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Abstract

We prove the existence of electrically and magnetically charged particle-like static solutions, known as
dyons, in the minimally gauged Skyrme model developed by Brihaye, Hartmann, and Tchrakian. The solu-
tions are spherically symmetric, depend on two continuous parameters, and carry unit monopole and mag-
netic charges but continuous Skyrme charge and non-quantized electric charge induced from the ’t Hooft
electromagnetism. The problem amounts to obtaining a finite-energy critical point of an indefinite action
functional, arising from the presence of electricity and the Minkowski spacetime signature. The difficulty
with the absence of the Higgs field is overcome by achieving suitable strong convergence and obtaining
uniform decay estimates at singular boundary points so that the negative sector of the action functional
becomes tractable.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

It was Dirac [15] who first explored the electromagnetic duality in the Maxwell equations and
came up with a mathematical formalism of magnetic monopoles, which was initially conceptu-
alized by P. Curie [12]. Motivated by the search of a quark model, Schwinger [34] extended the
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study of Dirac [15] to obtain a new class of particle-like solutions of the Maxwell equations carry-
ing both electric and magnetic charges, called dyons, and derived an elegant charge-quantization
formula for dyons, generalizing that of Dirac for monopoles. However, both the Dirac monopoles
and Schwinger dyons are of infinite energy and deemed unphysical. In the seminal works of
Polyakov [29] and ’t Hooft [39], finite-energy smooth monopole solutions were obtained in non-
Abelian gauge field theory. Later, Julia and Zee [22] extended the works of Polyakov and ’t Hooft
and obtained finite-energy smooth dyon solutions in the same non-Abelian gauge field theory
framework. See Manton and Sutcliffe [27] for a review of monopoles and dyons in the context of
a research monograph on topological solitons. See also [1,18,31] for some earlier reviews on the
subject. In contemporary physics, monopoles and dyons are relevant theoretical constructs for an
interpretation of quark confinement [19,26,35].

Mathematically, the existence of monopole and dyons is a sophisticated and highly challeng-
ing problem. In fact, the construction of monopoles and dyons was first made possible in the
critical Bogomol’nyi [6] and Prasad–Sommerfeld [30] (BPS) limit, although an analytic proof
of existence of spherically symmetric unit-charge monopoles was also obtained roughly at the
same time [4]. A few years later, the BPS monopoles of multiple charges were obtained by
Taubes [21,38] using a gluing technique to patch a distribution of widely separated unit-charge
BPS monopoles together. Technically, the existence of dyons is a more difficult problem even
for spherically symmetric solutions of unit charges. The reason is that the presence of electricity
requires a non-vanishing temporal component of gauge field as a consequence of the ’t Hooft
construction [41] of electromagnetism so that the action functional governing the equations of
motion becomes indefinite due to the Minkowski spacetime signature. In fact, the original deriva-
tion of the BPS dyons is based on an internal-space rotation of the BPS monopoles, also called the
Julia–Zee correspondence [1]. An analytic proof for the existence of the Julia–Zee dyons [22],
away from the BPS limit, was obtained by Schechter and Weder [33] using a constrained mini-
mization method. Developing this method, existence theorems have been established for dyons in
the Weinberg–Salam electroweak theory [11,43,44], and in the Georgi–Glashow–Skyrme model
[8,24], as well as for the Chern–Simons vortex equations [10,23].

It is well known that the Skyrme model [36,37] is important for baryon physics [17,20,25,
45] and soliton-like solutions in the Skyrme model, called Skyrmions, are used to model ele-
mentary particles. Thus, in order to investigate inter-particle forces among Skyrmions, gauge
fields have been introduced into the formalism [2,7–9,14,16,28,42]. Here, we are interested in
the minimally gauged Skyrme model studied by Brihaye, Hartmann, and Tchrakian [7], where
the Skyrme (baryon) charge may be prescribed explicitly in a continuous interval. The Skyrme
map is hedgehog and the presence of gauge fields makes the static solutions carry both electric
and magnetic charges. In other words, these gauged Skyrmions are dyons. In [7], numerical so-
lutions are obtained which convincingly support the existence of such solutions. The purpose of
this paper is to give an analytic proof for the existence of these solutions, extending the meth-
ods developed in the earlier studies [24,33,43,44] for the dyon solutions in other models in field
theory described above. See also [5,13]. Note that, since here we are interested in the minimally
gauged Skyrme model where no Higgs field is present, we lose the control over the negative terms
in the indefinite action functional which can otherwise be controlled if a Higgs field is present
[8,24,33,43,44]. In order to overcome this difficulty, we need to obtain suitable uniform estimates
for a minimizing sequence at singular boundary points and to achieve strong convergence results,
for the sequences of the negative terms.

The contents of the rest of the paper are outlined as follows. In Section 2, we review the
minimally gauged Skyrme model of Brihaye, Hartmann, and Tchrakian [7] and then state our
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main existence theorem for dyon solutions. It is interesting that the solutions obtained are of
unit monopole and magnetic charges but continuous Skyrme charge and non-quantized electric
charge. In the subsequent three sections, we establish this existence theorem. In Section 3, we
prove the existence of a finite-energy critical point of the indefinite action functional by formu-
lating and solving a constrained minimization problem. In Section 4, we show that the critical
point obtained in the previous section for the constrained minimization problem solves the origi-
nal equations of motion by proving that the constraint does not give rise to a Lagrange multiplier
problem. In Section 5, we study the properties of the solutions. In particular, we obtain some
uniform decay estimates which allow us to describe the dependence of the (’t Hooft) electric
charge on the asymptotic value of the electric potential function at infinity.

2. Dyons in the minimally gauged Skyrme model

As in the classical Skyrme model [36,37], the minimally gauged Skyrme model of Brihaye,
Hartmann, and Tchrakian [7] is built around a wave map, φ = (φa) (a = 1,2,3,4), from the
Minkowski spacetime R

3,1 of signature (+ − −−) into the unit sphere, S3, in R
4, so that φ is

subject to the constraint |φ|2 = (φa)2 = 1, where and in the sequel, summation convention is
implemented over repeated indices. Finite-energy condition implies that φ approaches a fixed
vector in S3, at spatial infinity. Thus, at any time t = x0, φ may be viewed as a map from S3,
which is a one-point compactification of R3, into S3. Hence, φ is naturally characterized by an
integral class, say [φ], in the homotopy group π3(S

3) = Z. The integer [φ], also identified as the
Brouwer degree of φ, may be represented as a volume integral of the form

Bφ = [φ] = 1

12π2

∫
R3

εijkε
abcd∂iφ

a∂jφ
b∂kφ

cφd dx, (2.1)

where i, j, k = 1,2,3 denote the spatial coordinate indices and ε is the Kronecker skewsymmet-
ric tensor. This topological invariant is also referred to as the Skyrme charge or baryon charge.
Let (ημν) = diag{1,−1,−1,−1} (μ,ν = 0,1,2,3) be the Minkowski metric tensor and (ημν)

its inverse. We use |Aμ|2 = ημνAμAν to denote the squared Minkowski norm of a 4-vector Aμ

and A[μBν] = AμBν − AνBμ to denote the skewsymmetric tensor product of Aμ and Bμ. The
Lagrangian action density of the Skyrme model [36,37] is of the form

L = 1

2
κ2

1

∣∣∂μφa
∣∣2 − 1

2
k4

2

∣∣∂[μφa∂ν]φb
∣∣2

, (2.2)

where κ1, κ2 > 0 are coupling constants. The model is invariant under any internal space rotation.
That is, the model enjoys a global O(4) symmetry. Such a symmetry is broken down to SO(3) by
suppressing the vacuum manifold to a fixed point, say n = (0,0,0,1), which may be specified
by inserting a potential term of the form

V = λ
(
1 − φ4) = λ(1 − n · φ)4, λ > 0, (2.3)

into the Skyrme Lagrangian density.
The ‘residual’ SO(3) symmetry is now to be gauged. In order to do so, we follow [7] to set

φ = (φa) = (φα,φ4) and replace the common derivative by the SO(3) gauge-covariant derivative
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Dμφα = ∂μφα + εαβγ Aβ
μφγ , α,β, γ = 1,2,3, Dμφ4 = ∂μφ4, (2.4)

where Aα
μ is the α-component of the SO(3)-gauge field Aμ in the standard isovector representa-

tion Aμ = (Aα
μ), which induces the gauge field strength tensor

Fμν = ∂μAν − ∂νAμ + Aμ × Aν = (
Fα

μν

)
. (2.5)

As a result, the SO(3) gauged Skyrme model is then defined by the Lagrangian density [7]

L = −κ4
0

∣∣Fα
μν

∣∣2 + 1

2
κ2

1

∣∣Dμφa
∣∣2 − 1

2
κ4

2

∣∣D[μφaDν]φb
∣∣2 − Vω(φ), (2.6)

where κ0 > 0 and the potential function Vω is taken to be

Vω(φ) = λ
(
cosω − φ4)2

, 0 � ω � π, (2.7)

with ω an additional free parameter which is used to generate a rich vacuum manifold defined by∣∣φα
∣∣ = sinω, φ4 = cosω. (2.8)

In order to stay within the context of minimal coupling, we shall follow [7] to set λ = 0 to
suppress the potential term (2.7) but maintain the vacuum manifold (2.8) by imposing appropriate
boundary condition at spatial infinity.

Besides, since the topological integral (2.1) is not gauge-invariant, we need to replace it by
the quantity [3,7]

QS = Bφ,A = 1

12π2

∫
R3

(
εijkε

abcdDiφ
aDjφ

bDkφ
cφd − 3εijkφ

4Fα
ijDkφ

α
)

dx, (2.9)

as the Skyrme charge or baryon charge. On the other hand, following [18,32], in the symmetry-
breaking situation where ω ∈ (0,π), the monopole charge QM is given by

QM = 1

16π sinω

∫
R3

εijkF
α
ijDkφ

α dx, (2.10)

which defines the homotopy class of φ viewed as a map from a 2-sphere near the infinity of R3

into the vacuum manifold described in (2.8) which happens to be a 2-sphere as well, with radius
sinω labeled by ω ∈ (0,π).

Following [7], we will look for solutions under the spherically symmetric ansatz

Aα
0 = g(r)

(
xα

r

)
, Aα

i = a(r) − 1

r
εiαβ

(
xβ

r

)
, (2.11)

φα = sinf (r)

(
xα

)
, φ4 = cosf (r), (2.12)
r
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where r = |x| (x ∈ R
3). Since the presence of the function g gives rise to a non-vanishing tem-

poral component of the gauge field, g may be regarded as an electric potential. With (2.12), the
Skyrme charge QS can be shown to be given by [3,7,24]

QS = − 2

π

∞∫
0

sin2 f (r)f ′(r)dr. (2.13)

Recall also that, with the notation �φ = (φα) and the updated gauge-covariant derivative

Dμ
�φ = ∂μ

�φ + Aμ × �φ, (2.14)

we may express the ’t Hooft electromagnetic field Fμν by the formula [22,40,41]

Fμν = 1

| �φ|
�φ · Fμν − 1

| �φ|3
�φ · (Dμ

�φ × Dν
�φ). (2.15)

Inserting (2.11) and (2.12) into (2.15), we see that the electric and magnetic fields, E = (Ei)

and B = (Bi), are given by [18,22,30]

Ei = −F 0i = xi

r

dg

dr
, (2.16)

Bi = −1

2
εijkF

jk = xi

r3
. (2.17)

Therefore the magnetic charge Qm may be calculated immediately to give us

Qm = 1

4π
lim

r→∞

∮
S2

r

B · dS = 1, (2.18)

where S2
r denotes the 2-sphere of radius r , centered at the origin in the 3-space. Similarly, the

monopole charge QM may be shown to be 1 as well [24].
Within the ansatz (2.11)–(2.12), using suitable rescaling, and denoting κ4

2 ≡ κ , it is shown [7]
that the Lagrangian density (2.6) may be reduced into the following one-dimensional one, after
suppressing the potential term,

L = E1 − E2, (2.19)

where

E1 = 2

(
2
(
a′)2 + (a2 − 1)2

r2

)
+ 1

2

(
r2(f ′)2 + 2a2 sin2 f

)
+ 2κa2 sin2 f

(
2f ′2 + a2 sin2 f

r2

)
, (2.20)

E2 = r2(g′)2 + 2a2g2, (2.21)
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and ′ denotes the differentiation d
dr

, such that the associated Hamiltonian (energy) density is
given by

E = E1 + E2. (2.22)

The equations of motion of the original Lagrangian density (2.6) now become the variational
equation

δL = 0, (2.23)

of the static action

L(a,f,g) =
∞∫

0

Ldr =
∞∫

0

(E1 − E2)dr, (2.24)

which is indefinite. Explicitly, Eq. (2.23) may be expressed in terms of the unknowns a,f, g as

a′′ = 1

r2
a
(
a2 − 1

) + 1

4
a sin2 f + κa sin2 f

(
f ′)2

+ 1

r2
κa3 sin4 f − ag2

2
, (2.25)

8κ
(
a2 sin2 ff ′)′ + (

r2f ′)′ = 2a2 sinf cosf + 8κa2 sinf cosf
(
f ′)2

+ 8κa4 sin3 f cosf

r2
, (2.26)(

r2g′)′ = 2a2g. (2.27)

We are to solve these equations under suitable boundary conditions. First we observe in view
of the ansatz (2.11)–(2.12) that the regularity of the fields φ and Aμ imposes at r = 0 the bound-
ary condition

a(0) = 1, f (0) = π, g(0) = 0. (2.28)

Furthermore, the finite-energy condition

E(a,f,g) =
∞∫

0

E dr =
∞∫

0

(E1 + E2)dr < ∞, (2.29)

the definition of the vacuum manifold (2.8), and the non-triviality of the g-sector lead us to the
boundary condition at r = ∞, given as

a(∞) = 0, f (∞) = ω, g(∞) = q, (2.30)

where q > 0 (say) is a parameter, to be specified later, which defined the asymptotic value of the
electric potential at infinity.
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Applying the boundary conditions (2.28) and (2.30) in (2.13), we obtain

QS = QS(ω) = 1 + 1

π

(
1

2
sin(2ω) − ω

)
, (2.31)

which is strictly decreasing for ω ∈ [0,π] with QS(0) = 1,QS(π
2 ) = 1

2 ,QS(π) = 0, and the
range of QS(ω) over [0,π] is the entire interval [0,1].

We now evaluate the electric charge. Using (2.16) and Eq. (2.27), we see that the electric
charge Qe is given by

Qe = 1

4π
lim

r→∞

∮
S2

r

E · dS = 1

4π
lim

r→∞

∫
|x|<r

∇ · E dx = 1

4π
lim

r→∞

∫
|x|<r

∂i

(
xi

r

dg

dr

)
dx

=
∞∫

0

d

dr

(
r2 dg

dr

)
dr = 2

∞∫
0

a2(r)g(r)dr. (2.32)

With the above preparation, we can state our main result regarding the existence of dyon
solitons in the minimally gauged Skyrme model [7] as follows.

Theorem 2.1. For any parameters ω and q satisfying

π

2
< ω < π, 0 < q < min

{
1√
2

sinω,
√

2

(
1 − ω

π

)}
, (2.33)

the equations of motion of the minimally gauged Skyrme model defined by the Lagrangian density
(2.6), with λ = 0, have a static finite-energy spherically symmetric solution described by the
ansatz (2.11)–(2.12) so that (a, f, g) satisfies the boundary conditions (2.28) and (2.30), a(r) >

0, ω < f (r) < π , 0 < g(r) < q for all r > 0, and f,g are strictly monotone functions of r .
Moreover, a(r) vanishes at infinity exponentially fast and f (r), g(r) approach their limiting
values at the rate O(r−1) as r → ∞. The solution carries a unit monopole charge, QM = 1, a
continuous Skyrme charge QS given as a function of ω by

QS(ω) = 1 + 1

π

(
1

2
sin(2ω) − ω

)
,

π

2
< ω < π, (2.34)

which may assume any value in the interval (0, 1
2 ), a unit magnetic charge Qm = 1, and an

electric charge Qe given by the integral

Qe = 2

∞∫
0

a2(r)g(r)dr > 0, (2.35)

which depends on q and approaches zero as q → 0.
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It is interesting that the ’t Hooft electric charge Qe cannot be quantized as stated in the Dirac
quantization formula, which reads in normalized units [32],

qeqm = n

2
, n ∈ Z, (2.36)

where qe and qe are electric and magnetic charges, respectively. Indeed, according to Theo-
rem 2.1, Qe = 0 is an accumulation point of the set of electric charges of the model. On the other
hand, the formula (2.36) says that, for qm > 0, the smallest positive value of qe is (2qm)−1.

We note that the expression (2.35) suggests that Qe should depend on q continuously, al-
though a proof of this statement is yet to be worked out.

The above theorem will be established in the subsequent sections.

3. Constrained minimization problem

We first observe that the action density (2.19) is invariant under the transformation f �→
π − f . Hence we may ‘normalize’ the boundary conditions (2.28) and (2.30) into

a(0) = 1, f (0) = 0, g(0) = 0, (3.1)

a(∞) = 0, f (∞) = π − ω, g(∞) = q. (3.2)

The proof of our main existence theorem, Theorem 2.1, for the dyon solutions in the minimally
gauged Skyrme model amounts to establishing the following.

Theorem 3.1. Given ω satisfying

π

2
< ω < π, (3.3)

set

qω =
√

2

π
(π − ω). (3.4)

For any constant q satisfying 0 < q < qω where ω lies in the interval (3.3), and

q <
1√
2

sinω, (3.5)

the functional (2.24) has a finite-energy critical point (a, f, g) which satisfies Eqs. (2.25)–(2.27)
and the boundary conditions (3.1)–(3.2). Furthermore, such a solution enjoys the property that
f (r), g(r) are strictly increasing, and a(r) > 0, 0 < f (r) < π − ω, 0 < g(r) < q , for r > 0.

The proof of the theorem will be carried out through establishing a series of lemmas. In this
section, we concentrate on formulating and solving a constrained minimization problem put forth
to overcome the difficulty arising from the negative terms in the action functional (2.24). In the
next section, we show that the solution obtained in this section is indeed a critical point of (2.24)
so that the constraint does not give rise to a Lagrangian multiplier problem.
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To proceed, we begin by defining the admissible space of our one-dimensional variational
problem to be

A = {
(a, f, g)

∣∣ a,f, g are continuous functions over [0,∞) which are

absolutely continuous on any compact subinterval of (0,∞), satisfy

the boundary conditions a(0) = 1, a(∞) = 0, f (0) = 0, f (∞) = π − ω,

g(∞) = q, and of finite-energy E(a,f,g) < ∞}
.

Note that in the admissible space A we only implement partially the boundary conditions
(3.1)–(3.2) to ensure the compatibility with the minimization process. The full set of the bound-
ary conditions will eventually be recovered in the solution process.

In order to tackle the problem arising from the negative terms involving the function g in the
action (2.24), we use the methods developed in [24,33,43] by imposing the constraint

∞∫
0

(
r2g′G′ + 2a2gG

)
dr = 0, (3.6)

to ‘freeze’ the troublesome g-sector, where G is an arbitrary test function satisfying G(∞) = 0
and

E2(a,G) =
∞∫

0

(
r2[G′]2 + 2a2G2)dr < ∞. (3.7)

That is, for given a, the function g is taken to be a critical point of the energy functional E2(a, ·)
subject to the boundary condition g(∞) = q .

We now define our constrained class C to be

C = {
(a, f, g) ∈A

∣∣ (a, f, g) satisfies (3.6)
}
. (3.8)

In the rest of this section, we shall study the following constrained minimization problem

min
{
L(a,f,g)

∣∣ (a, f, g) ∈ C
}
. (3.9)

Lemma 3.2. Assume (3.3). For the problem (3.9), we may always restrict our attention to func-
tions f satisfying 0 � f � π/2.

Proof. Since the action (2.24) is even in f , it is clear that L(a,f,g) = L(a, |f |, g). Hence we
may assume f � 0 in the minimization problem. Besides, since f (∞) = π − ω < π

2 , if there is
some r0 > 0 such that f (r0) > π

2 , then there is an interval (r1, r2) with 0 � r1 < r0 < r2 < ∞
such that f (r) > π

2 (r ∈ (r1, r2)) and f (r1) = f (r2) = π
2 . We now modify f by reflecting f over

the interval [r1, r2] with respect to the level π
2 to get a new function f̃ satisfying f̃ (r) = π −f (r)

(r ∈ [r1, r2]) and f̃ (r) = f (r) (r /∈ [r1, r2]). We have L(a,f,g) � L(a, f̃ , g) again. �
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Lemma 3.3. The constrained admissible class C defined in (3.8) is non-empty. Furthermore, if
q > 0 and (a, f, g) ∈ C, we have 0 < g(r) < q for all r > 0 and that g is the unique solution to
the minimization problem

min
{
E2(a,G)

∣∣ G(∞) = q
}
. (3.10)

Proof. Consider the problem (3.10). Then the Schwartz inequality gives us the asymptotic esti-
mate

∣∣G(r) − q
∣∣ �

∞∫
r

∣∣G′(ρ)
∣∣dρ � r− 1

2

( ∞∫
r

ρ2(G′(ρ)
)2 dρ

) 1
2

� r− 1
2 E

1
2
2 (a,G), (3.11)

which indicates that the limiting behavior G(∞) = q can be preserved for any minimizing se-
quence of the problem (3.10). Hence (3.10) is solvable. In fact, it has a unique solution, say g,
for any given function a, since the functional E2(a, ·) is strictly convex. Since E2(a, ·) is even,
we have g � 0. Applying the maximum principle in (2.27), we conclude with 0 < g(r) < q for
all r > 0. The uniqueness of the solution to (3.10), for given a, is obvious. �
Lemma 3.4. For any (a, f, g) ∈ C, g(r) is non-decreasing for r > 0 and g(0) = 0.

Proof. To proceed, we first claim that

lim inf
r→0

r2
∣∣g′(r)

∣∣ = 0. (3.12)

Indeed, if (3.12) is false, then there are ε0, δ > 0, such that r2|g′(r)| � ε0 for 0 < r < δ, which
contradicts the convergence of the integral

∫ ∞
0 r2(g′)2 dr .

As an immediate consequence, (3.12) implies that there is a sequence {rk}, such that rk → 0
and r2

k |g′(rk)| → 0, as k → ∞. In view of this fact and (2.27), we have

r2g′(r) = r2g′(r) − lim
k→∞ r2

k g′(rk)

= lim
k→∞

r∫
rk

(
ρ2g′(ρ)

)′ dρ =
r∫

0

(
ρ2g′(ρ)

)′ dρ

=
r∫

0

2a2(ρ)g(ρ)dρ � 0, r > 0. (3.13)

Hence g′(r) � 0 and g(r) is non-decreasing. In particular, we conclude that there is number
g0 � 0 such that

lim
r→0

g(r) = g0. (3.14)

We will need to show g0 = 0. Otherwise, if g0 > 0, we can use a(0) = 1, r2g′(r) → 0 (r → 0)
(this latter result follows from (3.13)), and L’Hopital’s rule to get
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2g0 = 2 lim
r→0

a2(r)g(r) = lim
r→0

(
r2g′)′ = lim

r→0

r2g′(r)
r

= lim
r→0

rg′(r).

Hence, there is a δ > 0, such that

g′(r) � g0

r
, 0 < r < δ. (3.15)

Integrating (3.15), we obtain

∣∣g(r2) − g(r1)
∣∣ � g0

∣∣∣∣ln r2

r1

∣∣∣∣,
which contradicts the existence of limit stated in (3.14). So g0 = 0, and the lemma follows. �
Lemma 3.5. With (3.3) and (3.4), for any 0 < q < qω,

q <
1√
2
(π − ω), (3.16)

and (a, f, g) ∈ C, we have the following partial coercive lower estimate

L(a,f,g) �
∞∫

0

dr

{
2

(
2
(
a′)2 + (a2 − 1)2

r2

)
+ C1r

2(f ′)2

+ 2κa2 sin2 f

(
2
(
f ′)2 + a2 sin2 f

r2

)
+ C2a

2f 2
}
, (3.17)

where C1,C2 > 0 are constants depending on ω and q only.

Proof. For any (a, f, g) ∈ C, set g1 = q(π − ω)−1f . Then g1 satisfies g1(∞) = q . As a conse-
quence, we have

E2(a, g1) � E2(a, g), (3.18)

and thus,

L(a,f,g) = E1(a, f ) − E2(a, g) � E1(a, f ) − E2(a, g1)

=
∞∫

0

dr

{
2

(
2
(
a′)2 + (a2 − 1)2

r2

)
+

(
1

2
− q2

(π − ω)2

)
r2(f ′)2

+ 2κa2 sin2 f

(
2
(
f ′)2 + a2 sin2 f

r2

)
+

(
sin2 f

f 2
− 2q2

(π − ω)2

)
a2f 2

}
. (3.19)

Using the elementary inequality sin t � 2 (0 < t � π ) and Lemma 3.2, we have

t π 2
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(
sin2 f

f 2
− 2q2

(π − ω)2

)
f 2 � 2

(
2

π2
− q2

(π − ω)2

)
f 2

= 2

(π − ω)2

(
q2
ω − q2)f 2 ≡ C2f

2. (3.20)

Inserting (3.20) into (3.19) and setting in (3.19) the quantity

C1 ≡ 1

2
− q2

(π − ω)2
= 1

(π − ω)2

(
1

2
(π − ω)2 − q2

)
> 0, (3.21)

in view of (3.16), we see that the lower estimate (3.17) is established. �
Lemma 3.6. Under the conditions stated in Theorem 3.1, the constrained minimization problem
(3.9) has a solution.

Proof. We start by observing that the condition (3.16) is implied by the condition (3.5). So
Lemma 3.5 is valid. Hence, applying Lemma 3.5, we see that

η = inf
{
L(a,f,g)

∣∣ (a, f, g) ∈ C
}

(3.22)

is well defined. Let {(an, fn, gn)} denote any minimizing sequence of (3.9). That is, (an, fn, gn) ∈
C and L(an,fn, gn) → η as n → ∞. Without loss of generality, we may assume L(an,fn, gn) �
η + 1 (say) for all n. In view of (3.17) and the Schwartz inequality, we have

∣∣an(r) − 1
∣∣ �

r∫
0

∣∣a′
n(ρ)

∣∣dρ � r
1
2

( r∫
0

(
a′
n(ρ)

)2 dρ

) 1
2

� Cr
1
2 (η + 1)

1
2 , (3.23)

∣∣fn(r) − (π − ω)
∣∣ �

∞∫
r

∣∣f ′
n(ρ)

∣∣dρ � r− 1
2

( ∞∫
r

ρ2(f ′
n(ρ)

)2 dρ

) 1
2

� Cr− 1
2 (η + 1)

1
2 , (3.24)

where C > 0 is a constant independent of n. In particular, an(r) → 1 and fn(r) → (π − ω)

uniformly as r → 0 and r → ∞, respectively.
For any (an, fn, gn), the function Gn = q

(π−ω)
fn satisfies Gn(∞) = q . Thus, by virtue of the

definition of gn and (3.17), we have

E2(an, gn) � E2(an,Gn) = q2

(π − ω)2

∞∫
0

(
r2(f ′

n

)2 + a2
nf

2
n

)
dr � CL(an, fn, gn), (3.25)

where C > 0 is a constant, which shows that E2(an, fn) is bounded as well.
With the above preparation, we are now ready to investigate the limit of the sequence

{(an, fn, gn)}.
Consider the Hilbert space (X, (·,·)), where the functions in X are all continuously defined in

r � 0 and vanish at r = 0 and the inner product (·,·) is defined by
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(h1, h2) =
∞∫

0

h′
1(r)h

′
2(r)dr, h1, h2 ∈ X.

Since {an − 1} is bounded in (X, (·,·)), we may assume without loss of generality that {an}
has a weak limit, say, a, in the same space,

∞∫
0

a′
nh

′ dr →
∞∫

0

a′h′ dr, ∀h ∈ X, (3.26)

as n → ∞.
Similarly, for the Hilbert space (Y, (·,·)) where the functions in Y are all continuously defined

in r > 0 and vanish at infinity and the inner product (·,·) is defined by

(h1, h2) =
∞∫

0

r2h′
1h

′
2 dr, h1, h2 ∈ Y.

Since {fn − (π − ω)}, {gn − q} are bounded in (Y, (·,·)), we may assume without loss of gen-
erality that there are functions f,g with f (∞) = π − ω,g(∞) = q , and f − (π − ω),g − q ∈
(Y, (·,·)), such that

∞∫
0

r2H ′
nh

′ dr →
∞∫

0

r2H ′h′ dr, ∀h ∈ Y, (3.27)

as n → ∞, for Hn = fn − (π −ω), H = f − (π −ω), and Hn = gn −q , H = g−q , respectively.
Next, we need to show that the weak limit (a, f, g) of the minimizing sequence {(an, fn, gn)}

obtained above actually lies in C. There are two things to be verified for (a, f, g): the boundary
conditions and the constraint (3.6). From the uniform estimates (3.11), (3.23), and (3.24), we
easily deduce that a(0) = 1, f (∞) = π − ω,g(∞) = q . Moreover, applying Lemma 3.5, we get
a ∈ W 1,2(0,∞). Hence a(∞) = 0. To verify f (0) = 0, we use (3.23) to get a δ > 0 such that

∣∣an(r)
∣∣ � 1

2
, r ∈ [0, δ]. (3.28)

Then, using (3.28), we have

sin2 fn(r) � 2

r∫
0

∣∣ sinfn(ρ)f ′
n(ρ)

∣∣dρ

� 4r
1
2

( r∫
0

a2
n(ρ) sin2 fn(ρ)

(
f ′

n(ρ)
)2 dρ

) 1
2

� 2κ− 1
2 r

1
2 L

1
2 (an, fn, gn), r ∈ [0, δ]. (3.29)
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Since 0 � fn � π
2 , we can invert (3.29) to obtain the uniform estimate

0 � fn(r) � Cr
1
4 , r ∈ [0, δ], (3.30)

where C > 0 is independent of n. Letting n → ∞ in (3.30), we see that f (0) = 0 as anticipated.
Thus, it remains to verify (3.6). For this purpose, it suffices to establish the following results,

∞∫
0

(
a2
ngn − a2g

)
Gdr → 0, (3.31)

∞∫
0

(
r2g′

n − r2g′)G′ dr → 0, (3.32)

for any test function G satisfying (3.7) and G(∞) = 0, as n → ∞.
From the fact G ∈ Y and (3.27), we immediately see that (3.32) is valid.
To establish (3.31), we rewrite

∞∫
0

(
a2
ngn − a2g

)
Gdr =

δ1∫
0

+
δ2∫

δ1

+
∞∫

δ2

≡ I1 + I2 + I3, (3.33)

for some positive constants 0 < δ1 < δ2 < ∞, and we begin with

I1 =
δ1∫

0

(
a2
n − a2)gnGdr +

δ1∫
0

a2(gn − g)Gdr ≡ I11 + I12. (3.34)

In view of (3.23) and (3.25), we see that there is a small δ > 0 such that gn ∈ L2(0, δ) and there
holds the uniform bound

‖gn‖L2(0,δ) � K, (3.35)

for some constant K > 0. Thus, we may assume gn → g weakly in L2(0, δ) as n → ∞. In partic-
ular, g ∈ L2(0, δ) and ‖g‖L2(0,δ) � K . Besides, since in (3.7), the function a satisfies a(0) = 1,
we have G ∈ L2(0, δ) when δ > 0 is chosen small enough. Thus, using (3.23) and taking δ1 � δ,
we get

|I11| �
δ1∫

0

∣∣a2
n − a2

∣∣|gnG|dr �
δ1∫

0

(∣∣a2
n − 1

∣∣ + ∣∣a2 − 1
∣∣)|gnG|dr

� CKδ
1
2 ‖G‖L2(0,δ), (3.36)
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where C > 0 is a constant independent of n. Thus, for any ε > 0, we can choose δ1 > 0
sufficiently small to get |I11| < ε. On the other hand, since gn → g weakly in L2(0, δ) and
G ∈ L2(0, δ), we have I12 → 0 as n → ∞.

Since {an} and {gn} are bounded sequences in W 1,2(δ1, δ2), using the compact embedding
W 1,2(δ1, δ2) �→ C[δ1, δ2], we see that an → a and gn → g uniformly over [δ1, δ2] as n → ∞.
Thus I2 → 0 as n → ∞.

To estimate I3, we recall that {E2(an, gn)} is bounded by (3.25), gn(r) → q uniformly as

n → ∞ by (3.11), and G(r) = O(r− 1
2 ) as r → ∞ by (3.7). In particular, since q > 0, we may

choose r0 > 0 sufficiently large so that

∣∣g(r)
∣∣ � q

2
, inf

n

∣∣gn(r)
∣∣ � q

2
, r � r0. (3.37)

Combining the above facts, we arrive at

|I3| �
∞∫
r

(∣∣a2
ngn

∣∣ + ∣∣a2g
∣∣)|G|dρ � Cr− 1

2

∞∫
r

2

q

(
a2
ng

2
n + a2g2)dρ, (3.38)

where r � r0 (cf. (3.37)) and C > 0 is a constant. Using (3.25) in (3.38), we see that for any
ε > 0 we may choose δ2 large enough to get |I3| < ε.

Summarizing the above discussion, we obtain

lim sup
n→∞

∣∣∣∣∣
∞∫

0

(
a2
ngn − a2g

)
Gdr

∣∣∣∣∣ � 2ε, (3.39)

which proves the desired conclusion (3.31). Thus, the claim (a, f, g) ∈ C follows.
To show that (a, f, g) solves (3.9), we need to establish

η = lim inf
n→∞ L(an,fn, gn) � L(a,f,g). (3.40)

This fact is not automatically valid and extra caution is to be exerted because the functional L

contains negative terms.
With

Ω = π − ω, 0 < Ω <
π

2
, (3.41)

we may rewrite the Lagrange density (2.19) as

L(a, f, g) = L0(a, f ) − E0(a, g), (3.42)

where
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L0(a, f ) = 2

(
2
(
a′)2 + (a2 − 1)2

r2

)
+ 1

2
r2(f ′)2 + 2κa2 sin2 f

(
2
(
f ′)2 + a2 sin2 f

r2

)
+ a2(sin2 Ω − 2q2) + a2 sin2 Ω

(
cos2(f − Ω) − 1

)
+ 2a2 sinΩ cosΩ sin(f − Ω) cos(f − Ω) + a2 cos2 Ω sin2(f − Ω), (3.43)

E0(a, g) = r2(g′)2 + 2a2(g − q)2 + 4a2(g − q)q. (3.44)

Thus, in order to establish (3.40), it suffices to show that

lim inf
n→∞

∞∫
0

L0(an, fn)dr �
∞∫

0

L0(a, f )dr, (3.45)

lim
n→∞

∞∫
0

E0(an, gn)dr =
∞∫

0

E0(a, f )dr. (3.46)

We first show (3.46). To this end, we observe that, since both (an, gn) and (a, g) satisfy (3.6),
i.e.,

∞∫
0

(
r2g′

nG
′ + 2a2

ngnG
)

dr = 0,

∞∫
0

(
r2g′G′ + 2a2gG

)
dr = 0, (3.47)

we can set G = g − gn in the above equations and subtract them to get

∞∫
0

r2(g′
n − g′)2 dr = 2

∞∫
0

(
a2
ngn − a2g

)
(g − gn)dr

=
δ1∫

0

+
δ2∫

δ1

+
∞∫

δ2

≡ I1 + I2 + I3, (3.48)

where 0 < δ1 < δ2 < ∞.
To study I1, we need to get some uniform estimate for the sequence {gn} near r = 0. From

(3.23), we see that for any 0 < γ < 1
2 (say) there is a δ > 0 such that

2a2
n(r) � (2 − γ ), r ∈ [0, δ]. (3.49)

Consider the comparison function

σ(r) = Cr1−γ , r ∈ [0, δ], C > 0. (3.50)

Then
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(
r2σ ′)′ = (1 − γ )(2 − γ )σ < 2a2

n(r)σ, r ∈ [0, δ]. (3.51)

Consequently, we have (
r2(gn − σ)′

)′
> 2a2

n(r)(gn − σ), r ∈ [0, δ]. (3.52)

Choose C > 0 in (3.50) large enough so that Cδ1−γ � q . Since gn < q (Lemma 3.3), we have
(gn − σ)(δ) < 0 and (gn − σ)(0) = 0. In view of these boundary conditions and applying the
maximum principle to (3.52), we obtain gn(r) < σ(r) for all r ∈ (0, δ). Or, more precisely, we
have

0 < gn(r) <

(
q

δ1−γ

)
r1−γ , 0 < r < δ. (3.53)

Of course, the weak limit g of {gn} satisfies the same estimate. Therefore, using the uniform
estimates (3.23) and (3.53), we see that for any ε > 0 there is some δ1 > 0 (δ1 < δ) such that
|I1| < ε.

Moreover, in view of the uniform estimate (3.11) and (3.37), we have

|I3| � 2

∞∫
δ2

(
a2
ngn + a2g

)(|gn − q| + |g − q|)dr

� 4

q

(∣∣gn(δ2) − q
∣∣ + ∣∣g(δ2) − q

∣∣) ∞∫
0

(
a2
ng

2
n + a2g2)dr

� 2

q
δ
− 1

2
2

(
E

1
2
2 (an, gn) + E

1
2
2 (a, g)

)(
E2(an, gn) + E2(a, g)

)
, (3.54)

which may be made small than ε when δ2 > 0 is large enough due to (3.25).
Furthermore, since an → a and gn → g in C[δ1, δ2], we see that I2 → 0 as n → ∞.
In view of the above results regarding I1, I2, I3 in (3.48), we obtain the strong convergence

lim
n→∞

∞∫
0

r2(g′
n − g′)2 dr = 0. (3.55)

In particular, we have

lim
n→∞

∞∫
0

r2(g′
n

)2 dr =
∞∫

0

r2(g′)2 dr. (3.56)

We can also show that

lim
n→∞

∞∫ (
a2
n(gn − q)2 + 2a2

n(gn − q)q
)

dr =
∞∫ (

a2(g − q)2 + 2a2(g − q)q
)

dr. (3.57)
0 0
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In fact, we have seen that {(an, fn, gn)} is bounded in W
1,2
loc (0,∞). Thus, the sequence is

convergent in C[α,β] for any pair of numbers, 0 < α < β < ∞. Since we have shown that
an(r) → 1 and gn(r) → 0 as r → 0 uniformly, with respect to n = 1,2, . . . , we conclude that
an → a and gn → g uniformly over any interval [0, β] (0 < β < ∞). Thus, combining this result
with the uniform estimate (3.11), we see that (3.57) is proved.

In view of (3.56) and (3.57), we see that (3.46) follows.
On the other hand, applying the uniform estimate (3.24), we also have

lim
n→∞

∞∫
0

a2
n

(
cos2(fn − Ω) − 1

)
dr =

∞∫
0

a2(cos2(f − Ω) − 1
)

dr, (3.58)

lim
n→∞

∞∫
0

a2
n sin(fn − Ω) cos(fn − Ω)dr =

∞∫
0

a2 sin(f − Ω) cos(f − Ω)dr. (3.59)

Finally, using (3.58), (3.59), and the condition (3.5), i.e.,

sin2 Ω − 2q2 > 0, (3.60)

we see that (3.45) is established and the proof of the lemma is complete. �
4. Fulfillment of the governing equations

Let (a, f, g) be the solution of (3.9) obtained in the previous section. We need to show that
it satisfies the governing equations (2.25)–(2.27) for dyons. Since we have solved a constrained
minimization problem, we need to prove that the Lagrange multiplier problem does not arise as
a result of the constraint, which would otherwise alter the original equations of motion. In fact,
since the constraint (3.6) involves a and g only and (3.6) immediately gives rise to (2.27), we see
that all we have to do is to verify the validity of (2.25) because (2.26) is the f -equation and (3.6)
does not involve f explicitly.

To proceed, we take ã ∈ C1
0 . For any t ∈ R, there is a unique corresponding function gt such

that (a + t ã, f, gt ) ∈ C and that gt smoothly depends on t . Set

gt = g + g̃t , G̃ =
(

d

dt
g̃t

)∣∣∣∣
t=0

. (4.1)

Since (a + t ã, f, gt )|t=0 = (a, f, g) is a minimizing solution of (3.9), we have

0 = d

dt
L(a + t ã, f, gt )

∣∣∣∣
t=0

= 8

∞∫
dr

{
a ′̃a′ + (a2 − 1)aã

r2
+ 1

4
sin2 f aã
0
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+ κ sin2 f

((
f ′)2

aã + sin2 f

r2
a3ã

)
− 1

2
g2aã

}
− 2

∞∫
0

dr
{
r2g′G̃′ + 2a2gG̃

}
≡ 8I1 − 2I2. (4.2)

It is clear that the vanishing of I1 implies (2.25) so that it suffices to prove that I2 vanishes. To
this end and in view of (3.6), we only need to show that G̃ satisfies the same conditions required
of G in (3.6).

In (3.6), when we make the replacements a �→ a + t ã, g �→ gt ,G �→ g̃t , we have

∞∫
0

(
r2g′

t g̃
′
t + 2(a + t ã)2gt g̃t

)
dr = 0. (4.3)

Or, with gt = g + g̃t , we have

∞∫
0

(
r2(g′ + g̃′

t

)
g̃′

t + 2a2(g + g̃t )g̃t + 2t2ã2gt g̃t + 4taãgt g̃t

)
dr = 0. (4.4)

Recall that
∫ ∞

0 (r2g′g̃′
t + 2a2gg̃t )dr = 0. Thus (4.4) and the Schwartz inequality give us

∞∫
0

(
r2(g̃′

t

)2 + 2a2g̃2
t

)
dr =

∣∣∣∣∣2t

∞∫
0

(
t ã2 + 2aã

)
gt g̃t dr

∣∣∣∣∣
� |2t |

(
|2t |

∞∫
0

ã2g2
t dr + 1

|2t |
∞∫

0

a2g̃2
t dr

)
+ 2t2

∞∫
0

ã2|gt | |̃gt |dr

= 4t2

∞∫
0

ã2g2
t dr +

∞∫
0

a2g̃2
t dr + 2t2

∞∫
0

ã2|gt | |̃gt |dr. (4.5)

Applying the bounds 0 � g,gt � q and the relation g̃t = gt − g in (4.5), we have

∞∫
0

(
r2(g̃′

t

)2 + a2g̃2
t

)
dr � 4t2

∞∫
0

ã2g2
t dr + 2t2

∞∫
0

ã2|gt | |̃gt |dr

� 8q2t2

∞∫
0

ã2 dr. (4.6)

As a consequence, we have
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∞∫
0

(
r2

(
g̃′

t

t

)2

+ a2
(

g̃t

t

)2)
dr � 8q2

∞∫
0

ã2 dr, t �= 0. (4.7)

Using g̃t (∞) = 0, the Schwartz inequality and (4.7), we have for t �= 0 the estimate

∣∣∣∣ g̃t

t
(r)

∣∣∣∣ �
∞∫
r

∣∣∣∣ g̃′
t (ρ)

t

∣∣∣∣dρ

� r− 1
2

( ∞∫
r

ρ2
(

g̃′
t

t

)2

dρ

) 1
2

� 2
√

2q‖̃a‖L2(0,∞). (4.8)

Letting t → 0 in (4.7) and (4.8), we obtain E2(a, G̃) < ∞ and G̃(r) = O(r− 1
2 ) (for r large).

In particular, G̃(∞) = 0 and G̃ indeed satisfies all conditions required in (3.6) for G. Hence I2
vanishes in (4.2). Consequently, Eq. (2.25) has been verified.

5. Properties of the solution obtained

In this section, we study the properties of the solution, say (a, f, g), of Eqs. (2.25)–(2.27)
obtained as a solution of the constrained minimization problem (3.9). We split the investigation
over a few steps.

Lemma 5.1. The solution (a, f, g) enjoys the properties a(r) > 0, 0 < g(r) < q , 0 < f (r) <

π − ω, and both f (r) and g(r) are strictly increasing, for any r > 0.

Proof. We have 0 � g � q and 0 � f � π
2 from Lemmas 3.2 and 3.3. Besides, it is clear that

a � 0 since both (2.20) and (2.21) are even in a.
If a(r0) = 0 for some r0 > 0, then r0 is a minimizing point and a′(r0) = 0. Using the unique-

ness of the solution to the initial value problem consisting of (2.25) and a(r0) = a′(r0) = 0, we
get a ≡ 0 which contradicts a(0) = 1. Thus, a(r) > 0 for all r > 0. The same argument shows
that f (r) > 0, g(r) > 0 for all r > 0. Since (3.13) is valid, we see that g(r) is strictly increasing.
In particular, g(r) < q for all r > 0.

Lemma 3.2 already gives us f � π
2 . We now strengthen it to f < π − ω. First it is easy to

see that f � π − ω. Otherwise there is a point r0 > 0 such that f (r0) > π − ω. Thus, we can
find two points r1, r2, with 0 � r1 < r0 < r2, such that f (r1) = f (r2) and f (r) � f (r1) for
all r ∈ (r1, r2). Modify f to f̃ by setting f̃ (r) = f (r1), r ∈ (r1, r2); f̃ = f , elsewhere. Then
(a, f̃ , g) ∈ C and L(a, f̃ , g) < L(a,f, g) because f cannot be constant-valued over (r1, r2) by
virtue of Eq. (2.26) and the energy density E1 defined in (2.20) increases for f ∈ [0, π

2 ]. This
contradiction establishes the result f � π − ω. Next, we assert that f < π − ω. Otherwise, if
f (r0) = π − ω for some r0 > 0, then r0 is a maximum point of f such that f ′(r0) = 0 and
f ′′(r0) � 0. Inserting these results into (2.26), we arrive at a contradiction since 0 < π − ω < π

2 .
To see that f is non-decreasing, we assume otherwise that there are 0 < r1 < r2 such that

f (r1) > f (r2). Since f (0) = 0, we see that f has a local maximum point r0 below r2, which
is known to be false. Thus f is non-decreasing. To see that f is strictly increasing, we assume
otherwise that there are 0 < r1 < r2 such that f (r1) = f (r2). Hence f is constant-valued over
[r1, r2] which is impossible.
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The proof of the lemma is complete. �
Lemma 5.2. For the solution (a, f, g), we have the asymptotic estimates

a(r) = O
(
e−γ (1−ε)r

)
, g(r) = q + O

(
r−1), f (r) = (π − ω) + O

(
r−1), (5.1)

as r → ∞, where ε ∈ (0,1) is arbitrarily small and

γ = 1

2

√
sin2 ω − 2q2. (5.2)

Moreover, the exponential decay rate for a(r) stated in (5.1) is uniform with respect to the pa-
rameter q when q is restricted to any allowed interval [0, q0] where q0 satisfies

0 < q0 < min

{
1√
2

sinω,
√

2

(
1 − ω

π

)}
. (5.3)

Proof. From (3.19) and (3.24), we see that f (r) → π − ω uniformly fast for q ∈ [0, q0]. Apply-
ing this and the other properties derived in Lemma 5.1 for a,f, g in Eq. (2.25), we have

a′′ �
(

1

4
sin2 ω(1 − δ) − 1

2
q2

)
a, r > Rδ, (5.4)

where Rδ > 0 is sufficiently large but independent of q ∈ [0, q0] and δ > 0 is arbitrarily small.
Write

1

4
sin2 ω(1 − δ) − 1

2
q2 = 1

4

(
sin2 ω − 2q2)(1 − ε)2, (5.5)

and rε = Rδ . Then (5.4) gives us a′′ � γ 2(1 − ε)2a, r > rε . Using the comparison function
σ(r) = Cεe−γ (1−ε)r , we have that (a − σ)′′ � γ 2(1 − ε)2(a − σ), r > rε . Thus, by virtue of the
maximum principle, we have (a − σ)(r) < 0 for all r > rε when the constant Cε is chosen large
enough so that a(rε) � σ(rε). This establishes the uniform exponential decay estimate for a(r)

as r → ∞ with respect to q ∈ [0, q0].
To get the estimate for g, we note from (3.13) that

g′(r) = 1

r2

r∫
0

2a2(ρ)g(ρ)dρ, r > 0, (5.6)

which leads to

q − g(r) =
∞∫
r

1

ρ2

ρ∫
0

2a2(ρ′)g(
ρ′)dρ′ dρ = O

(
r−1), (5.7)

for r > 0 large, since a(r) vanishes exponentially fast at r = ∞.
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To study the asymptotic behavior of f , we integrate (2.26) over the interval (r0, r) (0 < r0 <

r < ∞) to get

8κ a2(r) sin2 f (r)f ′(r) + r2f ′(r) = C0 +
r∫

r0

F(ρ)dr, (5.8)

where C0 and F(r) are given by

C0 = 8κ a2(r0) sin2 f (r0)f
′(r0) + r2

0 f ′(r0), (5.9)

F = 2a2 sinf cosf + 8κa2 sinf cosf
(
f ′)2 + 8κa4 sin3 f cosf

r2
. (5.10)

Take r0 > 0 large enough so that 1
2 (π − ω) � f (r) < π − ω for r � r0. Thus

0 < sin
1

2
(π − ω) � sinf (r), r � r0. (5.11)

Using (5.11) and recalling the definition of E1, we see that the integral

∞∫
r0

a2 sinf cosf
(
f ′)2 dr (5.12)

is convergent. Applying this result and the exponential decay estimate of a(r) as r → ∞, we
obtain

f ′(r) = C0 + ∫ r

r0
F(ρ)dρ

8κ a2(r) sin2 f (r) + r2
= O

(
r−2), r > r0. (5.13)

Integrating (5.13) over (r,∞) (r > r0), we arrive at

(π − ω) − f (r) = O
(
r−1). (5.14)

The proof of the lemma is complete. �
Lemma 5.3. For the solution (a, f, g) with fixed ω ∈ (π

2 ,π), the electric charge

Qe(q) = 2

∞∫
0

a2(r)g(r)dr (5.15)

enjoys the property Qe(q) → 0 as q → 0.



3624 Z. Gao, Y. Yang / Journal of Functional Analysis 262 (2012) 3602–3625
Proof. For fixed ω, let q0 satisfy (5.3). Since a vanishes exponentially fast at infinity uniformly
with respect to q ∈ (0, q0] and 0 < g(r) < q for all r > 0, we see that we can apply the dominated
convergence theorem to (5.15) to conclude that Qe(q) → 0 as q → 0. �

It should be noted that the special case κ = 0 is to be treated separately since the study above
relies on the condition κ > 0 (see (3.29)). In fact, when κ = 0, the Skyrme term in (2.6) is
absent and the model becomes the gauged sigma model which is easier. However, technically,
the boundary condition f (0) = 0 has to be removed from the definition of the admissible space
A but recovered later for the obtained solution to the constrained minimization problem as is
done for the function g in the proof of Lemma 3.4. The details are omitted here.
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