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Abstract 

First, we show that a necessary and sufficient condition for the existence of a C3-factorization 
of the symmetric tripartite digraph K,E,nz, il l is nl = n2 = n;. Next, we show that a necessary and 
sufficient condition for the existence of a elk-factorization of the symmetric complete multipar- 
tite digraph Ku:. r12,. ., t2m is nl=nz=... =n,=O(modk) for even m and nl =nz= ... =n,=O 
(mod2k) for odd m. @ 1999 Elsevier Science B.V. All rights reserved 

Keywords: Cycle-factorization; Symmetric complete multipartite digraph 

1. Introduction 

Let K:. II? . . . . . n,,, denote the symmetric complete multipartite digraph with pattite sets 

r/;,v,, . . . . V;, of nl,n2 ,..., n, vertices each, and let C, and C2, denote the directed 
cycle of length 3 on three partite sets and the directed cycle of length 2k on two 
partite sets, respectively. A spanning subgraph F of KnT,,?.,,.,,, is called a Cj-factor 
or a elk-factor if each component of F is Cs or CZ~, respectively. If K,ZZ3,,2,,,,,,,,,, is 
expressed as an arc-disjoint sum of Cs-factors or C?zk-factors, then this sum is called 
a Cj-facrorization or a c’z&actorization of KnT,,z,,,,,u,n, respectively. In Section 2, it is 
shown that a necessary and sufficient condition for the existence of a Cj-factorization 

of K,;.,:.,; is nl =n2 =nj. In Section 3, it is shown that a necessary and sufficient 
condition for the existence of a 62k-factorization of K: ,,2 .,.,,2,, is nl =n?=... =n,,,-0 
(modk) for even m and nl = n2 = . = n, E 0 (mod Z!kj for odd m. 

Let Kn,.nz> K~,,,21 K&2rn,y and Kz,,,: ,.... ,,,, denote the complete bipartite graph, the 
symmetric complete bipartite digraph, the symmetric complete tripartite digraph, and 
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the symmetric complete multipartite digraph, respectively. And let Czk, $k, pk, and 
$,4 denote the cycle or the directed cycle, the star or the directed star, the path or the 
directed path, and the complete bipartite graph or the complete bipartite digraph, re- 
spectively, on two partite sets I$ and I$. Then the problems of giving the necessary and 
sufficient conditions of &-factorization of K,,,,,,, Kz “r, and KnT nz n) have been com- 
pletely solved by Enomoto et al. [2] and Ushio [ 121. ‘Sk-factorization of K,,,,z, Kz,nz, 

and Ki& II, have been studied by Ushio and Tsuruno [8], Ushio [ 131, and Wang [14]. 
Recently, ‘Martin [4,5] and Ushio [lo] give the necessary and sufficient conditions of 
$k-factorization of K,,, ,n2 and K:,nJ. pk-factorization of K,, ,nz and KnT nz have been 
studied by Ushio and Tsuruno [7] and Ushio [6,9]. kp,,-factorization’of K,,,,, has 
been studied by Martin [4]. Ushio [ 1 l] gives the necessary and sufficient condition of 
kp, ,-factorization of KnT, nz. For graph theoretical terms, see [ 1,3]. 

2. C&factorization of KnT n2rn3 

In this section, we consider a Cx-factorization of Kz,nz,n,. A directed cycle C, passing 
VI -+ V2 + V3 + fi (V3 + V2 + V, --+ V3) is called a normal cycle (a reverse cycle), 
respectively. 

Notation. Given a Cs-factorization of Kzrn2+, let r be the number of factors, t be the 
number of components of each factor, b be the total number of components. 

Among Y components having vertex x in q, let rii and ri2 be the numbers of 
components which are normal cycles and reverse cycles, respectively. 

For a C~:U+U-+W--+U, we denote [u,v,w]. 

We give the following theorem. 

Theorem 1. Kz,n2,n, has a C3-factorization if and only if n1 = n2 = n3. 

Proof (Necessity). Suppose that Kz , n2, n3 has a Cs-factorization. Then b = 2(nl n2 + 
nln3+n2n3)/3, t=(nl +nz+n3)/3, r=b/t=2(nln2+nln3+n2n3)/(nl+n2+n3). The 
followings hold: n2 = rll = n3, n2 = r12 = n3, r = ql + r12, nl = r2, = n3, nl = r22 =n3, 
r=r21+r22,nl=r31=n2, nl=r32=n2, r=r31+r32. So we haver=2nl=2n2=2n3. 
Therefore, nl = n2 = n3 is necessary. 

(Suficiency) Put nl = n2 = n3 = n. Cs-factorization of K:n,n is by construction. Let 
6 ={1,2,..., n}, V2={1’,2’,..., n’}, V3={1”,2” ,..., n”}. 

Case 1: n is odd For i=l 2 , , . . . , n, construct 2n C3-factors 4 and I$’ as following: 

F; = {[l,i’, (2i - l)“], [2,(i + l)‘, (2i)“], . . . , [n,(i + n - 1)‘,(2i + n - 2)“]}, 

Z$’ = {[I, (2i - l)“,i’], [2, (2i)“,(i + I)‘], . . . , [n,(2i + n - 2)“,(i + n - l)‘]}, 

where the additions are taken modulo n with residues 1,2,. . . , n. Then we claim that 
they comprise a Cs-factorization of K:,,. First, we can see that each of them is a 
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CJ-factor, because it spans all vertices of KE&n. Next, we can see that they are arc- 
disjoint, because any common arc does not appear in them. Therefore, they comprise 
a Cx-factorization of KnT,,,. 

Case 2: n is even. For i= I,2 ,..., n, construct 2n Cx-factors F; and F,! as following: 

fi = {[l,i’,(n - i + 2)“], [2,(i + l)‘,(n - i + 3)“], . , [n/2,(i + n/2 - l)‘,(n - i 

+ n/2 + l)“], [n/2 + 1, (n - i + n/2 + 2)“, (i -t- n/2)‘], [n/2 + 2, (n - i + 

n/2 + 3)“,(i + n/2 -I- l)‘], . . , [n,(2n - i + l)“,(i + n - I)‘]}, 

~‘={[l,i”,(n-i+3)‘],[2,(i+l)“,(n-i+4)’],....[n/2,(i+n/2- l)“,(n-i 

+ n/2 + 2)‘], [n/2 + 1, (n - i + n/2 + 3)‘. (i + n/2)“], [n/2 + 2, (n - i 

+n/2 + 4)‘,(i + n/2 + l)“], . , [n,(2n - i + 2)‘,(i + n - l)“]), 

where the additions are taken modulo n with residues 1,2,. . . , n. Then we claim that 
they comprise a Cj-factorization of KnTn,n. First, we can see that each of them is a 
C3-factor, because it spans all vertices of K,ffn,n. Next, we show that they are arc- 
disjoint. Suppose that they are not arc-disjoint. Any common arc joining V, and b 
does not appear in them. Any common arc joining V, and Vj does not appear in them. 
Therefore, the common arc is joining 6 and V3. 

We assume that the common arc appears in a-th component [a, (i - 1 +a)‘, (n - if 1 + 
a)“] of fi and (n/2+b)-th component [(n/2+b),(n-j+2+n/2+b)‘,(j- l+n/2+b)“] 
ofFi, where l<a<n/2,l<bfn/2. Say ((i-l+a)‘,(n-i+l+a)“)=((n-j+2+ 
n/2 + b)‘, (j - 1 + n/2 + b)“). 

Then i-l+a-n-j+2+n/2+b (modn) and n-i+l+a-j-l+ 
n/2 + b (mod n). 

From these congruences, we have a - b G -(i + j) + n/2 + 3 z (i + j) + n/2 - 2 
(modn) and 2(i + j) G 5 (modn). This is impossible, because n is even. 

Now we assume that the common arc appears in (n/2 + a)-th component [(n/2 + 
a), (n - i + 1 + n/2 + a)“, (i - 1 + n/2 + a)‘] of fi and b-th component [b, (j - 1 + 
b)“, (n - j + 2 + b)‘] of FJ’, where 1 <a <n/2,1 <b <n/2. Say ((n - i + 1 + n/2 + a)“. 
(i-l+n/2+a)‘)=((j-l+b)“,(n-j+2+b)’).Thenn-i+l+n/2+a~ 
j- 1 +b (modn) and i- 1 +n/2+a=n-j+2+b (modn). 

From these congruences, we have a - b s (i + j) + n/2 - 2 s -(i + j) + n/2+ 
3 (mod n) and 2(i + j) = 5 (modn). This is impossible, because n is even. 

Therefore, 2n Cj-factors F; and 6’ comprise a Cj-factorization of Ku:,.,. 
This completes the proof of Theorem 1. 

n 

3. * C2pfactorization of K,,, nZ ,..., n, 

In this section, we consider a Czk-factorization of K:,nz,,--,n,, . 



276 K. Ushio I Discrete Mathematics 199 (1999) 273-278 

Notation. Given a C’zk-factorization of Kz,nz,,.,,n,, , let I- be the number of factors, t be 
the number of components of each factor, b be the total number of components. 

Among t components of each factor, let ti,j (i <j) be the numbers of components 
whose vertices are in K and 5. 

Among Y components having vertex x in E;‘, let ri,j be the numbers of components 
whose vertices are in J$ and 5. 

We give the following necessary condition for the existence of a elk-factorization 

of K?$n, n I , m’ 

Theorem 2. If K;, 122 ,_._, n, has a ezk-factorization, then nl = n2 =. . . = n, = 0 (mod k) 
for even m and nl =nz= ... = n, E 0 (mod 2k) for odd m. 

Proof, Suppose that K&,2 ,..., ,,,,, has a C2k-factorization. Then b = (nln2 + nln3 + . + 
n,,-ln,)/k, t=(nl+nz+...+n,)/2k, r=b/t=2(n~n2+n~n3+...+n,-~n,)/(n~+n2+ 

. .+n,). For a vertex x in 6, we have rj, 1 = n1, r;,2 =n2 ,..., q-1 =ni-1, ri,j+l =?Ii+l, 
. . . . ri,m=n, andr,,l+ri,2+...+ri,i--l+rj,i+l+...+ri,m=r (i=1,2 ,..., m). Put 
nl+nz+...+n,=N. Then N-nl=N-nz=... =N-n,=r. Therefore, we have 
nl=n2=... =n,. Put nl =n2 =.. =n, =n. Then b=m(m - l)n2/2k, t =mn/2k, 
r = (m - 1)n. Put tj,i = ti,j (i<j) and ti,i = 0. Then, in a factor, (tl,, + t1.2 + . + 
tl,m)k=(t2,1 + $2 + . . . + t2.m)k = . . = (tm,I + tM,2 + . . + tm,m)k=n. Put tj = 
ti,1+t;,2+...+ti,m(i=lr2,...,m). Then tlk=tzk= ... =t,k=n. Put tl=t2=... = 
t,,, = T. Then T = njk. 

Case 1: m is even. Put m =2m’. Then b=m’(2m’ - l)n2/k, t =m’T, T =n/k, 
r = (2m’ - 1)n. Therefore, we have n E 0 (modk). 

Case 2: m is odd. Put m = 2m’+ 1. Then b = (2m’f l)m’n2/k, t = m( T/2), T/2 = n/2k, 
T = n/k, r = 2m’n. Therefore, we have n z 0 (mod 2k). 

We use the following notation for a C2k. 

Notation. For a C?2k:vr -+v2+ ... +UZk-I +V2k+U1, we denote I$k(aI,Vs,..., 
vZk--I;v2,V4,...,V2k). 

We prove the following theorem, which we use later in this paper. 

Theorem 3. When n s 0 (mod k), K,& has a elk-factorization. 

Proof. Put n=sk. When s=l, let fi={1,2 ,..., k} and fi={1’,2’,..., k’}. Cons- 
truct k C.Zk’s as following: t?2k(1,2 ,..., k;l’,2’,..., k’),ezk(l,2 ,..., k;2’,3’,..., k’,l’), 
&(1,2 ,..., k;3’,..., k’,1’,2’) ,..., &(1,2 ,. . .,k;k’, 1’,2’,.. .,(k - 1)‘). Then they are n 
Cz+-factors of Kck, and they comprise a e2k-factorization of Kfk. As a well-known 
result, KS,,y has a l-factorization. Therefore, Ks*ksk has a K,*k-factorization. Ktk has a 
t?zk-factorization as shown above. Thus K& has a C.2k-factorization. 
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We give the following sufficient conditions for the existence of a Czk-factorization 

of K,L,...J’ 

Theorem 4. When m is even and n G 0 (mod k), KzII.,,,,,, has a ex-factorization. 

Proof. Put n = sk. As a well-known result, K, has a l-factorization for even m. 

so K:: I,..., I has a KT, -factorization. Therefore, K,T~,sk,,,,, Sk has a K&,-factorization. By 

Theorem 3,K,z,,s, has a dlk-factorization. Thus Ken..,,, has a CZk-factorization. 

Theorem 5. When m is odd and n -0 (mod2k), Kzn,,.,, has a cx.-factorization 

Proof. Put n = 2sk. As a well-known result, Kzm has a l-factorization. Kz,,, = l-factor 

uK2.2 . . . . . 2. So K& ,..., 2 has a Kt, -factorization. Therefore, K&2,sfi ),,., 2sk has a K,\zk.51 - 
factorization. By Theorem 3, K,7& has a C2k-factorization. Thus Kz,,, ,,,,1 has a 
C2k-factorization. 

We have the following main theorem. 

Theorem 6. Kz.,z ,._., n,n has a e2k-factorization if and only if nl = n2 = = n, = 0 
(modk) for even m and nl =n2= ... =n,,,-0 (mod2k) for odd m. 

Corollary 7 (Ushio [12]). K:,,> has a ezk-factorization if and only if nl = 
n2 E 0 (mod k). 

Corollary 8 (Ushio [12]). K;,n2,n, has a C?zk-factorization if and only if nl = nr = 
n3= 0 (mod 2k). 

References 

[l] G. Chartrand, L. Lesniak, Graphs and Digraphs, 2nd ed., Wadsworth, California, 1986. 
[2] H. Enomoto, T. Miyamoto, K. Ushio, Ck-factorization of complete bipartite graphs, Graphs Combin. 4 

(1988) 111-113. 
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1972. 
[4] N. Martin, Complete bipartite factorisations by complete bipartite graphs, Discrete Math. 167/ 168 (1997) 

461-480. 
[5] N. Martin, Balanced bipartite graphs may be completely star-factored, J. Combin. Designs 5 (1997) 

407-415. 
[6] K. Ushio, P,-factorization of complete bipartite graphs, Discrete Math. 72 (1988) 361-366. 
[7] K. Ushio, R. Tsuruno, P3-factorization of complete multipartite graphs, Graphs Combin. 5 (1989) 

385-387. 
[8] K. Ushio, R. Tsuruno, Cyclic Sk-factorization of complete bipartite graphs, Graph Theory, 

Combinatorics, Algorithms and Applications, SIAM, 1991, Philadelphia, pp. 557-563. 
[9] K. Ushio, G-designs and related designs, Discrete Math. 116 (1993) 299-311. 



278 K UshiolDiscrete Mathematics 199 (1999) 273-278 

[lo] K. Ushio, Star-factorization of symmetric complete bipartite digraphs, Discrete Math. 167/168 (1997) 
593-596. 

[ll] K. Ushio, &,,s -factorization of symmetric complete bipartite digraphs, Graph Theory, Combinatorics, 
Algorithms and Applications, New Issues F’ress, 1998, pp. 823-826, to appear 

[12] K. Ushio, dk-factorization of symmetric complete bipartite and tripartite digraphs, J. Fat. Sci. Technol. 
Kinki Univ. 33 (1997) 221-222. 

[13] K. Ushio, $k-factorization of symmetric complete tripartite digraphs, Discrete Math. 197/198 (1999) 
791-797. 

[14] H. Wang, On Kt,k-factorizations of a complete bipartite graph, Discrete Math. 126 (1994) 359-364. 


