi1 which describe the traveling solitary wave

imply the integration constants are zero. Clearly, for practical
applications, we are interested only in real bounded solution
u(z) of (2.1) which can be written as a system of first order
equations
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Note that if � ¼ 0, then (2.2) reduces to
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c
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;

which is the dynamical system of ODEs for solitary wave solu-
tions of the modified KdV equation.

When � is non-zero, Eq. (2.2) defines a dynamical system of
ODEs whose solutions evolve in the three-dimensional (u, v, w)
phase space. In this phase space, there are critical points at

ðu; v;wÞ ¼ ð0; 0; 0Þ and ðue; 0; 0Þ;

where ue ¼ �
ffiffiffiffiffiffiffiffiffiffi
3c=a

p
and these equilibria are independent of �.

A traveling wave solution of the original equation will exist
if among the solutions of (2.2), there exists a homoclinic (het-
eroclinic) orbit. The plausibility of this can be seen by a preli-

minary calculation of the dimension of the stable and unstable
manifolds of the critical point (0,0,0). The linearized matrix J
of system (2.2) is

Jðu; v; p; qÞ ¼
0 1 0

0 0 1
1
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At the steady state (0,0,0), the eigenvalues k of this matrix
satisfy

�k3 þ r

s
k2 þ �b

s
k� c

s
¼ 0:

For � sufficiently small it is easily seen that this equation has
two real negative roots, and one real positive root. Hence the

dimension of the stable manifold of the steady state (0,0,0) is
two and the dimension of the unstable manifold is one. How-
ever, this does not rigorously establish the existence of a homo-
clinic (heteroclinic) orbit, but it does lend plausibility to the

idea that two manifolds might intersect along a one-dimen-
sional curve in R3. The existence of a homoclinic (heteroclinic)
orbit will now be confirmed by showing the existence of a two-

dimensional invariant manifolds for (2.2) and analyzing the
system reduced to this manifold.

3. Existence of an invariant manifold

We note that when � ¼ 0, system (2.2) does not define a
dynamical system in R3. This problem may be overcome by

the transformation z ¼ �f, under which the system becomes
du
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While the two systems are equivalent for � > 0, the differ-
ent time-scales give rise to different limiting systems. Letting

� ! 0 in (2.2), we obtain
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Thus the flow of system (3.2) is confined to the set

M0 ¼ ðu; v;wÞ 2 R3 : cu� a
3
u3 � cw ¼ 0

n o
ð3:3Þ

and its dynamics are determined by the first two equations
only. On the other hand, setting � ! 0 in (3.1) yields the

system
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Any points in M0 are the equilibria of system (3.4). Gener-
ally, system (2.2) is referred to as the slow system, since the

time-scale z is slow, and (3.1) is referred to as the fast system,
since the time-scale f is fast. M0 is the slow manifold.

If M0 is normally hyperbolic, then the geometric singular

perturbation theory of Fenichel [7] applies and provides us
with a two-dimensional invariant manifold M� for the flow
when � > 0. The idea is then to study the flow of (2.2) re-
stricted to this manifold, and the resulting system will be

two-dimensional. This does not in itself establish the existence
of a traveling wave, we still have to study the system reduced
to M� and show it possesses a homoclinic (heteroclinic) orbit.

From Fenichel [7], M0 is a normally hyperbolic manifold if
the linearization of the fast system (3.1), restricted to M0, has
exactly dim M0 eigenvalues with zero real part. The lineariza-

tion of the fast system, restricted to M0, has the matrix

0 0 0

0 0 0

c� au 0 �c

0
B@
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and the eigenvalues of which are 0,0,�c. Thus, M0 is normally

hyperbolic and the geometric singular perturbation theory im-
plies that there exists a two-dimensional manifold M� for
� > 0. To determine M� explicitly, we have

M� ¼ ðu; v;wÞ 2 R3 : w ¼ hðu; v; �Þ þ 1

c
cu� a

3
u3

� �� �
; ð3:5Þ

where the function h is to be determined and satisfies

hðu; v; 0Þ ¼ 0: ð3:6Þ

By substituting into the slow system (2.2), we see that h

must satisfy
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Since � is small, we attempt solutions of this partial differ-
ential equation in the form of regular perturbation expansion
in �. Since h is zero when � ¼ 0, we set

hðu; v; �Þ ¼ �h1ðu; vÞ þOð�2Þ: ð3:7Þ

Substituting h(u, v, �) into the above equation and setting
the coefficient of � to zero, we obtain

h1ðu; vÞ ¼
1

c2
ððasu� crÞu� ðbcþ scÞÞv: ð3:8Þ

Therefore, the slow system (2.2) restricted to M� is given by
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Figure 1 The dynamics of solitary waves. Sketch of the graph of

the projection of the homoclinic orbit in the three-dimensional

phase space onto the u–v-plane for small �, corresponding to

solitary wave.
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Figure 2 Sketch of the graph of the projection of the homoclinic

orbit in the three-dimensional phase space onto the u–v-plane for

large �. Clearly the homoclinic orbit breaks when � becomes larger.
4. The flow on the manifold M�

Note that when � ¼ 0, this system reduce to the correspond-

ing system for the mKdV equation. We now show, for
� > 0 sufficiently small, that a homoclinic orbit for (3.9) ex-
ists. For this we use the argument of Melnikov function

[13,14]. For � ¼ 0, the homoclinic orbit qh(z) is given by
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where the wedge operator � is defined as f � g = f1 g2 � f2g1.
Eq. (4.1) shows that the melnikov function M(c) has a unique
zero and hence the solvability condition for the existence of a

homoclinic orbit for � sufficiently small. This homoclinic orbit
corresponds to solitary wave solution for (1.2). Therefore, we
arrive at the following theorem.

Theorem 4.1. For e > 0 sufficiently small, Eq. (1.2) admits a

traveling solitary wave solution u(x, t) = u(z), z= x � ct,
c> 0.
5. Numerical results

In this section we illustrate the above analysis by presenting
some numerical calculations. We solve (2.2) as an initial-value

problem. The initial condition is approximated by a point on
the unstable manifold of the steady state (0,0,0) of (2.2).
The results of numerical solution using an adaptive step Run-

ge–Kutta scheme of order fourth are shown in Figs. 1–4. Fig. 1
shows the graph of the projection of a homoclinic orbit corre-
sponding to solitary wave solutions for a = c = 2.0,
b= �1.0, r= s= 1.0, c = 1.0 and � ¼ 0:001 while Fig. 2

shows the graph of the projection of a homoclinic orbit for
large � ¼ 0:1 with the same values as in Fig. 1. Clearly, both
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Figure 3 Sketch of the graph of traveling solitary wave solution,

corresponding to the homoclinic orbit shown in Fig. 1.
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Figure 4 This figure shows the graph of traveling solitary wave

solution corresponding to the homoclinic orbit shown in Fig. 2,

when � becomes larger.
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Figure 5 Sketch of the graph of an oscillatory kink type wave.
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Figs. 1 and 2 show the dynamics of solitary waves. Figs. 3 and
4 show the graph of the corresponding traveling solitary wave

solutions.
Moreover, we note that for b positive, kink (oscillatory

kink) type waves also exist on the two-dimensional manifold

within the three-dimensional phase space. These waves corre-
spond to heteroclinic orbits connecting the critical points
(0,0,0) and (ue, 0,0), see Fig. 5, and no other waves exist.

6. Conclusion

In this paper we have considered a dispersive–dissipative non-

linear model equation which can be regarded as a dissipation
perturbed modified KdV equation. Using dynamical systems
theory, specifically geometric singular perturbation theory as
attractive methods, we have constructed traveling wave
solutions for the equation. For this, we have shown that the
traveling waves exist on a two-dimensional slow manifold

within the resulting higher-dimensional system. We have
proved persistence of the slow manifold under perturbation,
and then we have constructed the wave as homoclinic (or het-
eroclinic) orbit in the transverse intersection of appropriate

stable and unstable manifolds in this slow manifold. Further,
we have presented some numerical calculations by solving an
initial-value problem, showing approximations for such soli-

tary waves as well as oscillatory kink waves.
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