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Classical world-sheet string theory has recently been shown to be nonintegrable and chaotic in various
confining string theory backgrounds – the AdS soliton background in particular. In this Letter we study
a minisuperspace quantization of the theory and look at properties of the spectrum like the distribution
of level spacing, which are indicative of quantum order or chaos. In the quantum spectrum we find
a gradual transition from chaotic (Wigner GOE) to integrable (Poisson) regime as we look at higher
energies. This is expected since our system is integrable asymptotically, and at higher energies, the
dynamics is entirely dominated by the kinetic terms.

© 2013 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Understanding string spectra in holographic backgrounds is an
intriguing issue. Via gauge gravity duality [1–4], the string spec-
trum gets mapped to a glueball spectrum in the strongly coupled
gauge theory. Many known extensions of the original holographic
principle involve a QCD-like confining gauge theory model [5,6].
The goal here is to understand the nature of the QCD spectrum
using a dual string background. However the exact string theory
spectrum on these simple holographic backgrounds is not com-
pletely worked out yet. Even in the simplest case of pure AdS,
the string spectrum is not fully understood [7]. Things are much
more intractable for confining backgrounds. It has been shown that
classical string motion is nonintegrable in various confining back-
grounds [8–11].1 It seems reasonable to conclude that an analytic
understanding is difficult to achieve.

However some statistical properties of the energy spectrum
can be understandable. Random Matrix Theory was proposed by
Wigner back in 1957 [13] to study hadron spectra in a statis-
tical sense. Later it was understood that appearance of the re-
sults of Random Matrix Theory in QCD spectra came under the
generic framework of Quantum Chaos. Quantum dynamics of sys-
tems which display classical chaos was found to be quite generic
and the distribution of level spacing was found to agree with
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that obtained from a Gaussian Orthogonal Ensemble (GOE) [14,15].
Level spacing distribution of eigenvalues for integrable systems on
the other had already been shown to obey a Poisson statistics [16].
However some of the features here are neither universal nor com-
pletely understood – a few of these complications are discussed
in [17,18].

In this Letter, we will try to understand the problem of quan-
tum chaos in an AdS soliton background [19]. In [8], the classical
dynamics in this background was found to be nonintegrable and
chaotic. Here we will try to find the quantum spectrum in the
framework of minisuperspace quantization. It should be noted that
our background is asymptotically AdS which is an integrable back-
ground [20,21]. Hence it is not clear whether the asymptotic level
spacing should really match with that of a Wigner GOE. In fact we
will find a gradual transition from Wigner GOE to Poisson distri-
bution for higher energies.

Quantum chaos in the context of holographic systems has been
attempted in [22,23]. Minisuperspace quantization is implemented
in [23]. However, the authors there do not have a correct normal-
ization of the level-spacing that we have here. Correct normaliza-
tion leads us to a Wigner GOE with no free parameters and a �3
statistic for the system. We also discuss the implications of having
an asymptotic AdS geometry, and discuss the transition of the sys-
tem from a chaotic to an integrable regime. Techniques similar to
what we have used here, have been applied in a slightly different
holographic context in [24].

The rest of this Letter is organized as follows. In Section 2,
we set our system up and using minisuperspace quantization re-
duce our problem to that of finding the spectrum for the mo-
tion of a particle in a simple potential. In Section 3, we discuss
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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the properties of the spectrum that we can expect in an integrable
and a chaotic quantum system. We end with our results for the
AdS soliton background in Section 4.

2. Setup

We will work with the AdS soliton background [19] described
by the metric2:

ds2 = 4L2α′

d2

{
e2ax2(−dt2 + T (x)dθ2 + dw2

i

) + d2a2x2

T (x)
dx2

}
,

where T (x) = 1 − e−dax2
, a = d/4. (1)

The geometry is asymptotically AdSd+1 and it caps off in the “ra-
dial” direction, in these coordinates at x = 0, where the size T (x)
of the compact θ -cycle shrinks to zero. This smoothly cuts off the
IR region of AdS, dynamically generating a mass scale in the the-
ory, very much like in real QCD – the dual theory is confining and
has a mass gap. The θ -cycle gives a Scherk–Schwarz compactifica-
tion in the dual theory. The w directions remain non-compact and
serve as space directions of the field theory CFTd−1.

We will work with closed strings in the geometry, described by
the embedding [8]:

t = t(τ ), θ = θ(τ ), x = x(τ ),

w1 = R(τ ) cos
(
φ(σ )

)
,

w2 = R(τ ) sin
(
φ(σ )

)
with φ(σ ) = ασ . (2)

The string is located at a certain value of x and is wrapped around
a pair of w-directions as a circle of radius R . It is allowed to move
along the potential in x direction and change its radius R . Here
α ∈ Z is the winding number of the string.

Upon substitution in the Polyakov action, one obtains the effec-
tive Lagrangian for the motion:

L ∝ 1

2
e2ax2{−ṫ2 + T (x)θ̇2 + Ṙ2 − α2 R2} + d2a2x2

2T (x)
ẋ2, (3)

where the dot denotes a derivative w.r.t. τ . The coordinates t and
θ turn out to be ignorable and the corresponding momenta E are
k constants of motion:

pt = −e2ax2
ṫ ≡ E, pθ = e2ax2

T (x)θ̇ ≡ k. (4)

R and x survive as free coordinates. The momenta corresponding
to these coordinates are:

pR = e2ax2
Ṙ, px = d2a2x2

T (x)
ẋ. (5)

With this one can construct the effective Hamiltonian:

H = 1

2

{(
−E2 + k2

T (x)
+ p2

R

)
e−2ax2 + T (x)p2

x

d2a2x2
+ α2 R2e2ax2

}
.

(6)

The Virasoro constraint equations give H = 0.3

In [8] we obtained the equations of motion coming from the
Hamiltonian (6) and solved them classically. Here we are going to
do a minisuperspace quantization of the Hamiltonian to find its
quantum spectrum.

2 The metric, embedding and classical equations of motions have been obtained
and discussed extensively in [8]. We will briefly go over the important details, trying
to keep the discussion here self-contained.

3 The other independent Virasoro constraint is automatically satisfied for our em-
bedding.
2.1. Minisuperspace quantization

The minisuperspace prescription requires the following substi-
tution in the Hamiltonian:

p2
R → −∇2

R , p2
x → −∇2

x . (7)

Here the Laplacian is calculated w.r.t. the effective metric seen in
the Lagrangian (3):

−gtt = gR R = e2ax2
, gθθ = e2ax2

T (x), gxx = d2a2x2

T (x)
. (8)

This gives us the minisuperspace Hamiltonian:

H = 1

2

{(
−E2 + k2

T (x)
− ∂2

R

)
e−2ax2 − T (x)

d2a2x2
∂2

x

−
(

T ′(x)

T (x)
− 1

x
+ 6ax

)
T (x)

d2a2x2
∂x + α2 R2e2ax2

}
. (9)

We need to find the eigenvalues of Hψ = 0. The eigenvalue equa-
tion takes the form:

E2ψ(x, R) = −∂2
Rψ(x, R) − f (x)∂2

x ψ(x, R) − g(x)∂xψ(x, R)

+ V eff(x, R)ψ(x, R). (10)

Here we have defined:

f (x) ≡ T (x)e2ax2

d2a2x2
, g(x) ≡

(
T ′(x)

T (x)
− 1

x
+ 6ax

)
T (x)e2ax2

d2a2x2
,

V eff(x, R) ≡ k2

T (x)
+ α2 R2e4ax2

. (11)

With a coordinate transformation dy = dx/
√

f and a field redefi-
nition

ψ̃ = eβψ such that ∂yβ = f ′ − 2g

4
√

f
, (12)

we get (where prime denotes a derivative w.r.t. x),

f ∂2
x ψ + g∂xψ = ∂2

yψ − f ′ − 2g

2
√

f
∂yψ

= eβ
{
∂2

yψ̃ + [
∂2

yβ − (∂yβ)2]ψ̃}
. (13)

The eigenvalue equation now simplifies to:

E2ψ̃(y, R) = −∂2
Rψ̃(y, R) − ∂2

yψ̃(y, R)

+ Ṽ eff(y, R)ψ̃(y, R), (14)

where,

Ṽ eff(y, R) ≡ k2

T (x(y))
+ V

(
x(y), R

)

− [√
f (∂yβ)′ − (∂yβ)2]. (15)

The domain of the problem x ∈ (0,∞) is mapped to y ∈ (0, y∞)

with y∞ ≈ 2.62. The effective potential Ṽ eff(y, R), plotted for two
values of k, is shown in Fig. 1. Here and henceforth, we choose
d = 4 and α = 1.
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Fig. 1. Effective potential Ṽ eff(y, R) for two values of k. We will be interested in k between these two values. On the boundary of the domain Ṽ eff(y, R) � 200. So it is
consistent to replace the boundary by a hard wall as long as we are interested in eigenvalues E2 � 200.
3. Discussion

3.1. Quantum chaos in nonintegrable systems

Quantum chaos4 is the study of quantum properties of a sys-
tem whose classical limit is chaotic. A classical description of chaos
is usually in terms of trajectories and phase space [25,26]. This
framework breaks down in quantum mechanics and a naïve exten-
sion from the definition of classical chaos is not possible even in
principle. The quantum description of a time-independent system
is in terms of the energy levels, and one has to look at the spec-
trum to see if there can be any characteristic properties indicative
of chaos.

An interesting property to study turns out to be the distribu-
tion of the spacing between adjacent energy levels of the system,
normalized such that there is one level per unit interval on an
average. For a quantum system whose Hamiltonian is classically
integrable, it was shown by Berry and Tabor (1977) [16] that this
level-spacing distribution is quite universally same as that of the
spacing between a sequence of random uncorrelated levels, which
is a Poisson distribution:

P (s) � exp(−s). (16)

The next question to ask is whether there is any such universal
distribution for systems which are classically chaotic. The mod-
els most frequently studied in this context are Billiard systems
of Sinai, which come up frequently while talking about classi-
cally chaotic Hamiltonian systems as well. It was shown by Berry
(1981) [14] that the in the quantum spectrum of these systems
small differences of eigenvalues are avoided. It was further demon-
strated by Bohigas, Giannoni and Schmit (1984) [27] that the
level spacing distribution of eigenvalues calculated numerically
agree with a good approximation to that of a Gaussian orthogo-
nal ensemble (GOE) of random matrices, first discussed by Wigner
(1958) [13].

P (s) � π s

2
exp

(
−π s2

4

)
. (17)

A plot of the two distributions is shown in Fig. 2, along with his-
tograms for the example of a particle in a two dimensional box,
without and with an additional nonintegrable potential term. The
principal qualitative difference here is that P (s) has a maximum at

4 For good books on the subject we refer the reader to [17,18].
s = 0 in the Poisson distribution for the integrable case but it goes
to zero as s → 0 in the Wigner GOE distribution for the chaotic
case.

It might initially seem a bit counterintuitive that the level spac-
ing distribution for an integrable system is same as that of ran-
domly spaced levels and that for a nonintegrable system has some
additional structure. However one should note that this structure
comes from quantum mechanical level repulsion, which is able to
manifest only in the nonintegrable case. Because of level repulsion,
small differences in energies are suppressed. In the integrable case,
the eigenvalues coming from the different separable sectors are in-
dependent of each other. Hence there is no such repulsion. This is
systematically demonstrated for two crossing levels in the inset of
Fig. 2.

The normalized spacing between adjacent levels for a harmonic
oscillator is fixed at unity – the spectrum is a rigid spectrum.
The departure from equal spacing is another characteristic feature
of the spectrum distinguishing integrable and nonintegrable sys-
tems. A measure of this departure is given by the Dyson–Mehta
�3 statistic [28]:

�3(L;E) ≡ 1

L
Min
A,B

E+L∫
E

[
N(E) − AE − B

]2
dE. (18)

Here N(E) is the number of levels with a normalized energy less
than E . This is a staircase-like function with an approximate slope
of unity. A and B are the constants that give a best straight line
fit to N(E) in the interval E � E < E + L. One can define �̄3(L) ≡
〈�3(L;E)〉E by averaging over various windows each of length L.

The harmonic oscillator gives the least possible value of �3 =
1/12. For a random spectrum, with a Poisson spacing, �3 = L/15,
independent of E . For a GOE, �̄3(L) = (ln L − 0.0687)/π2. Plots of
�̄3(L) for these spectra are shown along with our result in Fig. 5.

3.2. Asymptotically integrable systems

The systems that we encounter in holography are classically
chaotic, but only in a certain regime of parameters. For our ex-
ample of the AdS soliton, the energy E acts as a parameter that
dials the transition to chaos [8]. For large values of energy, the
system becomes momentum dominated and cares very little about
the details in the potential. We thus expect this system to be ap-
proximately integrable for those parameter values.

This behavior should also be reflected in the quantum spec-
trum. We should expect to see features of quantum chaos only for
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Fig. 2. Distribution of level spacing in the spectrum of an integrable and a nonintegrable potential respectively showing agreement with Poisson and Wigner GOE distribution.
A particle in a rectangular box of dimensions 4

√
e × 1 is considered and in the nonintegrable case is deformed by a potential V (x, y) = exp(γ (x − y − 1)) with γ = 33.8.

The inset shows how two energy levels vary as a generic parameter is changed. In an integrable system the levels can cross and have degeneracies. In a nonintegrable system
the levels repel and hence small differences between energies are avoided.

Fig. 3. Eigenfunction for the 42nd energy level for k = 4.0 with E2 ≈ 98.4.
certain values of parameters of the system. However if quantum
chaos is defined from the distribution of level spacing (17), then
one needs to calculate the differences between a large number of
adjacent levels to approach a perfect GOE distribution. However
our model enters into a momentum dominated integrable regime
at higher energies. Hence we should not expect to find an exact
(or even sufficiently close) GOE distribution for any value of pa-
rameters, small or large. Typically we should get an intermediate
behavior between two extreme cases of GOE and Poisson distribu-
tion.5 We expect this generic behavior of the spectrum to hold in
the full theory, as asymptotic integrability is a property of the full
quantum theory without any minisuperspace quantization.

4. Numerical solution and results

In this section we obtain the spectrum for the AdS soliton
within the framework of minisuperspace quantization set up in
Section 2.1. We need to obtain the eigenvalues E2 of (14). We ob-
tain the eigenvalues numerically using pseudospectral method.
For the purpose of numerics, we restrict ourselves to d = 4
and use α = 1. We cut the problem down to a finite domain

5 It is unclear even theoretically what exact level spacing distribution our models
should show asymptotically.
ymin < y < ymax, Rmin < R < Rmax and discretize it on a N × N
Tchebychef grid [29]. We impose hard-wall Dirichlet boundary con-
ditions on the boundary of the domain – therefore it is important
to make sure that the true eigenfunction falls off to nearly zero
there. This can be ensured by restricting ourselves to eigenvalues
E2 much smaller than the value of the potential on the boundary.

It suffices our purpose to choose Rmax = 10 = −Rmin,
ymin = 0.1, ymax = 2.5. We use N = 64. From the plots of the
potential [Fig. 1], we see that Ṽ (y, R) � 200 on the boundary.
We look at eigenvalues with E2 � 200 for 4 � k � 9. A typical
eigenfunction is shown in Fig. 3.

After obtaining the energies from the eigenvalues, for each
value of k, we normalize them, find the difference between the
nearest members and plot a histogram of the level spacing distri-
bution. Our results are shown in Fig. 4. Restricting to small values
of energy, E2 < 100, we obtain a distribution similar to the Wigner
GOE with a clear signature of level repulsion, indicative of quan-
tum chaos. However, going up to higher energies E2 < 200, we get
back a histogram agreeing with the Poisson distribution of spac-
ing between random uncorrelated levels. This points to the fact
that our system is asymptotically integrable and shows features of
chaos only at certain intermediate values of energy.

As a further test, we calculate the �3 statistic characterizing
spectral rigidity defined in (18). This is shown in Fig. 5. For smaller
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Fig. 4. The distribution of level-spacings in the AdS soliton. We have chosen 4 � k � 9 and have a total of 167 differences for E2 < 100 in the left panel and 994 differences
for E2 < 200 in the right panel. For lower energies we see level repulsion and a distribution close to Wigner GOE. For higher energies, this feature is lost and we recover a
Poisson-like distribution for uncorrelated levels.
Fig. 5. Spectral rigidity and Dyson–Mehta �3 statistic. Dashed blue and dotted red
curves are for Poisson and Wigner GOE distributions respectively. We see an agree-
ment with �̄3 for the integrable and nonintegrable potentials of Fig. 2. For the AdS
soliton, we obtain an agreement with Wigner GOE for lower energies (green tri-
angles, E2 < 100) and an approximate agreement with Poisson for higher energies
(magenta stars, 100 < E2 < 200).

energies E2 < 100, we see smaller values �̄3(L), along the curve
for quantum chaotic systems. For larger values of energy 100 <

E2 < 200, we see larger values of �̄3, close to the L/15 straight
line for random levels, characterizing a large deviation from equal
spacing seen in integrable systems.
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