
inhibit nonspecific binding. Sections were
stained with antibodies with the following
specificities––pAktSer473, total Akt,
pmTORSer2448, and total mTOR. Stained
tissues were incubated with a secondary
antibody followed by ABC reagents and
DAB (Vector Lab, Burlingame, CA). Tolu-
dine blue was used to counterstain.
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A Deep-Intronic FERMT1 Mutation Causes Kindler
Syndrome: An Explanation for Genetically Unsolved Cases
Journal of Investigative Dermatology (2015) 135, 2876–2879; doi:10.1038/jid.2015.227; published online 16 July 2015

TO THE EDITOR
Kindler syndrome (KS) is a distinct type
of epidermolysis bullosa (EB) defined
by variable levels of skin cleavage and
a progressive phenotype comprising
skin blistering, photosensitivity, poikilo-
derma, mucocutaneous scarring, and

malignancies (Has et al., 2011). KS is
caused by mutations in FERMT1, the
gene encoding kindlin-1 (Jobard et al.,
2003). The particular features of KS may
rely on the functions of kindlin-1, which
is a member of the protein family of
kindlins, essential integrin activators.

Kindlin-1 is engaged in integrin β1 adhe-
sion complexes, the focal adhesions,
and regulates β1 activation, dyna-
mics, and adhesion turnover (Harburger
et al., 2009; Margadant et al., 2012).
Besides, it acts as a linker between
cell adhesion and regulation of the cell
cycle (Patel et al., 2013) and controls
Wnt and transforming growth factor-β
availability to regulate stem cell prolife-
ration (Rognoni et al., 2014).Accepted article preview online 17 June 2015; published online 16 July 2015

Abbreviations: bp, base pair; EB, epidermolysis bullosa; FERMT1, gene coding for kindlin-1; KS, Kindler
syndrome
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The evaluation of KS remains challeng-
ing, in particular in cases without full-
blown clinical picture (Lai-Cheong et al.,
2008; Has et al., 2014b). This is due to
three factors: (i) the KS phenotype may
overlap with those of other EB types; (ii)
specific antibodies to kindlin-1 are not
widely available and display faint immu-
nostaining signals, even in normal human
skin, probably because of the discrete
distribution of “focal adhesion” equiva-
lents in the tissue; and (iii) the broad
spectrum of mostly private FERMT1muta-
tions and mutational mechanisms
(HGMD professional 2015.1, https://gre
nada.lumc.nl/LOVD2/) (Fuchs-Telem
et al., 2014; Youssefian et al., 2015).
Because of the long-term severe compli-
cations of KS, in particular aggressive
squamous cell carcinomas, periodontitis,
and mucosal strictures, accurate diagnosis
is pivotal for the management of patients.
Here we extend the spectrum of

FERMT1 mutations showing that deep-
intronic mutations may account for
KS cases, which remain genetically
unsolved with sequencing of the exons
and exon–intron boundaries or gene-
dosage analyses.

The patients included in this study
were suspected with KS based on
clinical and/or skin morphological find-
ings (Figure 1). After written informed
consent, EDTA-blood and skin biopsies
were obtained. The study was approved
and conducted according to the Decla-
ration of Helsinki Principles. Mutational
analysis of FERMT1 and immunofluor-
escence mapping were performed as
described (Has et al., 2011). The mutation
analysis could not or could only partially
disclose the genetic basis of the disease.
A new molecular mechanism was
identified after employing analyses on
RNA and the protein level in case 1.
Case 1 is a 2-year-old boy born to

healthy non-consanguineous German
parents. He had fragile skin at birth
and developed incipient cigarette paper
appearance of the skin over hands and
feet, at the age 1.5 years (Figure 1a). The
mutation c.676delC, p.Gln226Serfs*26,
in FERMT1 exon 5 was disclosed in a
heterozygous state (Figure 2a), but the
second mutation remained elusive. To
the best of our knowledge, c.676delC
has not been reported before, but the
duplication, c.676dupC, in this same

repeat of seven cytosines is recurrent
(Martignago et al., 2007). Screening for
large deletions/duplications by quantita-
tive real-time PCR (Borozdin et al.,
2004; Has et al., 2006) excluded any
rearrangements. Finally, sequencing of
the promoter excluded any unreported
variants (Has et al., 2014a). To illumi-
nate the genetic background, primary
keratinocytes were isolated from the skin
biopsy of case 1 and from control
individuals and cultured in keratinocyte
growth medium (Invitrogen, Karlsruhe,
Germany). Cell lines were generated
using retroviral particles containing
human papillomavirus E6E7 genes (gift
of Dr Fernando Larcher). To validate
FERMT1 as the disease-causing gene,
immunoblotting of lysates of keratino-
cytes was performed with the antibody
KS4, which recognizes the N-terminus of
kindlin-1 (Has et al., 2009). This showed
the absence of the kindlin-1 protein in
the keratinocytes of case 1 (Figure 2b).
We reasoned that the undetected

mutation must reside in regions not
covered by the prior tests and isolated
total RNA (Qiagen, Hilden, Germany)
and performed reverse transcriptase –

Case 1 Case 2

Case 1Control Case 2

Case 3

Case 3
Collagen VII / nuclei

Figure 1. Clinical and skin morphological findings in patients with genetically unsolved KS. (a) Erosions were present at birth and skin atrophy at the age
of 1.5 years in case 1. (b) Cigarette paper-like skin atrophy in case 2 at the age of 4 years. (c) Atrophy on the dorsal aspect of the hand of case 3 at the age
of 27. (d) Immunofluorescence staining of the skin demonstrates irregular collagen VII in the patients, in contrast to the linear pattern at the dermal–epidermal
junction in the control skin. Note a dermal level of skin cleavage in case 1, whereas in case 3 the split was both intraepidermal and junctional (stars).
The arrow points to the nuclei of the basal keratinocytes on the base on the blister.
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PCRs to cover the entire FERMT1 cDNA
(Supplementary Table 1 online). All
amplicons had the expected size,
except for those spanning exons 5–11,
which revealed an additional larger
transcript in the patient (Figure 2c).
Cloning into TOPOTA and sequencing
showed that the larger transcript
resulted from the insertion of 124 bp
between exons 9 and 10 (Figure 2d and
e). Blasting indicated that this was a
part of intron 9, starting at the position
IVS9+742. To determine the under-
lying genomic mutation, the intron 9
was sequenced, and a deep-intronic,
unclassified variant was disclosed
two positions upstream of the insertion,
IVS9+740G4A, c.1139+740G4A, in
a heterozygous state (Figure 2f). This
variant is not referenced in databases
(dbSNP142, exome variant server), and
we excluded it from 202 chromosomes
of a central European population. In
silico prediction (http://www.cbs.dtu.dk/
services/NetGene2/) indicated the
generation of a new acceptor splice site
(Figure 2e and f). Consequently, a
124-bp pseudo-exon containing a
stop codon, p.P381Hfs*16, is inte-
grated, whereby an existing cryptic
donor splice site is used (Figure 2e).
Next, 15 patients suspected with KS

but genetically unsolved were screened.
We identified three more cases, all homo-
zygous for IVS9+740G4A (Figure 2f).
Case 2 is a 4-year-old male born to
healthy unrelated Romanian parents.
He had trauma-induced skin blistering
since birth and mild photosensitivity.
With time blistering susceptibility decrea-
sed, whereas poikiloderma appeared on
sun-exposed areas (Figure 1b). In this
case, also large rearrangements were
excluded. Case 3, a 29-year-old woman,
originated from Afghanistan and had two
affected siblings. She had discrete poiki-
loderma, more pronounced on the extre-
mities (Figure 1c), and esophageal
stenosis. In both cases, immunofluores-
cence staining of the skin had suggested
KS, based on the irregular staining of
collagen VII or on multiple levels of skin
cleavage, respectively (Figure 1d). Case 4,
a 58-year old Romanian man, had had
skin blistering on the extremities in child-
hood. Thereafter, he developed typical
KS features, including poikiloderma on
the neck and axillar folds, atrophy of

the skin, pseudosyndactyly, periodontitis,
tooth loss, ectropion, and urethral steno-
sis. These additional cases strongly sup-
port the disease-causing role of the
mutation. Moreover, we excluded
homozygosity in the family of case 2,

which was available (Supplementary
Figure online). The surrounding single-
nucleotide polymorphisms suggest that
the mutation is harbored on a common
haplotype in cases 1, 2, and 4 but not in
case 3 (Supplementary Table 2 online).

Control Exon 5

Case 1

M

700 bp

Co

Normal cDNA

E9

E9

E9

E10

E10

E10

gDNA

IVS9+740G>A

Pseudo-exon
124 bpag

0.17
gt

0.79

Pseudo-exon

Insertion
Pseudo-exon

G>A

G>A

G>A

Mutant cDNA

50 bp

50 bp

125 bp

125 bp124 bp

5849 bp

C1 N

FERMT1
Ex5-11

GAPDH

c.676delC

kDa Co

70

50

C1

Kindlin-1

GAPDH

cDNA

Exon 9

Case 1
Exon 9

gDNA

Control

Case 1

Case 2

Case 3

Exon 10
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Figure 2. The consequences of the deep intronic FERMT1 mutation, IVS9+740G4A. (a) Sequences of
FERMT1 exon 5 demonstrating the heterozygous frame shift mutation, c.676delC, in case 1 (arrow).
(b) Immunoblot demonstrates the absence of kindlin-1 in keratinocytes lysates from case 1 (C1); Co,
control. (c) Agarose gel electrophoresis demonstrating the expected band in the control and of an
additional fragment in the patient. M, marker, N, negative control. (d) Analysis of the PCR products
revealed the insertion of a part of intron 9 in case 1. (e) Schematic representation of the region spanning
FERMT1 exons 9 and 10 (E9, E10). The mutation IVS9+740G4A is depicted in red, as well as the
pseudo-exon. (f) Sequencing of intron 9 revealed in all cases the mutation IVS9+740G4A.
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Indeed, the surnames of cases 1 and 2
are of Slavic origin, suggesting an
ancestral mutation propagated through
Slavic migration to Northern Romania
and Eastern Germany, where our
patients are living. Nevertheless, the
mutation affects a CpG dinucleotide,
which has a high mutation rate from 5-
methylated CG to TG and its comple-
mentary pair CA, suggesting that it
could also be recurrent.
Altogether, we show that KS patients

may harbor FERMT1 deep-intronic muta-
tions, which are missed in targeted and
whole-exome sequencing, and require
RNA analysis or whole-genome sequen-
cing. Our results argue against a genetic
heterogeneity of KS.
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Expanding the Phenotypic Spectrum of Olmsted Syndrome
Journal of Investigative Dermatology (2015) 135, 2879–2883; doi:10.1038/jid.2015.217; published online 23 July 2015

TO THE EDITOR
Palmoplantar keratodermas (PPKs) are a
group of genetically heterogeneous gen-
odermatoses. Recently mutations in
TRPV3 were identified as a cause of the
rare form of PPK, Olmsted syndrome (OS;
OMIM 614594; Lai-Cheong et al., 2012;
Lin et al., 2012; Danso-Abeam et al.,
2013; Kariminejad et al., 2014;
Duchatelet et al., 2014b). OS was first
reported in 1927 in an Italian American

boy with painful palmoplantar kerato-
derma, deep fissures, pseudoainhum,
curved thickened nails, and periorificial
hyperkeratosis with fissuring (Olmsted,
1927). About 50 clinical cases of OS
have been described, and all generally
exhibit the features described by Olmsted
as well as some additional features
(Mevorah et al., 2005).
In this study, we report the case of six

families, referred to the Pachyonychia

Congenita Project for the evaluation of
painful plantar keratoderma, but lacking
pseudoainhum or significant periorificial
keratoderma. In each case, after no
mutations were identified in the PC-
associated keratin genes, KRT6A, KRT6B,
KRT6C, KRT16, or KRT17, and in some
cases, after other candidate genes includ-
ing GJB6, DSP, DSG1, KRT5, and KRT14
had been screened, we identified hetero-
zygous missense mutations in TRPV3,
thus greatly expanding the phenotypicAccepted article preview online 12 June 2015; published online 23 July 2015
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