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Mapping eQTLs in the Norfolk Island Genetic Isolate
Identifies Candidate Genes for CVD Risk Traits

Miles C. Benton,1 Rod A. Lea,1 Donia Macartney-Coxson,2 Melanie A. Carless,3 Harald H. Göring,3

Claire Bellis,3 Michelle Hanna,1,4 David Eccles,1 Geoffrey K. Chambers,5 Joanne E. Curran,3

Jacquie L. Harper,6 John Blangero,3 and Lyn R. Griffiths1,4,*

Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and

genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect ped-

igrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of

Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood

lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by

genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure,

and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From

these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.843 10�7) An eQTL-centric analysis of CVD risk traits revealed mul-

tiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regressionmodeling identified four CVD

risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated

several genes previously associated with CVD risk traits, includingMTHFR and FN3KRP. We have successfully identified a panel of eQTLs

in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional

importance of these eQTLs and whether the findings here also relate to outbred populations.
Introduction

Cardiovascular disease (CVD) is an abnormal function of

the heart or blood vessels. This can lead to an increase in

risk of heart attack, heart failure, and stroke, which are

the leading causes of death world-wide.1 It is well estab-

lished that genetic variants influence CVD risk, and

many genetic loci have been implicated in CVD risk traits,

such as hypertension, hyperlipidemia, hyperglycemia, and

obesity.2–4 Expression quantitative trait loci (eQTLs) repre-

sent human genomic regions harboring genetic variants

that confer a marked effect on transcript expression level

and are either proximal (cis-acting) or distal (trans-acting)

to the gene. It is well established that gene expression

levels exhibit genetic heritability.5,6 Many eQTLs have

been mapped with markers such as short tandem re-

peats7–9 and, more recently, SNPs via dense genome-wide

arrays.10–13 Genome-wide association studies (GWASs)

have identified multiple SNPs associated with risk of com-

mon diseases, and attention has now turned to explaining

the underlying molecular mechanisms. The aim of the ge-

netics of gene expression is to identify loci associated with

disease and specific gene expression.

Population- and pedigree-based studies have successfully

mapped numerous eQTLs.7,11,14 Isolated founder popula-

tions potentially provide increased power to detect the

underlying genetic architecture of certain complex dis-

eases.15,16 This is due to several unique properties,
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including a shared stable environment, reduced genetic

complexity, extended linkage disequilibrium (LD), and

the existence of large pedigrees compared to unrelated

outbred populations.4,17 A recent pedigree-based study

used genome-wide transcriptional profile data from

peripheral-blood mononuclear cells (PBMCs) obtained

from participants in the San Antonio Family Heart

Study7 to perform heritability and linkage analysis of the

pedigrees, which led to a detailed eQTL map and the

discovery of several functional variants associated with

CVD and metabolic disorders; the most significant finding

was 67 cis-regulated transcripts associated with high-den-

sity-lipoprotein (HDL) cholesterol levels.

This study examined a very large pedigree from the iso-

lated population of Norfolk Island (NI) to identify eQTLs

associated with CVD risk traits. The NI population is a

genetic isolate with strong family groups and a well-docu-

mented family genealogy.18,19 To date, the Norfolk Island

Health Study (NIHS) has collected data and samples for

1,199 Norfolk Islanders, 52% (n ¼ 624) of whom were

found to have direct links to the original founders. A large

multigenerational NI pedigree has been reconstructed with

this in-depth genealogical information.20 Several studies

have established admixture scores and the presence of

founder effects within the NI pedigree.20,21 This pedigree

has been shown to provide the statistical power to detect

genetic loci influencing complex traits via linkage and

association.22–25
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Compared to mainland Australia, NI has high rates of

CVD-related risk-factor traits, especially obesity. Reported

rates of type 2 diabetes (T2D [MIM 125853]) in the NI

population are similar to those in mainland Australia

(4%–8%), although the fact that a significantly higher pro-

portion of individuals have fasting blood glucose in excess

of these normal ranges suggests that T2D is underdiag-

nosed in the NI population.26 Research on the NI pedigree

has shown that traits for obesity, dyslipidaemia, blood

glucose, and hypertension exhibit a substantial genetic

component; heritability estimates range from 30% for

systolic blood pressure (SBP) to 63% for low-density-lipo-

protein (LDL) cholesterol.26 In addition, factor analysis

has identified ‘‘composite’’ phenotypes with high herita-

bility,22 suggesting that common gene(s) underlie CVD-

related phenotypes. Genetic linkage analysis in the NI

pedigree has successfully identified previously docu-

mented regions associated with CVD risk traits; the most

significant of these regions is on chromosome 1 (1p36)

and is associated with SBP.24

This study is based on the hypothesis that variation in

heritable gene expression in PBMCs contributes to CVD

risk-factor traits and, therefore, that mapped eQTLs also

correlate with these traits. Using genome-wide SNP and

gene expression data, we mapped eQTLs and interrogated

them for correlations with CVD risk traits. Using a

pedigree-based association approach, we have shown

that variation in CVD risk-factor traits can be partly ex-

plained by heritable variation in gene expression (a quan-

titative endophenotype) and have identified several genes

implicated in CVD risk.
Material and Methods

Cohort Collection and Ethics
The NIHS has already been well established in previous

research.22,23,26 In this study, we used a group of individuals

selected from the ‘‘core’’ pedigree, meaning that they relate back

to the original founders, and we have phenotype and genotype in-

formation for them. The total number of core pedigree members

selected was 330 (this was adjusted to exclude individuals under

the age of 18 years). Baseline statistics were previously calculated

for all CVD-related traits—these include all the biochemical mea-

sures, as well as body-size and composition traits.26 Phenotypic

baseline statistics were calculated in R 2.15.2 (Table S1, available

online).27 The ‘‘complete’’ NI pedigree structure includes ~5,700

NI individuals spanning 11 generations and ~200 years.20 We

used SOLAR to estimate h2 (heritability) and power for this

extended pedigree (Figure S1). All individuals gave written

informed consent, and ethical approval was granted prior to the

commencement of the study by the Griffith University Human

Research Ethics Committee.

Metabolic Assessment of Disease Risk
A series of metabolic predictions of disease risk for metabolic syn-

drome (MetS [MIM 605552]), T2D, and CVD were calculated with

the available clinical data. All risk-assessment tools were converted

into custom R scripts. For MetS, the risk equation used was based
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on an established clinical MetS diagnosis according to the joint

recommendations of the International Diabetes Federation, Amer-

ican Heart Association, and National Heart, Lung, and Blood

Institute (NHLBI).28 The risk of developing T2D was estimated

with the Australian Diabetes Risk Assessment Tool (AUS-

DRISK),29 available as a self-completion form online. T2D risk in

the NI population was compared with that in mainland Australia

(data obtained from the Australian Diabetes, Obesity, and Lifestyle

Study [AusDiab] Report 2012; see Web Resources). The risk of

developing CVD in the next 5 years was estimated for each indi-

vidual with the PREDICT-CVD equation.30
Genome-wide Expression
For gene expression analysis, blood was collected and stored

at �20�C in PAXgene tubes (QIAGEN). PAXgene Blood miRNA

Kits (QIAGEN) were used for extracting total RNA according to

the manufacturer’s instructions, and RNA was assessed for quality

with the Bioanalyzer 2100 (Agilent Technologies). A total of

250 ng of RNA was amplified and labeled with the Illumina

TotalPrep-96 RNA Amplification Kit (Life Technologies) according

to the manufacturer’s instructions. Expression profiling was per-

formed with the HumanHT-12 v.4 Expression BeadChip Kit

(Illumina) with 750 ng of amplified RNA according to the

Whole-Genome Gene Expression Direct Hybridization Assay

Guide. Array images were scanned on the Illumina iScan and

analyzed initially with the Gene Expression Module from

GenomeStudio (v.2011.1). Background subtraction was applied,

and missing bead types were imputed with GenomeStudio. On

the basis of the number of expressed probes (at ‘‘detection

p values’’ % 0.05), mean raw expression values across probes,

and correlations (across probes) between samples, all samples

provided high-quality data, except for one sample that was of

questionable quality (this was removed). Significantly expressed

probes were then determined at a false-discovery rate of 5%

on the basis of p values generated in a binomial test on the counts

of samples in which a probe generated ‘‘detection p values’’% 0.05

(success) and > 0.05 (failure). Subsequently, the raw expression

levels of probes detecting significant expression were shifted by

a constant amount so that the minimum observed value of any

probe in any sample was 1.0; this was followed by log2 transforma-

tion and quantile normalization.
Genome-wide SNP Genotyping
EDTA anticoagulated venous blood samples were collected from

all participants. Genomic DNA was extracted from blood buffy

coats via standard phenol-chloroform procedures. Genome-wide

genotyping was carried out with the Illumina Human610-Quad

v.1.0 BeadChip. Raw data from Illumina idat files was SNP geno-

typed in R with the CRLMM package.31 Genotype data then

underwent quality-control routines with PLINK.32 In brief, SNP

analysis was restricted to autosomal SNPs with a minor allele fre-

quency > 0.01, call rate > 0.95, and Hardy-Weinberg equilibrium

testing p value > 10�5. After quality control, 590,603 SNPs were

used for association analyses with expression. Genotype data

were then exported from PLINK and imported into the CRAN

package GenABEL33 for analysis.
Statistical Analysis
Identification of eQTLs

We used SOLAR34 to estimate the power to detect heritability in

the NI population. We split normalized gene expression data
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(23,323 transcripts) into smaller ‘‘packets’’ of 1,000 to facilitate

high-throughput batching by parallel processing via the SNOW

package in R. Analysis of transcript heritability was batched with

custom R scripts and the package GenABEL33 with the polygenic

model. The polygenic-model function implemented in GenABEL

is capable of estimating the narrow-sense heritability (h2) of a trait.

The polygenic model takes into account the fact that potentially

thousands of genetic variants contribute to a trait’s phenotype.

The function implemented in GenABEL maximizes the likelihood

of the data under a polygenic model with covariates and reports

twice negative maximum likelihood estimates and the inverse of

the variance-covariance matrix at the point of maximum likeli-

hood.33 GenABEL also estimates residuals of the trait and the

inverse of the variance-covariance matrix for further use in associ-

ation analysis with the mmscore function.33 The polygenic model

within GenABEL implements variance components defined to

account for linked major gene effects, background polygenic

effects, and environmental effects. Age and sex, as well as genetic

structure, which was assessed by principal-component analysis

with the KING35 program, were included as covariates. The top

two components (Table S3) were chosen as covariates because

we found that these explained the majority of the variance in

the outcomes being tested and because inclusion of additional,

less informative components only served to reduce the parsimony

of themodels. All heritable transcripts were then treated as pheno-

types, and batched GWASs were run. Themmscore function as im-

plemented in GenABEL was used. This function represents a

mixed-model approximation analysis for association between a

trait and genetic polymorphism and is specifically designed for as-

sociation testing in samples of related individuals. This allows for

per-SNP association testing using a polygenic (mixed)-model

approach.33 The study-wide significance was set on the basis of

the Meff (minimum effective number of tests) adjustment (p ¼
1.84 3 10�7). A series of custom filters were designed to identify

cis and trans eQTLs: the presence of multiple adjacent SNPs in a

peak (within 5 20 kb), a SNP- and chromosome-location filter, a

chromosome-quadrant filter, and a graphical filter (modifiedMan-

hattan plots with kern smoothing to facilitate peak identification).

All eQTLs were defined by the ‘‘tagging’’ SNP, the SNP that showed

the most significant association with the given transcript. A

custom R script was used for identifying the eQTLs that mapped

to genes previously associated with disease in the GWAS data-

base.36 The GWAS database was downloaded as a plain-text file

on February 10, 2013, so analysis was conducted on reported asso-

ciations up to that date.

eQTL-Centric Association Analysis

A set of 2,200 SNPs representing all of those surpassing the Meff-

adjusted threshold (1.84 3 10�7) within eQTL peaks were ex-

tracted and used as a basis for an eQTL-centric association analysis.

For this analysis, all CVD- and obesity-related phenotypes were

run in a GWAS-based approach in GenABEL33 with the use of

the extracted SNP set. A short list of traits was obtained with a

relaxed significance threshold of 1.0 3 10�2.

Correlation of Key Transcript(s) with Phenotype

To investigate the effects of expression on CVD phenotypes, we

performed stepwise regression modeling in R 2.15.227 by using a

forward-selection algorithm with the CVD phenotype as the

response variable. The forward-selection algorithm starts with no

variables in themodel and adds variables one by one to themodel.

At each step, the variable added is the one that most improves the

fit of the model as measured by the Akaike information criterion.

The regression model included the following set of covariates,
The American Jou
which were tested in a stepwise fashion: expression transcript

(one at a time), age, sex, kinship, and genetic structure (the top

two principal components of the complete SNP set were calculated

by KING35). Based on the identity-by-descent probability matrix,

kinship is an index of relatedness among individuals and is used

as a control for the effect of nonindependence among individuals

in the sample. It is generally used as a pairwise measure, but in this

instance, we generated an average kinship for each pedigree mem-

ber (calculated inGenABELwith the SNP data). Genetic structure is

assessed via principal-component analysis for characterizing pop-

ulation stratification (e.g., admixture), whereby the component

membership coefficient can be used in the adjustment for struc-

ture effects. Only themodels with the transcript as a significant co-

variate and an overall model p value of 0.05 were included. Model

p values were generated from an ANOVA using the F distribution,

which tests the null hypothesis that the coefficients represented in

the overall regression model (represented by R2) are equal to 0.

Protein-Protein Interaction Prediction

We used STRING v.9.148 to generate a schematic overview of pre-

dicted protein-protein interactions of the proteins encoded by

NME1 (MIM 156490), PRDX1 (MIM 176763), and PAPSS1 (MIM

603262). We used the default active prediction methods, which

include neighborhood, gene fusion, co-occurrence, coexpression,

experiments, databases, and text mining. The medium required

cutoff confidence score was set to 0.4; the minimum observed

was 0.410, and the maximum was 0.986.
Results

Prevalence of CVD Risk Traits in the NI Population

It is well documented that the NI cohort shows an

increased prevalence of CVD-related risk traits.22,26 To

further confirm these and provide a proof-of-principle

baseline risk for our heritability and eQTL analyses, we

conducted risk assessment by using a range of established

tools that allowed us to report NI’s predicted risk in relation

to that of mainland Australia. MetS diagnosis is a well-

established predictor for risk of developing further dis-

eases, namely T2D and CVD. Clinical diagnosis of MetS

in the NI cohort was conducted according to the joint rec-

ommendations of the International Diabetes Federation,

American Heart Association, and NHLBI.37 MetS preva-

lence was 26.4% in the NI cohort participants for whom

appropriate phenotype data were available (Table S2). A

noticeable difference in prevalence between males (31%)

and females (23%) was observed. A recent estimate for

MetS prevalence in mainland Australia was approximately

22%.38 Risk of developing T2D was assessed with the AUS-

DRISK;29 43% of the NI cohort was classed as high risk, and

another 42% was identified as intermediate risk. Mainland

Australian data were generated with the AUSDRISK and

are documented within the AusDiab Report 2012. Thirty-

one percent of the mainland Australian cohort was

predicted to be at a high risk of developing T2D.

According to the PREDICT-CVD tool,30 7% of the NI

cohort was estimated to be at a high risk of developing

CVD over the next 5 years. This increased to 12% when

adjustments were made for MetS (as per the model below).
rnal of Human Genetics 93, 1087–1099, December 5, 2013 1089



Figure 1. Density Histogram Displaying Significantly Heritable
Expression Transcripts in the NI Population
PREDICT-CVD suggests that individuals with a moderate

risk or higher report to a clinician for further assessment

and analysis; according to these criteria, approximately

31% of the NI cohort would be in this bracket. All three

risk-assessment scores further highlight the increased risk

of developing CVD, MetS, and T2D in this population

and suggest the presence of underlying genetic risk factors.

Heritable Gene Expression Transcripts and Clinical

Associations

Prior to eQTL analyses, we filtered gene transcripts (probes)

to exclude those with undetectable expression and poor-

mapping, hybridization, and/or annotation issues. After

filtering, 23,323 transcripts remained for analysis, and

normalized expression values were submitted to heritabil-

ity analysis. SOLAR34 power calculations revealed 80%

power to detect transcripts at a heritability R 0.31

(Figure S1). We observed 1,712 significantly heritable tran-

scripts (p < 0.05) with a range of h2 from 0.15 to 0.84

(Figure 1, Table S4). Several of themost significantly herita-

ble transcripts are of potential biological relevance in the

context of CVD risk factors. The transcript for GM2A

(MIM 613109), a gene evolved in lipid metabolism, ex-

hibited h2 ¼ 0.79 in the NI cohort. In addition, PSAT1

(MIM 610936; transcript h2 ¼ 0.70), has been shown to

contain variants associated with visceral fat levels,39 and

the UTS2 (urotensin-2 [MIM 604097]) transcript showed

high h2 at 0.69 (UTS2 is an active vasoconstrictor in the

brain). Interestingly, the NI pedigree exhibits a higher inci-

dence of migraine than do other populations,25,40 which

makes further investigation of UTS2 particularly pertinent.

To interrogate potential biologically significant relation-

ships, we performed correlation analyses between all 1,712

heritable transcripts and 14 well-established CVD-related

clinical traits: SBP, diastolic blood pressure, pulse pressure

(PP), blood lipids (HDL, LDL, total cholesterol, and triglyc-

erides), plasma glucose, waist circumference (WC), hip

circumference, body mass index (BMI), waist-to-hip ratio

(WHR), weight, and body fat (BF). Using a stepwise regres-
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sion model including age, sex, kinship, and genetic struc-

ture as covariates, we observed that, of these 14 clinical

traits, 7 (WHR, BF, weight, WC, SBP, PP, and HDL) showed

significant association with a range of expression tran-

scripts (transcript p% 0.05). Table 1 shows the most signif-

icant associations with an R2 value > 0.2. The strongest

correlation was seen between WHR and two separate tran-

scripts: ILMN_1683093 (R2 ¼ 0.46, transcript p ¼ 1.73 3

10�6, R2 p % 1 3 10�6), a probe within glycophorin B

(GYPB [MIM 111740]), and ILMN_2352921 (R2 ¼ 0.46,

transcript p ¼ 3.47 3 10�6, R2 p % 1 3 10�6), a

probe within bisphosphoglycerate mutase (BPGM [MIM

613896]). Interestingly, both of these genes play a func-

tional role in blood.41,42 BPGM is involved in glycolysis

and oxygen transport. ILMN_2352921 (tagging BPGM)

was also significantly associated with SBP (R2 ¼ 0.25, p %

2.01 3 10�5). These results strongly suggest that there is

a potentially biologically significant correlation between

heritable gene expression levels and CVD-related traits in

the NI population.

eQTL Mapping in the NI Population

Next, we mapped all heritable transcripts to specific

genomic loci (eQTLs). We conducted pedigree-based asso-

ciation analysis of approximately 590,000 SNPs with the

1,712 heritable transcripts. Because of the unique popula-

tion of NI, we needed to control for population genetic

structure and did so by factoring the top two genetic prin-

cipal components into the modeling process (see Material

and Methods for more details). To identify potential eQTL

peaks, we used a series of custom filters to interrogate chro-

mosome and physical position, as well as SNP proximity.

Peaks were deemed to be robust if two or more SNPs

(520 kb) passed a Meff-adjusted threshold (1.84 3 10�7).

We identified 270 robust eQTLs, of which 200 were cis-

acting and 70 were trans-acting (Table S5). Figure 2 shows

Manhattan plots for the three most significant cis-acting

eQTLs. Price et al. and others have also observed more

cis- than trans-acting eQTLs in similarly designed

studies.11,43 We generated a genome-wide eQTL map

(Figure 3) by plotting each eQTL as represented by its

most significantly associated SNP. This allowed easy visual-

ization of eQTL-rich regions, such as 6p21 and 12q13,

which are both significantly enriched with cis-eQTLs.

eQTL-Centric SNP Association with CVD Risk Factors

Recent work has suggested that trait-associated SNPs in

GWASs are more likely to be associated with eQTLs and,

as such, suggests that increased discovery of biologically

relevant loci should be facilitated if applied to past and

present GWASs.44,45 Therefore, we investigated potential

associations between robustly identified eQTLs and all

CVD-related risk factors (an eQTL-centric analysis). All

significant eQTL-associated SNPs (n ¼ 2,200) were interro-

gated for association with a given trait (via the above-

mentioned pedigree-based association approach). We reset

our significance threshold for this part of the study to
mber 5, 2013



Table 1. Summary of Heritable Transcript versus Trait Associations

Trait No. of transcripts h2_trans_min h2_trans_max R2_model_min R2_model_max Genes

WHR 174 0.19 0.64 0.42 0.46 166

BF 407 0.16 0.74 0.36 0.42 387

Weight 249 0.16 0.78 0.35 0.40 240

WC 222 0.15 0.74 0.30 0.37 209

SBP 124 0.22 0.74 0.24 0.28 122

PP 101 0.23 0.60 0.23 0.27 100

HDL 3 0.27 0.36 0.20 0.20 3

Abbreviations are as follows: BF, body fat; HDL, high-density lipoprotein; PP, pulse pressure; SBP, systolic blood pressure; WC, waist circumference; and WHR,
waist-to-hip ratio.
account for the LD among SNPs in this population. Specif-

ically, we determined that at the genome-wide level, the

number of effective tests dropped by 25%–50% for any sin-

gle chromosome as a result of LD. Thus, we reasoned that a

reduction of 25% in the number of tests for an eQTL (or

gene) would set a reasonable threshold. This reduced

2,200 to 1,650 tests, which altered the eQTL-centric signif-

icance threshold to 3 3 10�5. There were no SNP associa-

tions that met this threshold. When we relaxed the

threshold (p % 0.01), we observed 27 SNP-trait associa-

tions, which represent ten separate eQTL transcripts and

12 traits (Table 2).

Next, we used a stepwise linear regression to investigate

whether the expression level of each of the ten transcripts

correlated with their respective CVD risk trait (shown in

Table 2). As above, the stepwise model factored in the

effects of age, sex, kinship, and genetic structure. Only

models with a significant transcript effect of p < 0.05

were accepted. Table 3 shows the results for the five eQTL

transcripts that met these criteria. When the top-ranked

eQTL-associated SNP was added as a covariate in the regres-

sion model, the prediction scores improved slightly for all

significant correlations. Predictive values (R2) ranged from

0.25 to 0.42 (Table 3).

To our knowledge, the five genes (represented by the

above five transcripts) had no prior direct association with

CVD risk traits. Although five genes is a small number, we

wished to investigate whether they are enriched in a spe-

cific biological pathway or pathways. Therefore, we used

WebGestalt46 to perform pathway-enrichment analysis

and applied Bonferroni correction as a robust filter. This re-

vealed enrichment of purine metabolism (p ¼ 2 3 10�4),

which included both NME1 (MIM 156490) and PAPSS1

(MIM 603262). The potential biological significance of

this observation is indicated by the role of purine-synthesis

dysregulation in hereditary disorders such as gout and

kidney failure,47 which are both found at high levels in

theNI cohort. In addition,we observed enrichment of insu-

lin signaling (p ¼ 9.4 3 10�3), which included both NME1

and PRDX1 (MIM 176763); this pathway plays a role in the

metabolic dysfunction seen in CVD and related traits.

We used the STRING48 web server to visualize interaction
The American Jou
pathways amongNME1, PAPSS1, and PRDX1. The resultant

protein-protein interaction network (Figure 4) verified that

the three genes appear to be significantly enriched and

share biological function. The remaining two genes

(NAAA [MIM 607469] and FN3KRP [MIM 611683]) were

not significantly enriched in any pathways. However,

both have interesting metabolic-related associations.

NAAA is involved in the endocannabinoid system and has

a potential role in obesity through the modulation of

food-seeking behavior.49,50 FN3KRP has been tentatively

associated with diabetes, and measurement of FN3K (MIM

608425) and FN3KRP activity has been proposed in assess-

ing the risk of diabetes.51,52 The SNP (rs1046896) tagging

the FN3KRP eQTL has been previously associated with

glycated hemoglobin levels.53
Association with GWAS-Associated CVD Traits

A total of 256 unique genes were represented by the 270

eQTLs. In order to further explore the potential association

between the eQTL and CVD, we interrogated the GWAS

database (accessed February 22, 2013) for overlap with

these 256 genes. Twelve overlapped with genes reportedly

associated with CVD or related traits (Table 4). Eleven of

these were attributed to cis-acting eQTL associations,

whereas one exhibited a trans-acting association. One

eQTL of interest (tagged by rs1476413) maps to MTHFR

(MIM 607093) within 1p36.22; this region has been associ-

ated with blood pressure in several GWASs.54–56 Interest-

ingly, this region was also identified as significantly

associated with SBP in a linkage analysis conducted on

the NI pedigree.24 The linkage study by Bellis et al. identi-

fied the chromosomal region 1p36.22 as associated with

SBP with a LOD score > 2; there is robust support for the

association between this region and SBP by both genetic-

isolate4 and general-population studies.57
Discussion

Complex disorders such as CVD are contributed to by the

environment, lifestyle, and underlying genetic signatures

and interactions. NI is a unique population isolate with
rnal of Human Genetics 93, 1087–1099, December 5, 2013 1091



Figure 2. eQTL Manhattan Plots
Example Manhattan plots of expression transcript versus SNP associations.
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Figure 3. Genome-wide eQTL Map for the NI Cohort
The eQTLs plotted outside the circle in blue demonstrate cis-
acting loci, whereas those displayed inside the circle in red are
trans-acting loci. The distance from the chromosome corresponds
to the significance of the eQTLs, i.e., further away is more signifi-
cant, and all eQTLs passed the Meff-adjusted threshold (p %
1.84 3 10�7).
increased risk factors for CVD and metabolic-related disor-

ders.22,24 Here, we add to this by showing that the pre-

dicted risks for CVD, T2D, and MetS are all higher in the

NI population than in mainland Australia, supporting

the value of the NI population in the identification of

genetic risk factors. Using the NI cohort, we set out to iden-

tify eQTLs and their associations with CVD-related traits.

Large multigenerational pedigrees from isolated popula-

tions can provide enhanced power to detect disease genes

and estimate the heritability of disease traits.58,59 CVD

traits, along with other complex disorders, are likely to

share an underlying and complex layer of genetic control.

Identifying genomic loci that influence gene expression

levels while associating with disease risk factors can pro-

vide vital information for further functional analyses.

Gene expression levels can vary greatly between

different tissue types, and there is much discussion in the

literature about the utility of using whole blood and

PBMCs in gene expression studies.60,61 Because gene

expression and therefore eQTLs might be tissue spe-

cific,62 it is important to study disease-relevant tissues.10

It is well established that many CVD risk factors are

measured via blood biochemical analyses, i.e., lipid levels

(HDL, LDL, total cholesterol, triglycerides), blood sugar

(glucose), and even markers of inflammation (white blood

cell counts). Environmental influences (such as diet, stress,

and smoking) are also known to affect the overall blood

environment. All of these factors contribute to the local tis-

sue environment and in turn potentially influence gene

expression levels, making expression transcript profiling

of peripheral blood cells a viable tool for investigating

the genetic and nongenetic influences of relevance for dis-

ease pathophysiology and risk assessment. Powell et al.
The American Jou
showed that gene expression levels in whole blood are

significantly heritable.61 In addition, our population has

a well-established increased risk of CVD, which means

we should have increased power to detect these eQTL

and potential associations. Because the NI population is a

genetic isolate, all individuals share some common envi-

ronmental component(s) (for example, diet), and environ-

ment (as well as cultural influence) has been shown to

directly affect gene expression.63 In addition, there is the

possibility of discovering biomarkers in the blood, an

easily accessible tissue for clinical sampling.

Using a statistical approach whose efficiency has already

been demonstrated in the context of a GWAS-based eQTL-

identification method11 by factoring in the unique genetic

structure of the NI population, we identified 1,712 herita-

ble blood-based expression transcripts. Subsequent ana-

lyses identified 270 significantly associated eQTLs (200

cis-acting and 70 trans-acting) and revealed a genome-

wide eQTL map for NI. Initial results of associations

between heritable transcripts and traits indicated a few

highly heritable expression transcripts that showed poten-

tially meaningful biology in terms of CVD and related

traits. Hyperlipidemia and hypertension are CVD risk fac-

tors. G2MA, which has functions involved in lipid meta-

bolism, exhibited a high heritability (h2 ¼ 0.79) in this

study, and Bellis et al. reported that the NI cohort showed

significant heritability of lipid traits—LDL (h2 ¼ 0.42),

HDL (h2¼ 0.45), and cholesterol (h2¼ 0.41).24 In addition,

several of the more significantly heritable transcripts map-

ped to genes involved in blood-pressure-related pathways.

Therefore, we might be seeing a relationship between trait

and transcript heritability within a functional pathway.

Further validation of our approach is in the identifica-

tion of SNP-transcript associations in genes previously re-

ported to associate with obesity- and CVD-related traits.

A search of the GWAS database revealed several eQTLs

that tagged genes and SNPs with prior association to

CVD and related traits. In addition to this, we note further

validation within a recent genome-wide analysis study

that examined the effect of haplotype on the expression

of cis-QTLs.64 This study identified 24 eQTLs whose genes

have been previously associated with disease. Two tran-

scripts from this study, ILMN_1734830 (1p36.22: MTHFR)

and ILMN_1795336 (10p13: PTER [MIM 604446]), were

also tagged by eQTLs present in the NI population

(Table 4). SNPs within both of these genes have been pre-

viously identified to associate with traits such as blood

pressure,54,55 obesity,65 and homocysteine levels.66MTHFR

resides within 1p36.22 and encodes methylenetetrahydro-

folate reductase, an enzyme that catalyzes the reduction of

methylenetetrahydrofolate to methyltetrahydrofolate, a

cofactor for homocysteine methylation to methionine.67

Genetic variation in this gene influences, among other dis-

orders, susceptibility to occlusive vascular disease68 and

neural-tube defects,69,70 making MTHFR an important

candidate gene for diseases such as hypertension, glau-

coma, and migraines.71,72 Interestingly, the 1p36 region
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Table 2. List of eQTL-Centric Association Results: Significant Hits

Trait SNP Chr Position A1 A2 c2 p Value Probe ID Transcript Gene Transcript Chr eQTL

Glu rs1335051 1 107,460,385 G T 9.78 1.8 3 10�3 ILMN_2399463 VAV3 1 cis

Glu rs2303565 2 219,253,553 T C 9.33 2.3 3 10�3 ILMN_1704985 CYP27A1 2 cis

Glu rs1344642 2 219,263,506 G A 9.33 2.3 3 10�3 ILMN_1704985 CYP27A1 2 cis

Cholesterol rs11373 16 55,102,676 A G 17.30 3.2 3 10�5 ILMN_1723116 AMFR 16 cis

Cholesterol rs12447395 16 55,086,841 T C 9.42 2.1 3 10�3 ILMN_1723116 AMFR 16 cis

Cholesterol rs2288055 16 55,059,307 C T 9.25 2.4 3 10�3 ILMN_1723116 AMFR 16 cis

Cholesterol rs2288056 16 55,076,598 A G 9.25 2.4 3 10�3 ILMN_1723116 AMFR 16 cis

Cholesterol rs3790113 16 54,942,221 T C 8.82 3.0 3 10�3 ILMN_1723116 AMFR 16 cis

HDL rs3851117 11 56,993,689 C T 10.13 1.5 3 10�3 ILMN_1765332 TIMM10 11 cis

HDL rs2848630 11 57,113,483 G A 8.82 3.0 3 10�3 ILMN_1765332 TIMM10 11 cis

LDL rs11373 16 55,102,676 A G 14.89 1.1 3 10�4 ILMN_1723116 AMFR 16 cis

Trig rs927340 6 2,968,717 G A 10.42 1.2 3 10�3 ILMN_1674285 LOC401233 6 cis

Trig rs17106351 14 19,762,145 G A 10.21 1.4 3 10�3 ILMN_1719158 CTBP1 4 trans

Trig rs9503375 6 2,991,536 T G 9.11 2.5 3 10�3 ILMN_1674285 LOC401233 6 cis

Trig rs911536 6 2,972,130 G A 8.95 2.8 3 10�3 ILMN_1674285 LOC401233 6 cis

Weight rs2243523 17 78,273,738 G T 13.41 2.6 3 10�4 ILMN_1652333 FN3KRP 17 cis

BMI rs2243523 17 78,273,738 G T 12.95 3.2 3 10�4 ILMN_1652333 FN3KRP 17 cis

WC rs10831551 11 2,194,864 A C 11.75 6.1 3 10�4 ILMN_1668605 NAAA 4 trans

WC rs2243523 17 78,273,738 G T 11.75 6.1 3 10�4 ILMN_1652333 FN3KRP 17 cis

WC rs10831570 11 2,199,188 C A 10.81 1.0 3 10�3 ILMN_1668605 NAAA 4 trans

Hip rs2243523 17 78,273,738 G T 10.62 1.5 3 10�3 ILMN_1652333 FN3KRP 17 cis

Hip rs10831551 11 2,194,864 A C 9.37 2.8 3 10�3 ILMN_1668605 NAAA 4 trans

WHR rs2726207 4 108,858,940 A C 9.55 2.0 3 10�3 ILMN_1781819 PAPSS1 4 cis

SBP rs17526904 8 29,003,762 C T 12.00 7.7 3 10�4 ILMN_1720059 HMBOX1 8 cis

SBP rs7225515 17 78,389,072 G A 9.53 2.7 3 10�3 ILMN_1652333 FN3KRP 17 cis

SBP rs1044661 17 78,494,309 G A 9.42 2.9 3 10�3 ILMN_1652333 FN3KRP 17 cis

DBP rs4793854 17 43,927,132 G A 9.31 2.3 3 10�3 ILMN_1810274 HOXB2 17 cis

Abbreviations are as follows: A1, allele 1; A2, allele 2; BMI, body mass index; chr, chromosome; DBP, diastolic blood pressure; eQTL, expression quantitative trait
locus; glu, plasma glucose; HDL, high-density lipoprotein; hip, hip circumference; LDL, low-density lipoprotein; SBP, systolic blood pressure; trig, triglycerides;
WC, waist circumference; and WHR, waist-to-hip ratio.
has been reported to associate with hypertension in a

Slavic population isolate from Germany.4 This region

has also been previously associated with blood pressure

in the NI population,24 suggesting that our current

approach has potentially pinpointed the functional loci

of this previous linkage hit. It is also interesting to

note that migraines have previously been reported to

exhibit a higher incidence in the NI population25,40 than

in mainland Australia, and MTHFR is a prime functional

candidate.

Further evidence of the ability of our approach to iden-

tify loci of biological significance is provided by the associ-

ation between eQTLs and other genes implicated in CVD

and related traits. VAV3 (MIM 605541) encodes a guanine

nucleotide exchange factor for Rho family GTPases.
1094 The American Journal of Human Genetics 93, 1087–1099, Dece
Vav3-deficient mice have been shown to exhibit tachy-

cardia, systemic arterial hypertension, and extensive car-

diovascular remodelling.73,74 The protein product of

CYP27A1 (MIM 606530) participates in the degradation

of cholesterol to 27-hydroxycholesterol. Macrophages are

one of many cells that express CYP27A1, and it has been

identified that 27-hydroxycholesterol might counteract

the production of inflammatory factors associated with

cardiovascular disease.75 CTBP1 (MIM 602618) belongs to

a family of genes encoding corepressors that regulate the

repression of genes associated with white adipose tissue

and can induce the switch to brown adipose tissue.76 Inter-

estingly, white adipose tissue stores energy in the form of

triglycerides; in this study, we identified an association

between the trans-eQTLs for CTBP1 and triglyceride
mber 5, 2013



Table 3. Results from Stepwise Linear Regression of Transcripts
versus Traits

Trait Transcript Gene
Transcript
p Value R2 R2 p Value

WHR ILMN_1668605 NAAA 0.021 0.42 <2.2 3 10�16

Body fat ILMN_1668605 NAAA 0.007 0.37 <2.2 3 10�16

Body fat ILMN_1781819 PAPSS1 0.018 0.37 <2.2 3 10�16

Body fat ILMN_1741133 NME1 0.014 0.37 <2.2 3 10�16

Weight ILMN_2366388 PRDX1 0.011 0.36 <2.2 3 10�16

Weight ILMN_1741133 NME1 0.003 0.37 <2.2 3 10�16

SBP ILMN_1652333 FN3KRP 0.033 0.25 3.3 3 10�15

Abbreviations are as follows: SBP, systolic blood pressure; and WHR, waist-to-
hip ratio.

Figure 4. STRING Analysis of Protein-Protein Interaction
Network for Three CVD-Trait-Related Candidate Genes: PAPSS1,
PRDX1, and NME1
The thickness of the blue connecting lines indicates the level of
confidence for a given protein-protein interaction. The presence
of a node background indicates that a protein structure is listed
in either the Protein Data Base or the SWISS-MODEL database.
levels in the NI population. NAAA is involved in the endo-

cannabinoid system, which has been implicated in obesity

through its ability to attenuate or lower the desire of

finding and consuming food.49,50 Because FN3KRP has

been tentatively suggested to associate with diabetes, mea-

surement of FN3K and FN3KRP activity might be of diag-

nostic value in assessing an individual’s susceptibility to

diabetic complications.51,52

In addition, our candidate loci showed significant

enrichment in several biologically relevant pathways of

interest. Enrichment of NME1 and PAPSS1 in the purine

metabolism pathway could represent a shift in ATP-based

cellular energetics and function. NME1 encodes the A iso-

form of nucleoside diphosphate kinase (NDPK), an enzyme

that catalyzes the reversible exchange of phosphate

between nucleoside diphosphates and nucleoside triphos-

phates.77,78 This phosphate shuttling maintains the bal-

ance between guanosine triphosphate or guanosine

diphosphate and ATP or ADP. As a result, changes in

NDPK levels driven by enrichment of NME1 could have a

significant impact on nucleotide homeostasis and ATP-

dependent energy transfer and signaling within cells.

PAPSS1 encodes phosphoadenosine phosphosulfate syn-

thetase 1, which synthesizes the ubiquitous sulfate donor

phosphoadenosine phosphosulfate (PAPS) from ATP and

organic sulfate. PAPS is a substrate used by sulfotransferase

to sulfonatemetabolites, increasing their solubility to facil-

itate biliary excretion.79 Therefore, enrichment of both

NME1 and PAPSS1 could be indicative of a change in

energy management and the regulation of ATP meta-

bolism. ATP plays a key part in cardiac metabolism

involved in supporting tissue growth, survival, and

contractility. Metabolic remodelling, including changes

in both ATP generation and expression of NDPK, is

commonly observed in individuals with CVD.80–83 There-

fore, shifts in metabolic function such as those indicated

by changes in NME1 and PAPSS1 might be indicative of

increased CVD risk. We also saw enrichment of NME1

and PRDX1 in the insulin pathway. Insulin release is also

dependent on ATP, and enrichment of NME1 could there-

fore mark a downstream change in insulin secretion as a
The American Jou
result of an NDPK-catalyzed rebalance of intracellular

ATP levels. PRDX1 encodes peroxiredoxin 1, which is a

key scavenger of H2O2.
84 H2O2 is known to play a role in

both insulin signaling and resistance.85 PRDX1 enrich-

ment might therefore reflect a change in insulin regulation

that in combination with a change in NDPK activity

might associate with susceptibility to the development of

diabetes. Thus, the observed pattern of enrichment of

NME1, PAPSS1, and PDRX1 might be a marker for a meta-

bolic rebalance in the NI cohort, possibly indicative of

early metabolic dysregulation.

In conclusion, using a pedigree-based approach, we have

generated an eQTL map for the NI cohort and have identi-

fied potential candidate genomic regions that alter gene

expression levels and are at the same time associated

with CVD-related traits. We have observed several loci

that could underlie CVD risk in NI, and all of them have

strongly suggestive biological relevance to disease. We

have also broached the idea that several of these could

potentially be early markers of metabolic risk within the

NI population. Not only do these eQTLs provide insights

into potential functional pathways, but our analyses

have revealed associations of loci, transcripts, and traits

for a specific set of CVD risk factors. We have built upon

previous work in the NI cohort and highlight the impor-

tance of integrative genomic analyses in identifying genes

that play potential roles in the development of complex

disorders.
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Table 4. Overlap of eQTL Genes Mapping to Chromosomal Regions Previously Associated with CVD and Related Traits

eQTL Transcript eQTL SNP eQTL p Value Gene Chr Region PubMed ID Disease Trait

ILMN_1734830a rs1476413 1.16 3 10�9 MTHFR 1 1p36.22 19430483; 21909110 blood pressure

ILMN_1746436 rs9263873 9.74 3 10�9 HCG27 6 6p21.33 22319020 coronary heart disease

ILMN_1721113 rs9264904 2.16 3 10�15 HLA-C 6 6p21.33 22319020 coronary heart disease

ILMN_1718063 rs1051338 1.29 3 10�11 LIPA 10 10q23.31 21378988; 21606135 coronary heart disease

ILMN_2400759 rs7313 1.30 3 10�8 CPVL 7 7p14.3 17903298 diabetes related insulin traits

ILMN_1661631 rs103294 4.69 3 10�14 LILRA3 19 19q13.42 20686565 HDL cholesterol

ILMN_1737611 rs2532501 2.02 3 10�8 VAMP1 12 12p13.31 17903296 hip geometry

ILMN_1804735 rs11700748 9.64 3 10�10 CBS 21 21q22.3 20031578 homocysteine levels

ILMN_1734830 rs1476413 1.16 3 10�9 MTHFR 1 1p36.22 20031578 homocysteine levels

ILMN_1795336a rs7909832 9.63 3 10�14 PTER 10 10p13 19151714 obesity

ILMN_1797375 rs2182667 6.51 3 10�8 KLF12 13 13q22.1 22359512 phospholipid levels (plasma)

ILMN_1722025 rs7736263 1.67 3 10�9 CPEB4 5 5q35.2 20935629 WHR

ILMN_1727045b rs2835138 1.47 3 10�7 RASGPR3 2 2p22.3 19421330 hypertension

Abbreviations are as follows: chr, chromosome; eQTL, expression quantitative-trait locus; HDL, high-density lipoprotein; and WHR, waist-to-hip ratio.
aThese eQTLs are also reported in Garnier et al.64
btrans-acting eQTL-SNP cluster on chromosome 21.
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