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Iain W. Mattajd, Javier F. Cáceresb, Benjamin J. Blencowec,*

a Division of Gene Therapy and Hepatology, CIMA, University of Navarra, Pamplona 31008, Spain
b MRC Human Genetics Unit, Edinburgh EH4 2XU, Scotland, UK

c Banting and Best Department of Medical Research, Centre for Cellular and Biomolecular Research, University of Toronto,
Toronto, Ontario, Canada M5S 3E1

d Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg D-69117, Germany

Received 12 March 2007; revised 23 May 2007; accepted 25 May 2007

Available online 4 June 2007

Edited by Ulrike Kutay
Abstract Precursor (pre)-mRNA splicing can impact the effi-
ciency of coupled steps in gene expression. SRm160 (SR-related
nuclear matrix protein of 160 kDa), is a splicing coactivator that
also functions as a 3 0-end cleavage-stimulatory factor. Here, we
have identified an evolutionary-conserved SRm160-interacting
protein, referred to as hRED120 (for human Arg/Glu/Asp-rich
protein of 120 kDa). hRED120 contains a conventional RNA
recognition motif and, like SRm160, a PWI nucleic acid binding
domain, suggesting that it has the potential to bridge different
RNP complexes. Also, similar to SRm160, hRED120 associates
with snRNP components, and remains associated with mRNA
after splicing. Simultaneous suppression in Caenorhabditis ele-
gans of the ortholog of hRED120 with the orthologs of splicing
and 3 0-end processing factors results in aberrant growth or devel-
opmental defects. These results suggest that RED120 may func-
tion to couple splicing with mRNA 3 0-end formation.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The processing of precursor (pre-) mRNA to mature mRNA

involves a series of highly integrated and coupled steps, includ-

ing the addition of a 5 0-m7G cap, intron removal by splicing,

and 3 0-end cleavage and polyadenylation. Most pre-mRNAs

in higher eukaryotes contain at least one intron that must be

excised by a spliceosome. The major spliceosome consists of

the five small nuclear ribonucleoprotein particles (snRNPs)

U1, U2, U4/U6, and U5, as well a large number of non-snRNP

protein splicing factors (for reviews see [1–3]). Members of the

SR (Serine/Arginine) family of splicing factors, as well as SR-
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related proteins, are among the best characterized non-snRNP

splicing factors and have well defined roles in splice site selec-

tion, and in the coupling of splicing to other steps in gene

expression (reviewed by [4–7]).

Splicing influences coupled steps in gene expression by sev-

eral mechanisms. For example, several splicing factors have

been described that affect 3 0-end processing [8,9]. The 3 0-end

processing machinery is relatively well-conserved from yeast

to higher eukaryotes, and is composed of five different factors:

Poly(A) polymerase, cleavage and polyadenylation specific fac-

tor (CPSF), cleavage stimulation factor (CstF) and cleavage

factors I and II (CFI and CFII). These factors associate with

the bipartite poly (A) signal in the nascent transcript and cat-

alyze the coupled 3 0-end cleavage and polyadenylation reac-

tion (reviewed by [10,11]). Direct interactions between

splicing factors and 3 0-end processing factors may result in

the stimulation of cleavage or polyadenylation. These interac-

tions include the binding of the U2 snRNP auxiliary factor

65 kDa subunit to poly(A) polymerase and CFI and interac-

tions between U2 snRNP and CPSF [12–14].

The carboxyl terminal domain (CTD) of the largest subunit

of RNA polymerase II (pol II) and the mRNA binding exon-

junction complex (EJC) also mediate effects of splicing on cou-

pled steps in gene expression [8,15]. The EJC is composed of a

set of factors that associate with pre-mRNA during or soon

after transcription and which remain bound to mRNA after

splicing [16]. The EJC is deposited 20–24 nucleotides upstream

of spliced exon junctions [17–19], and is known to contain fac-

tors implicated in mRNA export, 3 0-end formation, mRNA

turnover via nonsense-mediated decay (NMD), and transla-

tion [20–24].

SRm160 (the SR-related nuclear matrix protein of 160 kDa)

is a splicing coactivator that associates with snRNP compo-

nents, assembled splicing complexes, and the EJC [18,19,25–

28]. In addition to its role in the splicing of specific pre-

mRNAs, SRm160 promotes 3 0-end cleavage via its conserved

N-terminal PWI domain [28]. In order to understand how

SRm160 functions, we have recently used mass spectrometry

to identify factors that associate with this protein [49]. This re-

sulted in the identification of hRED120 (human Arg/Glu/Asp-

rich protein of 120 kDa), which shares several similarities with

SRm160. In addition to interacting with SRm160, hRED120

associates with snRNPs in the absence of pre-mRNA, with

assembled splicing complexes containing the pre-mRNA
blished by Elsevier B.V. All rights reserved.
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substrates, intermediates and products of in vitro splicing

reactions, and remains preferentially bound to spliced mRNA.

We further show that simultaneous repression by RNA inter-

ference (RNAi) in the nematode Caenorhabditis elegans of

orthologs of hRED120 and the SR family splicing factor

SRp20, or of the orthologs of hRED120 and the 3 0-end pro-

cessing factors CstF50 and Clp1, results in growth impairment

or embryonic lethality. Together, our results provide evidence

for the importance of interactions between RED120 and

factors involved in pre-mRNA processing and further suggest

a possible role for RED120 at the interface of splicing and

3 0-end formation.
2. Materials and methods

2.1. Cell extracts and antibodies
HeLa nuclear extract was purchased from C4 (Belgium). The follow-

ing antibodies were used in this study: aSRm160 murine monoclonal
(mAb-B1C8; [29,30]), aSRm160 rabbit polyclonal (aSRM160; [25]),
aSRm300 rabbit polyclonal (aSRm300; [31]), rabbit polyclonal
a116 kDa-U5 snRNP-specific protein [32], rabbit polyclonal aCBP80
[33], polyclonal aRNPS1 [34], polyclonal aUAP56 [35], monoclonal
aY14 (mAb-4C4 from G. Dreyfuss), monoclonal aSm proteins (Y12;
[36]) and monoclonal aSC35 [37]. Antibodies specific for hRED120
were raised by immunization of two New Zealand white rabbits with
200 lg of nhRED120 or chRED120 proteins (see below) per immuni-
zation. Five immunizations were administered.

2.2. Database searches
Putative RED120 family members were identified using Blast

searches [38]. Proline-rich regions, RNA recognition motifs and PWI
domains [39] were identified using the Prosite database [40]. Low com-
plexity regions were identified using the SEG program [41]. Multiple
sequence alignment and a phylogenetic tree were calculated using Clu-
stalX [42].

2.3. DNA constructs
RNA isolated from HeLa cells (ATCC) was reverse transcribed with

an oligonucleotide complementary to the 3 0UTR of hRED120 and
hRED120 cDNA was amplified by PCR using oligonucleotides (Sig-
ma) ‘‘5 0hRED120’’ and ‘‘3 0hRED120’’. 5 0hRED120 contained a SpeI
recognition site and hRED120 translation initiation sequences.
3 0hRED120 contained a KpnI recognition site and sequences comple-
mentary to the hRED120 translation termination region. The resulting
PCR product was digested with SpeI and KpnI (New England Biolabs)
and cloned into the multiple cloning site of pBluescript IIKS (Strata-
gene). Positive pBShRED120 clones were verified by sequencing.
hRED120 5 0 end sequences were isolated from pBShRED120 after
digestion with SpeI and HindIII. The resulting fragment was sub-
cloned into the PstI and HindIII sites of pQE30 (Qiagen) to produce
pQEnhRED120. SauIIIA–KpnI digestion of pBShRED120 served to
isolate hRED120 3 0 end sequences which were then subcloned into
pQE31 (Qiagen) to generate pQEchRED120.

2.4. Protein expression and antibody production
E. coli strain BL21/pREP4 (Qiagen) was transformed with pQEnh-

RED120 and pQEchRED120 and grown in LB medium supplemented
with ampicillin at 37 �C to an OD600 of 0.06 and at room temperature
to an OD600 of 0.8. Protein expression was induced with 0.5 mM IPTG
(Sigma) for 3 h. Cell pellets were sonicated in lysis buffer (500 mM
NaCl, 5 mM magnesium acetate, 1 mM PMSF and 50 mM Tris–
HCl, pH 7.5) and cell lysates were recovered after 20 min of centrifu-
gation at 9000 rpms with a SS34 rotor. Extracts were adjusted to
20 mM imidazole (Sigma) and mixed with 200 ll of buffer-washed
packed Nickel-NTA beads (Invitrogen) per liter of bacterial culture.
The mixture was incubated for 90 min at 4 �C and the beads were
recovered in an Econo-Column (Biorad). The beads were washed twice
in 10 vol. of PBS-20% Glycerol (PBS-G) and protein was eluted in the
same buffer supplemented with 0.4 M imidazole and dialyzed against
PBS-G.
2.5. Protein detection and immunolocalization
hRED120 was detected by Western blotting using rabbit

anhRED120 or achRED120, diluted 1:1000. Detection was performed
using a goat arabbit secondary antibody coupled to peroxidase, diluted
1:2000 (Sigma). Western blots with antibodies to SRm160, RNPS1,
UAP56, Y14, U5-116 kDa protein, CBP80, and Sm proteins were per-
formed as described previously [25,32–36].

Immunofluorescence localization was performed as described previ-
ously [43] with pre-immune serum or achRED120 diluted 1:250 and
aSC35 diluted 1:3. Secondary antibodies were a mouse and a rabbit
coupled to Texas red or FITC, respectively, diluted 1:100 (Sigma).
Preparations were analyzed using a Zeiss LSM 510 confocal micro-
scope.

2.6. Immunoprecipitations
Interactions between hRED120, SRm160, SRm300, RNPS1, Y14,

and UAP56 were analyzed as follows: 30 ll of packed protein A Se-
pharose beads were loaded with a mixture of achRED120 and
anhRED120 sera (14 ll), antigen affinity-purified rabbit polyclonal
aSRm160 (50 lg), aSRm300 serum (25 ll), and, as a control for
non-specific immunoprecipitation, with rabbit amouse IgG and IgM
(72 lg). Antisera were cross-linked to protein A beads with 20 mM
dimethylpimelidate (Harlow and Lane). Rabbit amouse IgG and
IgM (150 lg) was coupled to protein A-Sepharose prior to coupling
of B1C8, which is an IgM monoclonal. Beads were mixed with
1.5 mg of nuclear extract preincubated for 15 min at 30 �C under splic-
ing conditions (2 mM MgCl2, 1.5 mM ATP, 5 mM phosphocreatine,
16 ng/ll RNase cocktail (Boehringer), DNase I (0.3 U/ll), 1 mM
potassium fluoride, 0.1 mM sodium pyrophosphate, and 1 mM sodium
b-glycerophosphate). The extract was incubated with the beads for 3 h
at 4 �C with gentle rotation in 60 mM NaCl, 13 mM HEPES, pH 7.9,
1.4 mM MgCl2, 14% glycerol, 0.5 mM DTT, 0.7 mM b-glycerol phos-
phate, 0.7 mM NaF, 0.07 mM Na+ pyrophosphate in a final volume of
750 ll. The beads were washed three times with 1.5 ml of IPWB100
(100 mM NaCl, 50 mM Tris–HCl, pH 7.5, 2 mM MgCl2, 0.1%
NP40) and eluted with 2 M NaCl, 10 mM HEPES, pH 7.5, 1 mM
EDTA (200 ll). These pooled eluates were back-bound with Protein
A Sepharose or Protein A Sepharose coated with rabbit amouse IgG
and IgM for 30 min at 4 �C with rotation. After elution, the samples
were precipitated with trichloroacetic acid (TCA) (20%) and sodium
deoxycholate (1.5 mg/ml), washed with 10% TCA, and with acetone,
resuspended in SDS sample buffer and analyzed by SDS–PAGE. To
co-immunoprecipitate other splicing factors, 8 mg of HeLa nuclear ex-
tract was incubated overnight at 4 �C with 400 U of HPRI, 22 lg of
E. coli tRNA, 100 lg of heparin and 4 mg of preimmune or
achRED120-coupled protein A beads. Beads were recovered in an
econo-column and washed three times with 1 ml of buffer D/0.1%
NP40 [44]. The beads were eluted with 150 ll of buffer D/0.1% NP40
mixed with NaCl as indicated, or with 150 ll of Glycine 0.1 M, pH
3. Before elution, beads were incubated 15 min at 4 �C. After each elu-
tion beads were washed three times with 150 ll of elution buffer. Two
percent of the input and one-third of the eluates were analyzed by
SDS–PAGE and immunoblotting. Two percent of the input and
two-third of the eluates were analyzed by Northern blot (see below).
When immunoprecipitations were performed with RNase-treated ex-
tract, 6.5 mg of HeLa extracts were incubated for 1 h in a splicing reac-
tion (see below) in the presence of buffer alone, 200 lg of RNase A
(Boehringer), or 36 U of RNaseH (Gibco) mixed with 11.4 nmol of
2b oligo (5 0CAGATACTACACTTG3 0).

To immunoprecipitate from splicing reactions, 200 lg of protein A
Sepharose beads (Amersham) were bound to 20 ll of antibody for
1 h at room temperature in buffer D. Then, beads were washed exten-
sively with buffer D and buffer D diluted 1:3 (buffer D/3) and mixed
with 20 ll splicing reactions incubated for 1 h (see below). 10 lg of
competitor E. coli tRNA (Boehringer), 1 U/ll of HPRI (Amersham)
and 50 lg/ml of heparin (Sigma) were also added. 50000 cpm of la-
beled U3 snoRNA were included where indicated (see below). The
mix was incubated for 2 h at 4 �C with rotation in a final volume of
200 ll of buffer D/3. After incubation, beads were washed 3 times with
10 vol. of buffer D/3 and twice with 10 vol. of buffer D-200 mM KCl-
0.1% NP40. RNA was analyzed from the beads after proteinase K
treatment as described [45]. Quantifications were done in a Cyclone
Phosphorimager (Perkin Elmer). Percentage of binding was calculated
after subtracting the preimmune background from the signal obtained
in the RED120 antibody immunoprecipitation.
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2.7. Splicing reactions and Northern blots
Splicing reactions were performed as previously described [33]. Pre-

mRNAs used were transcribed as previously described [33]. Prior to
transcription, pAd2 was digested with SauIIIA, and pMXSVL with
BamHI. pMXSVL was transcribed by T7 and pAd2, with T3 (Prome-
ga). Northern blots using snRNA-specific riboprobes were performed
as previously described [46].

2.8. RNA interference in C. elegans
Generation of templates for gene-specific dsRNAs and RNAi in C.

elegans were performed as previously described [47,48]. The templates
were amplified with the following T3 and T7 promoter containing
primers: CeRED120F: caatgcgaaaaatgcgagc; CeRED120R: gtaattcc-
gagacgacggg.
3. Results

3.1. Identification of hRED120 in affinity-purified SRm160-

containing complexes

An immunoaffinity purification procedure for gel-free tan-

dem mass spectrometry-based analysis of endogenous com-

plexes was used to identify proteins associated with SRm160

and SRm300 (the serine/arginine-repeat related nuclear matrix

proteins of 160 kDa and 300 kDa) splicing coactivators [49].

This resulted in the identification of two polypeptides (under-

lined in Fig. 1A) corresponding to hRED120. Sequenced tran-

scripts corresponding to hRED120 were previously mapped to

a gene (designated s164) within an Alzheimer’s-susceptibility

locus on chromosome 14 [50]. The full length ORF of

hRED120 predicts a protein of 120 kDa that includes a region

rich in RE/RD dipeptides in the central part of the protein, a

proline-rich region and RNA recognition motif (RRM) at the

amino (N-) terminal end, and a PWI domain at the carboxyl

(C-) terminal end (Fig. 1A). The PWI motif [39], which is also

present in SRm160 and the U4/U6 snRNP-associated PRP3

splicing factor, has been shown previously to function in nu-

cleic acid binding and to facilitate SRm160-dependent stimula-

tion of 3 0-end processing [28].

Database searches revealed that hRED120 belongs to a fam-

ily of RNA binding proteins with members found in yeast to

human (Fig. 1B). All of the family members share the RE/

RD-rich central region and the C-terminal PWI motif or a

PWI-related motif. Although the PWI domain is quite well

conserved in most of the metazoan RED120 family members,

it is only found by Prosite with medium to high probability in

fungal species (Fig. 1C and D). Similarly, the N-terminal

RRM found in several of the metazoan RED120 family mem-

bers is not found in the candidate RED120 orthologs of Sac-

charomyces cerevisiae and Neurospora, although it is present

in a candidate S. pombe ortholog (Fig. 1B). A potential S. cere-

visiae ortholog of hRED120 and other PWI motif proteins,

Snu71p, has been identified as a U1 snRNP-specific protein

[45,51,52]. This fact, together with the potential association

of hRED120 with SRm160-containing complexes, as well as

the sequence features of the different RED120 family members

that resemble other pre-mRNA processing factors, strongly

suggest that RED120 functions in pre-mRNA processing.

3.2. hRED120 associates with SRm160/300 and localizes to

nuclear speckles

In order to biochemically characterize hRED120, two differ-

ent rabbit polyclonal antisera were raised against bacterially-

expressed 6·His-tagged recombinant fragments of the protein,
one containing N-terminal amino acids 1–96 (nhRED120) and

the other containing C-terminal amino acids 655–843

(chRED120) (boxed in Fig. 1A). Both antisera, but not the

corresponding pre-immune sera, recognized a single band of

�120 kDa in immunoblots of HeLa nuclear extract (Fig. 2A).

To verify whether SRm160 and its partner protein SRm300

associate with hRED120, immunoprecipitates collected with

the ahRED120 antibodies from nuclease pre-treated HeLa

nuclear extract were immunoblotted with a monoclonal anti-

body specific for SRm160 (mAb-B1C8) (Fig. 2B, lanes 1–4).

A subpopulation of SRm160 in the extract was co-immunopre-

cipitated with the ahRED120 antibodies. Similarly, immuno-

precipitates collected from HeLa nuclear extract with the

aSRm160 antibodies rAb-aSRm160 and mAb-B1C8, as well

as with a polyclonal antiserum specific for SRm300, contained

a subpopulation of hRED120, as detected by immunoblotting

with achRED120 (Fig. 2B, lanes 5–9). Co-immunoprecipita-

tion of hRED120 with the aSRm160/300 antibodies, and of

SRm160 with the achRED120 serum, appeared specific, since

excess levels of control sera did not result in co-immunoprecip-

itation (compare lanes 3 and 4 or lanes 6 and 7–9). Moreover,

these interactions are probably not the consequence of non-

specific ‘‘tethering’’ by nucleic acid, since the nuclear extracts

were pre-treated extensively with RNase and DNase prior to

immunoprecipitation. These results indicate that subpopula-

tions of hRED120 and SRm160 proteins specifically associate

with each other in HeLa nuclear extract.

A feature of many pre-mRNA processing factors, including

SRm160 and SRm300, is their localization to interchromatin

granule clusters or ‘‘speckles’’. To determine whether

hRED120 also possesses this property, we immunolabeled

HeLa cells with achRED120 antisera, using a monoclonal

antibody to the SR family splicing factor SC35 as a marker

for speckles. These immunostainings reveal that hRED120 is

concentrated in nuclear speckles, and further suggest a role

for hRED120 in pre-mRNA processing in vivo (Fig. 2C). In

addition to the prominent speckle staining pattern, a faint

achRED120 immunostaining signal is detected in the cyto-

plasm, above the background signal obtained with the pre-im-

mune serum. This suggests that hRED120 could also have a

role in the cytoplasm (Fig. 2C and data not shown).

3.3. Association of hRED120 with multiple splicing components

In order to determine whether hRED120, like SRm160/300,

can associate with functional splicing complexes, the ability of

the achRED120 antibody to immunoprecipitate splicing com-

plexes formed in HeLa nuclear extract was next tested. Radio-

labeled Ad2 pre-mRNA, as well as an equivalent amount of

U3 snoRNA as a non-specific control, was incubated in splic-

ing reactions for 1 h and the mixture was added to protein A-

Sepharose beads pre-coated with achRED120 or control anti-

body. The achRED120 antibody immunoprecipitates splicing

intermediates with similar efficiency as a positive control anti-

body (Y12), which is specific for the snRNP Sm proteins

(Fig. 3A, compare lanes 3 and 4). Similar results were obtained

with the anhRED120 antibody, although this reagent did not

immunoprecipitate complexes containing splicing intermedi-

ates as efficiently as achRED120 (data not shown). Relatively

little pre-mRNA and splicing intermediates or products were

immunoprecipitated with the pre-immune serum and none of

the antisera tested immunoprecipitated significant levels of

the U3 snoRNA (Fig. 3A). These results indicate that



Fig. 1. The RED120 family of proteins. (A) Amino acid sequence and protein domains of human RED120 (hRED120). Proline rich region, RNA
recognition motif (RRM), RE/RD dipeptides and PWI domain are highlighted in bold. Peptides identified by mass spectrometry are underlined.
Amino- and carboxy-terminal regions used to raise antibodies are boxed. (B) Schematic representation of known full-length RED120 proteins from
human (hRED120), fruit fly (Dm CG4119), C. elegans (two predicted variants from open reading frame W04D2.6), the fungus Neurospora crassa
(Nc, gi number 28924209) and the yeasts S. pombe (Sp, gi number 19112042) and S. cerevisiae (Sc Snu71p). Proline-rich regions (PP), RNA
recognition motifs (RRM), PWI domains and low complexity regions are indicated for each homolog. Occurrences of RE/ER, RD/DR or RS/SR
dipeptides present in the entire proteins are indicated under each protein bar. (C) Multiple sequence alignment of PWI-like domains. Clustal X
comparison of PWI-like motifs present in the C-terminal regions of the RED120 proteins from Fig. 1B supplemented with those of the mosquito
Anopheles gambiae (Ag gi number 31209753) and the plant Arabidopsis thaliana (At gi number 18377662). In addition, PWI domains from the N-
termini of human splicing factor PRP3 and SRm160 are co-aligned, together with C. elegans and D. melanogaster homologs of the latter (Ce F28D9.1
and Dm CG11274). (D) Dendrogram of PWI-like sequences from the multiple sequence alignment shown in panel C.
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Fig. 2. hRED120 associates with the splicing coactivator subunits SRm160 and SRm300, and localizes to nuclear speckles. (A) hRED120 antibodies
recognize a single band of 120 kDa. Immunoblotting of HeLa nuclear extract with preimmune rabbit serum (PI) or rabbit serum after immunization
(I) with the N-terminal (anhRED120) or C-terminal (achRED120) regions of hRED120. The position of hRED120 is indicated to the right. The sizes
of molecular weight markers (MWM) are indicted to the left. (B) hRED120 coimmunoprecipitates with SRm160 and SRm300. HeLa nuclear extract
was immunoprecipitated with achRED120 (lane 4), a monoclonal antibody aSRm160 (mAb-B1C8, lane 7), a polyclonal antibody aSRm160 (lane 8),
or aSRm300 (lane 9), or with an excess of a control antibody (lanes 3 and 6). The immunoprecipitates were immunoblotted with antibodies specific
for SRm160 (lanes 1–4) or hRED120 (lanes 5–9). Inputs correspond to 5% (input 1 in lane 1), or 1% (input 2 in lane 2 and input in lane 5) of the
nuclear extract used for each immunoprecipitation. The position of SRm160 and hRED120 is indicated to the side of the figure. (C) hRED120
localizes to speckles. HeLa cells were fixed and stained with antibodies against hRED120 (green stain in a and d) or SC35 (red stain in c and f).
Overlapping images are also shown (merge in b and e). Arrows point two cells after cytokinesis (d–f) with a homogeneous nuclear staining for both
hRED120 and SC35.
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hRED120 specifically associates with functional splicing com-

plexes.

Given our previous observation of a synthetic lethal interac-

tion between Snu71p, the candidate ortholog of hRED120 in

yeast, and yeast nuclear cap binding complex (yCBC) [53],

we speculated that these components could form a conserved

physical interaction in mammals. Similarly, since Snu71p in

yeast is a component of U1 snRNP, and SRm160 associates

with snRNP components in mammalian extracts, it is likely

that hRED120 also associates with one or more snRNP com-

ponents in mammalian extracts. Thus, we determined whether

splicing factors such as the CBC 80 kDa subunit (CBP80) or

snRNPs associate with hRED120, and we also assessed the rel-

ative stabilities of these interactions. Immunoblotting of HeLa

nuclear extract proteins eluted from protein A–Sepharose

beads bound to achRED120 indicated that most of the immu-

noprecipitated hRED120 in the nuclear extract remains bound

to the beads at 2.0 M salt; only treatment with 0.1 M glycine

pH 3.0 resulted in removal of most of the protein (Fig. 3B,

upper panel). In contrast, immunoblotting of the different salt

eluates indicated that CBP80 forms a salt-sensitive association

with hRED120 (most of the protein is eluted at 0.35–1 M salt;

Fig. 3B, second panel). Similarly, immunoblotting the eluates

with the aSm Y12 antibody revealed that Sm proteins are also

bound to hRED120Fig. 3B, and that most of these proteins

co-elute with CBP80 at 0.35–1 M salt (third panel). To assess

whether the binding of Sm proteins to hRED120 represents

a specific interaction between hRED120 and one or more

snRNPs, RNA recovered from the achRED120 eluates was
analyzed by Northern blotting with a mixture of 32P-labeled

riboprobes specific for U1, U2, U4, U5 and U6 snRNAs

(Fig. 3B, lower panel). Although some non-specific immuno-

precipitation of U5 and U6 snRNAs was observed, hRED120

appears to associate with all five snRNAs in the extract with a

similar salt sensitivity as Sm proteins and CBP80. This

suggests a possible interaction of hRED120 with one or more

general snRNP components, or else that the co-immunopre-

cipitated snRNAs reflect an association between hRED120

and pre-assembled splicing complexes containing all five

snRNPs.

Since hRED120 contains RRM and PWI motifs, both of

which can bind RNA, we also addressed whether the associa-

tion of hRED120 with snRNP components is RNA-mediated.

HeLa nuclear extracts were pre-incubated with RNase A, or

with RNase H in the presence of an oligonucleotide comple-

mentary to U2 snRNA (nucleotides 28–42; U2b), which pairs

with the branch region in pre-mRNA. Thus, RNase H-medi-

ated cleavage of U2 snRNA results in an extract that is

deficient in splicing (data not shown). Next, immunoprecipita-

tion was carried out with achRED120 antibodies. Immuno-

blotting of the immunoprecipitates with antibodies against

the U5 snRNP-specific 116 kDa protein [32] and Sm proteins

indicated that the RNase A or RNase H+U2b oligonucleotide

pre-treatments did not result in a reduction in the association

between hRED120 and these snRNP proteins (Fig. 3C). How-

ever, RNase A treatment abolished the interaction between

hRED120 and CBP80 (Fig. 3C). It therefore appears that

the association between hRED120 and CBP80 requires



Fig. 3. Association of hRED120 with snRNPs and assembled splicing complexes. (A) hRED120 associates with splicing complexes containing pre-
mRNA, intermediates and products of the splicing reaction. Radiolabeled adenovirus splicing substrate mixed with U3 snoRNA was incubated with
nuclear extracts. After the splicing reaction, the extracts were immunoprecipitated with preimmune (PI, lane 2) or immune achRED120 serum (I, lane
3) or aSm antibody as positive control (lane 4). Immunoprecipitates were separated by electrophoresis and labeled RNAs were visualized. 30% of the
input was also loaded (lane 1). Position of splicing substrate, products and intermediates is indicated to the left. (B) hRED120 coimmunoprecipitates
with several components of the splicing machinery. Nuclear extracts were bound to a preimmune (PI) or an achRED120 antibody (I) column and
eluted with increasing salt concentrations or Glycine as indicated at the top of the figure. Proteins and RNAs were purified from the eluates. Proteins
were resolved by SDS–PAGE and hRED120 (upper panel), CBP80 (second panel) or Sm proteins (third panel) were detected by Western blotting.
The RNA components were resolved by PAGE and revealed by Northern blotting with a mixture of labeled U1, U2, U4, U5 and U6 snRNAs (lower
panel). Two percent of the input was also loaded (lane 1). Position of the proteins and snRNAs detected is indicated to the right. (C) hRED120 co-
immunoprecipitates with some splicing components in an RNA-independent manner. Nuclear extracts were incubated with or without RNase A or
with RNase H in the presence of an oligonucleotide directed to the branch point binding sequences of U2 snRNA. Then, an immunoprecipitation
was carried out with either pre-immune serum (PI, lanes 1, 5 and 8) or antibodies against the N-terminal (anhRED120, lanes 6 and 7) or the C-
terminal (achRED120, lanes 2–4 and 9 and 10) regions of hRED120. The immunoprecipitates were run on SDS–PAGE, Western blotted and
developed with antibodies against the U5-116 kDa specific protein (upper panel, lanes 1–4) CBP80 (lower panel, lanes 1–4), or Sm proteins (lanes 5–
10). Position of the detected proteins is indicated to the side of the figure.

3092 P. Fortes et al. / FEBS Letters 581 (2007) 3087–3097
RNA, whereas the association between hRED120 and snRNP

components may be RNA independent.

3.4. Immunodepletion of hRED120 does not prevent splicing or

cleavage of specific pre-mRNAs

Since hRED120 associates with several splicing components

and assembles into functional splicing complexes, we hypothe-

sized that it may have a role in pre-mRNA processing. To ini-

tially test this, HeLa nuclear extract was efficiently

immunodepleted of hRED120 with achRED120 (Supplemen-

tary Fig. 1). However, no differences in the overall efficiencies

or rates of splicing of a constitutively spliced (Ad2-derived) or

ESE-dependent (Drosophila doublesex-derived) pre-mRNA
were observed (Supplementary Figs. 2 and 3), whereas

SRm160 was shown previously to be important for the splicing

of both of these pre-mRNAs [25,26]. Similar results were ob-

tained for other substrates tested, including Ftz and Msl-2

(data not shown). We also used the depleted extracts to evalu-

ate the role of hRED120 in 3 0-end cleavage. The efficiency of

cleavage of the L3 poly (A) site was similar in mock depleted

and hRED120-depleted extracts (data not shown). These re-

sults indicate that hRED120 is not part of a common network

of interactions involving SRm160 that is required for the stim-

ulation of 3 0-end cleavage or for the splicing of specific pre-

mRNAs. However, it remains possible that hRED120 is

important for the constitutive and/or alternative splicing as
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well as for 3 0-end processing of pre-mRNAs not tested in the

present study.

3.5. Association of RED120 with spliced mRNA

Since SRm160 is an EJC component and associates with

hRED120, we next tested whether hRED120 also associates

with spliced mRNA. This also seemed possible given that

immunoprecipitation with the achRED120 antibody, com-

pared to the aSm (Y12) antibody, resulted in some enrichment

of the ligated exon product of splicing reaction (compare lanes

3 and 4 in Fig. 3A). Spliceosomal snRNPs remain preferen-

tially associated with the excised lariat product of the splicing

reaction. Consistent with this, enrichment of the lariat product

of the splicing reaction by immunoprecipitation was observed

with the aSm antibody (Fig. 3A). To determine whether the

association of hRED120 with the exon-product RNA is depen-

dent on prior splicing, the adenovirus-derived MXSVL-38

(containing a 38 nt 5 0-exon) pre-mRNA was incubated in a

splicing reaction, and a cDNA-derived exon-product of identi-

cal sequence was incubated in a parallel reaction. Immunopre-

cipitations were performed with pre-immune and achRED120

antibody from each reaction (Fig. 4A). Quantification of the

results indicated that hRED120 associates with the exon prod-

uct RNA generated by splicing more efficiently than the

cDNA-derived exon product RNA (Fig. 4B).
Fig. 4. hRED120 associates with the exon junction complex (EJC). (A)
transcripts. Labeled MXSVL-38 splicing substrate or its spliced counterpar
extracts were immunoprecipitated with preimmune serum (PI) or with achRE
from the immunoprecipitates (lanes 3–6) were visualized. Position of splicing s
results shown in panel A. Percentage of binding was calculated for the splicin
products (lariat and spliced mRNA (spmRNA)) and unspliced mRNA (m
immunoprecipitated bands before determination of the percentage of binding
(C) hRED120 coimmunoprecipitates with RNPS1, UAP56 and Y14. HeLa
monoclonal antibody aSRm160 (mAb-B1C8, lane 4), an excess of a control
antibody (beads, lane 2). The immunoprecipitates were immunoblotted with
Y14 (lower panel). Total nuclear extract in lane 1 corresponds to 5% of the inp
and Y14 is indicated to the side of the figure.
The association of RED120 with spliced mRNA suggests

that RED120 could be an EJC associated factor. However,

RNaseH cleavage-mapping experiments did not reveal a spe-

cific interaction between RED120 and a region of the mRNA

including the EJC ‘‘docking site’’, suggesting that its associa-

tion with spliced mRNA may not be restricted to this region

(data not shown). Nevertheless, RED120 may associate with

the EJC since it can interact with EJC proteins besides

SRm160. The achRED120 antibody was used to collect immu-

noprecipitates from HeLa nuclear extract pre-treated with

RNase and DNase (see Section 2). The immunoprecipitates

were immunoblotted with anti-sera specific for REF, Y14,

RNPS1 and UAP56. Bands consistent with the sizes of all four

of these EJC components were detected in the immunoprecip-

itates (Fig. 4C and data not shown).

3.6. Interactions involving hRED120 and pre-mRNA processing

factors in the development of C. elegans

The results described above provide evidence that hRED120

is associated with several factors involved in splicing and/or

coupled steps in gene expression, including SRm160, snRNPs

and EJC components. It was therefore of interest to determine

whether interactions between RED120 and other pre-mRNA

processing factors are physiologically relevant in the context

of a whole organism. Analysis of the C. elegans genome
hRED120 binds spliced transcripts more efficiently than unspliced
t were incubated with nuclear extract. After the splicing reaction, the
D120. Labeled RNAs isolated from 1/3 of the input (lanes 1 and 2) or
ubstrates and products is indicated to the left. (B) Quantification of the
g substrate (pre-mRNA), splicing intermediate (lariat-2exon), splicing
RNA). The preimmune background has been subtracted from the

. Error bars indicate standard deviations of three different experiments.
nuclear extract was immunoprecipitated with achRED120 (lane 5), a
antibody (RaM, lane 3) or with Protein A–Sepharose without coupled
antibodies specific for RNPS1 (upper panel), UAP56 (middle panel) or
ut used in each immunoprecipitation. The position of RNPS1, UAP56



Table 1
Codepletion of RED120 and pre-mRNA processing factors by RNAi

RNAi Gene ID Phenotype

RED120 W04D2.6 Wild-typea

RED120 + SRm160 F20D9.1 Wild-type
RED120 + RNPS1 K02F3.11 Wild-type
RED120 + Ref1 +
Ref2 + Ref3

C01F6.5, F23B2.6,
M18.7

Wild-type

SRp20 C33H5.12 Wild-type

RED120 + SRp20 Slow growth
RED120 + SRp40 W02B12.2 Wild-type
RED120 + SC35 EEED8.7 Wild-type
Clp1 F59A2.4 Wild-type

RED120 + Clp1 100% embryonic lethal
CstF50 F28C6.3 Wild-type

RED120 + CstF50 Aberrant oogenesis
Slow growth

RED120 + CFIm68 D1046.1 Wild-type

aReported in wormbase as wt, and also slow growth when RNAi
performed on RNAi hypersensitive strain rrf-3.
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revealed two predicted variants from a single ORF similar to

hRED120 (Fig. 1B). The longer of the putative C. elegans

ortholog sequences, referred to below as CeRED120, displayed

high homology (82% similarity) with hRED120. Depletion of

CeRED120 by injection of dsRNA into wild-type strain Bristol

N2 resulted in no apparent phenotype (Table 1). The same re-

sult has been reported by others in the WormBase Database

using wild-type non RNAi hypersensitive strains. Based on this

observation, it was possible to ask using combinatorial RNAi

in a wild-type strain whether other non-essential pre-mRNA

processing factors interact genetically with CeRED120.

Previously, we have shown that individual RNAi of

CeSRm160 (rsr-1), or of CeRNPS1 (Cernp-5), both compo-

nents of the EJC complex, also do not result in an apparent

phenotype [47,48]. By contrast, RNAi-mediated depletion of

CeY14 (Cernp-4), another component of the EJC, resulted in

embryonic lethality [47]. The C. elegans genome encodes three

members of the REF/Aly family, that are believed to function

as adaptor proteins mediating the recruitment of the mRNA

export factor NXF1/TAP to specific mRNAs in mammalian

cells. RNAi of individual REF genes, or co-depletion of all

REF genes resulted in an apparent wild-type phenotype, or

only caused a minor defect in larval mobility, respectively,

and without affecting mRNA export [47]. Similarly, co-deple-

tion by RNAi of CeRED120 and SRm160, RNPS1 or the

REF family proteins also does not result in an apparent altered

phenotype (Table 1).

In previous studies, we also found that co-depletion by

RNAi of CeSRm160 and any one of the CeSR family proteins

resulted in a specific defect, leading to the production of unfer-

tilized oocytes in the injected animal [48]. These results pro-

vided evidence for the existence of conserved interactions

between SRm160 and multiple SR family proteins required

for proper development. Interactions between SRm160 and

SR family proteins had also been shown to function in the

stimulation of both constitutive and enhancer-dependent splic-

ing in the mammalian system. Moreover, we also observed

developmental defects when CeSRm160 was co-suppressed

with specific 3 0-end cleavage factors, consistent with our evi-
dence for function of SRm160 in the stimulation of 3 0-end pro-

cessing in mammalian cells [28,54].

In the present study, we found that simultaneous depletion

by RNAi of CeRED120 and CeSRp40 or CeSC35 did not lead

to an apparent altered phenotype. By contrast, co-depletion of

CeRED120 and CeSRp20 resulted in a slow growth pheno-

type, with approximately an 8–10 h developmental delay (Ta-

ble 1). Noticeably, at day 4 post-injection only 20% of the

population were adults, whereas 100% of the population were

adults following co-depletion of CeRED120 and other CeSR

proteins. Thus, consistent with our observation that hRED120

is not required for the splicing of the same substrates as

SRm160, these proteins also appear to engage in different ge-

netic interactions involving SR family proteins in the context

of whole organism biology in C. elegans. Moreover, the obser-

vation that simultaneous depletion of CeRED120 and

CeSRp20 results in a distinctive phenotype is indicative of

important functional interactions between these factors.

Due to the similarity between RED120 and SRm160, which

was shown to have a conserved role in 3 0-end processing [54],

we also investigated possible genetic interactions between

RED120 and 3 0 end processing factors. RNAi-mediated co-

depletion of RED120 and CFIm68 resulted in no apparent

phenotype. However, co-depletion of RED120 and Clp1, a

subunit of cleavage factor II, resulted in early embryonic

lethality (Table 1). Embryos were arrested in development

prior to organogenesis, indicating a genetic interaction be-

tween RED120 and this component of the cleavage machinery

(Table 1 and Fig. 5A). By contrast, we previously reported that

co-depletion of SRm160 and Clp1 did not result in an apparent

phenotype [54]. Finally, we found that RNAi-mediated co-

depletion of RED120 and CstF50 resulted in slow growth

and aberrant oogenesis. (Fig. 5B), suggesting a strong genetic

interaction of these factors. Compared to wild-type adults, in

worms depleted of RED120 and CstF50, the gonad remains

syncytial with no mature oocytes forming. Interestingly, we

have shown previously that co-depletion of SRm160 and

CstF50 leads to late embryonic lethality [54]. This suggests that

RED120, may have an important function in 3 0-end process-

ing. Altogether, these results are consistent with a conserved

role of RED120 in the coupling of splicing and 3 0-end forma-

tion.
4. Discussion

In this report, we have identified and characterized

hRED120, a SRm160 splicing coactivator-interacting protein

that assembles into splicing complexes and remains bound to

spliced mRNA. hRED120 belongs to a family of proteins that

are quite well-conserved from yeast to human. These proteins

share several motif features, including a proline rich region

and/or an RRM at the amino-terminus, a central domain rich

in RE/RD dipeptides, and a PWI nucleic acid binding motif or

related domain at the carboxyl-terminus. The motif features of

RED120, as well as the observations that it associates with

splicing components and functional splicing complexes, con-

centrates in nuclear speckles enriched in other splicing compo-

nents in vivo, and forms genetic interactions with both splicing

factor and with 3 0-end cleavage factor orthologs in C. elegans,

suggests that it may participate in splicing and/or the coupling

of splicing and 3 0-end formation.



Fig. 5. Interactions between RED120 and components of the 3 0end processing machinery are essential for C. elegans development. (A) RNAi-
mediated codepletion of RED120 and Clp1, a subunit of cleavage factor II, results in early embryonic lethality. Embryonic development is arrested
prior organogenesis (panels b and c). Panel a shows wt embryo in corresponding stage. Each embryo is �50 lm long. (B) RNAi-mediated
codepletion of RED120 and cleavage stimulation factor CstF50 results in slow growth and aberrant oogenesis. Panel a shows wt adult gonad with
progressively developing oocytes. In worms depleted of RED120 and CstF50 gonad remains syncytial with no detectable oocytes (panel b).
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Consistent with these activities, hRED120 was previously

identified (as fSAP94) by mass-spectrometry of isolated splice-

osomal complexes [55]. Similarly, 2 peptides from RED120

have been identified by mass-spectrometry-based analysis of

purified EJC complexes, suggesting that RED120 co-purifies

with the EJC complex (Tange and Moore, personal com-

munication). We performed immunoprecipitations with

achRED120 antibody to determine if RED120 binds spliced

RNA �20 to �24 nucleotides upstream of the mRNA exon–

exon junction, which is where EJC components associate

[18]. Although immunoprecipitation of this RNA fragment

was detected, additional fragments were also detected, indicat-

ing that RED120 may not specifically associate with spliced

mRNA at the EJC ‘‘docking site’’ (our unpublished observa-

tions). It is also possible that RED120 is weakly associated

with the EJC, such that only minor levels of the �24 to �20

protected fragment are observed. In any case, our observation

that RED120 associates with multiple EJC components, and

the observation that RED120 peptides can be detected in puri-

fied EJC complexes, is consistent with a possible weak or tran-

sient association between RED120 and one or more EJC

components bound to spliced mRNA.

The observations in the present work indicating that

hRED120 associates with splicing factors that bind to pre-

mRNA at early steps in spliceosome formation, including

snRNPs and SRm160, suggest that it may also have a role in

splicing. That the association of hRED120 with SRm160 and

Sm antigens was resistant to ribonuclease treatments (Figs.

2B and 3C), further suggests that regions in the hRED120

including the RE/RD- and P-rich domains could participate

in interactions with other splicing factors. During the assembly

of the spliceosome, hRED120 may interact with pre-mRNA

via one or more protein-protein interactions and/or via direct
interactions mediated by its RRM or PWI motif. Regardless

of the mechanism by which hRED120 assembles into splicing

complexes, its association with different pre-mRNA substrates

and products is specific, since it does not associate with non-

splicing-substrates such as U3 snoRNA, or with cDNA-de-

rived mRNAs incubated in splicing reactions.

Immunodepletion of RED120 to �1% of its endogenous le-

vel in HeLa nuclear splicing extract did not alter the splicing

activity of four different pre-mRNAs tested (Supplementary

information and data not shown). Also, no differences in the

efficiency of 3 0-end cleavage were detected between

hRED120-depleted and mock-depleted extracts (data not

shown). This indicates that hRED120 is not a general splicing

or 3 0-end cleavage factor. Instead, similar to SRm160,

RED120 could participate in the constitutive or alternative

splicing of specific pre-mRNA substrates. It could also func-

tion in the 3 0-end processing of specific substrates, possibly

via coupled splicing. The identification of specific substrates

of RED120, and the elucidation of its mechanism of action

represent important goals for future studies.

Our observation of a slow growth defect in C. elegans fol-

lowing the simultaneous depletion by siRNA of CeRED120

and CeSRp20, but not after simultaneous depletion of

CeRED120 and other splicing components, is consistent with

a possible specialized function of RED120 in pre-mRNA splic-

ing, or potentially another step in pre-mRNA metabolism that

involves these factors. The developmental defects or the lethal-

ity associated with the co-depletion of RED120 and CstF50 or

Clp1, suggest an essential role for RED120 in the 3 0-end pro-

cessing of specific mRNAs when the cleavage and polyadenyl-

ation machinery is altered.

This proposed function is consistent with the results in the

present study demonstrating an interaction between SRm160
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and hRED120, the results of our previous study showing that

co-depletion of CstF50 and SRm160 in C. elegans also causes a

late embryonic developmental arrest [54], and our previous re-

sults indicating a function for SRm160 in the coupling of splic-

ing and 3 0-end cleavage (see Section 1). Taken together, the

combined observations suggest that RED120 and SRm160

could form similar interaction networks that function in the

coupling of splicing and 3 0-end formation. Moreover, the pres-

ence in RED120 of a C-terminal PWI nucleic acid binding do-

main (which is required for SRm160-dependent stimulation of

3 0-end cleavage) and N-terminal RRM motifs, separated by a

potentially flexible, low complexity region rich in Arg/Glu/Asp

residues, makes hRED120 an attractive candidate for linking

different RNA molecules or RNP complexes.
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