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1. Introduction

Let V : Rd �→ R, d � 3, be a non-negative locally integrable function that belongs to a reverse-Hölder class RHq for some
exponent q > d/2, i.e. there exists a constant C such that(

1

|B|
∫
B

V (y)q dy

)1/q

� C

|B|
∫
B

V (y)dy, (1)

for every ball B ⊂ R
d .

For such a potential V we consider the Schrödinger operator

L = −� + V ,

and the associated Riesz transform vector

R = ∇L−1/2.

Boundedness results of R have been obtained in [10] by Shen, where he shows that they are bounded on L p(Rd) for
1 < p < p0, with p0 depending on q. When V ∈ RHq with q � d, R and its adjoint R∗ are in fact Calderón–Zygmund
operators (see [10]).

We denote by T either R or R∗ . For some function b we will consider the commutator operator

Tb f (x) = T (bf )(x) − b(x)T f (x), x ∈R
d. (2)
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It is well known (see [3]) that for the classical case (that is V ≡ 0) the corresponding commutators Tb are of strong
type (p, p) for 1 < p < ∞ whenever b belongs to BMO. However, for the case we deal with in this article, the operators R
have better properties related to their decay. This behavior was the key point to get a significant improvement about the
commutators Tb . In fact, in [2], it was obtained strong type (p, p), 1 < p < ∞, for b in a wider space than BMO, that is the
space BMO∞(ρ) = ⋃

θ>0 BMOθ (ρ), where for θ > 0 the space BMOθ (ρ) is the set of locally integrable functions f satisfying

1

|B(x, r)|
∫

B(x,r)

∣∣b(y) − bB
∣∣dy � C

(
1 + r

ρ(x)

)θ

, (3)

for all x ∈ R
d and r > 0, with bB = 1

|B|
∫

B b. A norm for b ∈ BMOθ (ρ), denoted by [b]θ , is given by the infimum of the
constants in (3).

The present article is devoted to obtain weighted boundedness for Tb . Once again, the special behavior of R allows us
to get better results than in the classical case.

Particularly, we get strong (p, p) inequalities for b ∈ BMO∞(ρ) and weights in a class larger than Muckenhoupt’s. Such
classes already appeared in connection with the L p-boundedness of R (see [1]).

Moreover, we obtain weighted weak type inequalities for Tb . Related to this, it is important to remember that weak type
(1,1) is not true in the case of classical singular integrals (see [8]). Nevertheless in that situation we are able to prove an
L log L weak estimate but for b in BMO∞(ρ) and weights in a class larger than A1. These results are completely new even
in the unweighted case.

In order to get the results for 1 < p < ∞ we use basically the same comparison techniques developed in [1]. However,
this method fails for the extreme case p = 1, so we adapt the techniques in [9], based on some appropriate Calderón–
Zygmund decomposition. Also, since the kernels of R may not have point-wise smoothness, we have to work with a
Hörmander type condition instead.

The article is organized as follows. In sections 2 and 3 we review some properties concerning the critical radius function
and the space BMO∞(ρ). Section 4 is devoted to the class of weights where, in particular, we give a method to construct
A∞,ρ

1 weights using a maximal function. In Section 5 we collect some estimates of the kernels of the Schrödinger–Riesz
transforms, including a Hörmander type inequality, which slightly improves Lemma 4 in [6]. The main results concerning
the boundedness of the commutators are presented in Sections 6 and 7.

In the sequel, when B = B(x, r) and C > 0, we shall use the notation C B , to denote the ball with the same center x and
radius Cr.

2. The critical radius function

The notion of locality is given by the critical radius function

ρ(x) = sup

{
r > 0: 1

rd−2

∫
B(x,r)

V � 1

}
, x ∈R

d, (4)

which, under our assumptions, satisfies 0 < ρ(x) < ∞ (see [10]).

Proposition 1. (See [10].) If V ∈ RHd/2 , there exist c0 and N0 � 1 such that

c−1
0 ρ(x)

(
1 + |x − y|

ρ(x)

)−N0

� ρ(y) � c0ρ(x)

(
1 + |x − y|

ρ(x)

) N0
N0+1

, (5)

for all x, y ∈R
d.

Corollary 1. Let x, y ∈ B(x0, R0). Then:

(i) There exists C > 0 such that

1 + R0

ρ(y)
� C

(
1 + R0

ρ(x0)

)N0

. (6)

(ii) There exists C > 0 such that

1 + r

ρ(y)
� C

(
1 + R0

ρ(x0)

)γ (
1 + r

ρ(x)

)
, (7)

for all r > R0 , where γ = N0(1 + N0
N0+1 ).
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Proof. Inequality (6) is a straightforward consequence of the left-hand side of (5). Inequality (7) follows from the right-hand
side of (5) and then (6). �
Proposition 2. (See [5].) There exists a sequence of points x j , j � 1, in R

d, so that the family Q j = B(x j,ρ(x j)), j � 1, satisfies

(i)
⋃

j Q j = R
d.

(ii) For every σ � 1 there exist constants C and N1 such that,
∑

j χσ Q j � Cσ N1 .

Lemma 1. Let V ∈ RHq with q > d/2 and ε > d
q . Then for any constant C1 there exists a constant C2 such that

∫
B(x,C1r)

V (u)

|u − x|d−ε
du � C2rε−2

(
r

ρ(x)

)2−d/q

,

if 0 < r � ρ(x).

3. The space BMO∞(ρ)

From the definition (3) given in the introduction, it is clear that BMO ⊂ BMOθ (ρ) ⊂ BMOθ ′ (ρ) for 0 < θ � θ ′ , and hence
BMO ⊂ BMO∞(ρ). Moreover, it is in general a larger class. For instance, when ρ is constant (which corresponds to V a
positive constant) the functions b j(x) = |x j |, 1 � j � d, belong to BMO∞(ρ) but not to BMO. Also, when V (x) = |x|2 and L
becomes the Hermite operator, we obtain ρ(x) � 1

1+|x| and we may take b(x) = |x j |2.
Given a Young function ϕ and a locally integrable f we consider the ϕ-average over a ball or a cube (denoted by Q )

defined as

‖ f ‖ϕ,Q = inf

{
λ > 0: 1

|Q |
∫
Q

ϕ

( | f |
λ

)
� 1

}
. (8)

If we denote by ϕ̃ the conjugate Young function of ϕ , it is well known that the following version of Hölder inequality
holds

1

|Q |
∫
Q

| f g|� 2‖ f ‖ϕ,Q ‖g‖ϕ̃,Q . (9)

Let us remind that for a function b ∈ BMO(Q ), as a consequence of the John–Nirenberg inequality (see for example [4,
p. 151]), we have

‖b‖BMO(Q ) � sup
B⊂Q

‖b − bB‖ϕ,B , (10)

for certain Young functions ϕ . For instance ϕ(t) = ts , 1 < s < ∞, or ϕ(t) = et − 1.
For the spaces BMO∞(ρ), we have a weaker version of this fact that will be enough to our purposes.

Lemma 2. Let b ∈ BMOθ (ρ) and ϕ such that (10) holds. Then there exist constants C and θ ′ such that for every ball B = B(x, r) we
have

‖b − b2k B‖ϕ,B � Ck[b]θ
(

1 + 2kr

ρ(x)

)θ ′

.

Proof. For k = 1 the proof follows the same lines than that of Proposition 3 in [2]. The case k > 1 is a consequence of the
case k = 1 and the inequality

‖b − b2k B‖ϕ,B � ‖b − bB‖ϕ,B + 1

ϕ−1(1)

k∑
i=1

|b2i B − b2i−1 B |. �

4. Weights

As in [1], we need classes of weights that are given in terms of the critical radius function (4). Given p > 1, we define
Aρ,∞

p = ⋃
θ�0 Aρ,θ

p , where Aρ,θ
p is the set of weights w such that
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(
1

|B|
∫
B

w

)1/p(
1

|B|
∫
B

w− 1
p−1

)1/p′

� C

(
1 + r

ρ(x)

)θ

,

for every ball B = B(x, r).
For p = 1 we define Aρ,∞

1 = ⋃
θ�0 Aρ,θ

1 , where Aρ,θ

1 is the set of weights w such that

1

|B|
∫
B

w � C

(
1 + r

ρ(x)

)θ

inf
B

w, (11)

for every ball B = B(x, r).

Remark 1. It is not difficult to see that in (11) it is equivalent to consider cubes instead of balls, due to Proposition 1.

These classes of weights, that contain Muckenhoupt weights, were introduced in [1], where the next property is proven.

Proposition 3. If w ∈ Aρ,∞
p , 1 < p < ∞, then there exists ε > 0 such that w ∈ Aρ,∞

p−ε .

The following results are extensions of very well-known properties of A1 weights.

Lemma 3. If u ∈ Aρ,∞
1 , then there exists ν > 1 such that uν ∈ Aρ,∞

1 .

Proof. This result follows immediately from the reverse-Hölder type inequality valid for Aρ,∞
p weights (see Lemma 5

in [1]). �
For θ > 0 let us introduce the maximal function Mθ by

Mθ f (x) = sup
r>0

1

(1 + r
ρ(x) )

θ

1

|B(x, r)|
∫

B(x,r)

| f |.

Remark 2. Observe that a weight u belongs to Aρ,∞
1 if and only if there exists θ > 0 such that Mθ u � u.

Lemma 4. Let g ∈ L1
loc , θ � 0 and 0 < δ < 1, then (Mθ g)δ ∈ Aρ,∞

1 .

Proof. It is enough to prove that there exists β � 0 such that for every ball B0 = B(x0, R0),

1

|B0|
∫
B0

(
Mθ g

)δ �
(

1 + R0

ρ(x0)

)β

inf
B0

(
Mθ g

)δ
. (12)

We split g = g1 + g2, with g1 = gχ2B0 .
For g1 we use the weak type (1,1) of Mθ and Kolmogorov inequality to get for any x ∈ B0,

1

|B0|
∫
B0

(
Mθ g1

)δ �
(

1

|B0|
∫

2B0

|g|
)δ

�
(

1 + R0

ρ(x)

)θδ(
Mθ g(x)

)δ
.

Using (6) we arrive to the right-hand side of (12).
For the term with g2 we have that for any x and y in B(x0, R0)

Mθ g2(x) �
(

1 + R0

ρ(x0)

)γ θ

Mθ g2(y), (13)

where γ is the constant appearing in (7).
In fact, considering a ball B(x, r) with r � R0 (otherwise the average of g2 is zero), and using (7) it follows

1

(1 + r
ρ(x) )

θ

1

|B(x, r)|
∫

B(x,r)

|g2| �
(

1 + R0

ρ(x0)

)γ θ 1

(1 + r
ρ(y)

)θ

1

|B(y, Cr)|
∫

B(y,Cr)

|g2|

for any y ∈ B0, leading to (13).
Raising (13) to the δ power and taking averages over B0 respect to x we arrive to the right-hand side of (12) with

β = γ θδ.
Finally, collecting the estimates for g1 and g2 the proof of the lemma is finished. �
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5. Estimates of the kernels

The operators R and R∗ have singular kernels with values in R
d that will be denoted by K and K∗ respectively. For

such kernels, we have the following estimates that are basically proved in [10] and [6] (see also Lemma 3 in [2]).

Lemma 5. Let V ∈ RHq with q > d/2.

(i) For every N there exists a constant CN such that

∣∣K∗(x, y)
∣∣ � CN(1 + |x−y|

ρ(x) )−N

|x − y|d−1

( ∫
B(y,|x−y|/4)

V (u)

|u − y|d−1
du + 1

|x − y|
)

. (14)

Moreover, the last inequality also holds with ρ(x) replaced by ρ(y).
(ii) For every N and 0 < δ < min{1,2 − d/q} there exists a constant C such that∣∣K∗(x, z) −K∗(y, z)

∣∣
�

C |x − y|δ(1 + |x−z|
ρ(x) )−N

|x − z|d−1+δ

( ∫
B(z,|x−z|/4)

V (u)

|u − z|d−1
du + 1

|x − z|
)

, (15)

whenever |x − y| < 2
3 |x − z|. Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).

(iii) If K∗ denotes the Rd vector valued kernel of the adjoint of the classical Riesz operator, then∣∣K∗(x, z) − K∗(x, z)
∣∣

� C

|x − z|d−1

( ∫
B(z,|x−z|/4)

V (u)

|u − z|d−1
du + 1

|x − z|
( |x − z|

ρ(x)

)2− d
q
)

, (16)

whenever |x − z| � ρ(x).
(iv) When q > d, the term involving V can be dropped from inequalities (14) and (16).
(v) If q > d, the term involving V can be dropped from inequalities (14), (15) and (16).

The following lemma improves a result appearing in [6].

Lemma 6. Let V ∈ RHq with d/2 < q < d and s such that 1
s = 1

q − 1
d . Then the kernel K satisfies the following Hörmander type

inequality

∑
k

k
(
2kr

)d/s′
(

1 + 2kr

ρ(x0)

)θ( ∫
|x−x0|∼2kr

∣∣K(x, y) −K(x, x0)
∣∣s

dx

)1/s

� Cθ , (17)

whenever |y − x0| < r, and r � 0.

Proof. We follow the lines of the proof of Lemma 4 in [6] but performing a more careful estimate.
Using (15) we get( ∫

|x−x0|∼2kr

∣∣K(x, y) −K(x, x0)
∣∣s

dx

)1/s

�
(
2kr

)(1−d)
2−kδ

(
1 + 2kr

ρ(x0)

)−N(∥∥I1(V χB(x0,2kr))
∥∥

s + (
2kr

) d
s −1)

,

where I1 stands for the fractional integral operator of order one.
The estimate of (17) involving the second term above follows easily.
Now, from the boundedness of I1 and the fact that V ∈ RHq ,

∥∥I1(V χB(x0,2kr))
∥∥

s �
(
2kr

)− d
q′

∫
k

V , (18)
B(x0,2 r)
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where the last integral can be estimated as

∫
B(x0,2kr)

V �
(
2kr

)d−2
(

2kr

ρ(x0)

)β

(19)

with β = 2 − d
q when 2kr � ρ(x0) and β = μd, μ� 1 in other case (see [1]).

Therefore we can bound the left-hand side of (18) by either ρ(x0)
d
q −2 or

(
2kr

) d
q −2

(
2kr

ρ(x0)

)μd

with μ� 1.

Now, to finish the estimate of the sum on the left-hand side of (17) we first sum over k ∈ J1 = {k ∈ N: 2kr � ρ(x0)}. For
such sum, using the above estimates and that 2 − d

q > 0 we get the bound

∑
k

k2−kδ
(
2kr

)1−d+ d
s′ ρ(x0)

d
q −2 �

∑
k

k2−kδ � 1.

Similarly, the other sum can be bounded by

∑
k

k2−kδ
(
2kr

)−1−d+ d
q + d

s′
(

2kr

ρ(x0)

)−N+θ+μd

�
∑

k

k2−kδ � 1,

choosing N large enough. �
Lemma 7. Let V ∈ RHq, d

2 < q < d, and 1
s = 1

q − 1
d . Then, for all N there exists CN such that for any ball B = B(z, r) with r � ρ(z),

y ∈ B and Bk = 2k B, the inequality

( ∫
Bk\Bk−1

∣∣K(x, y)
∣∣s

dx

)1/s

� CN
(
2kr

)−1− d
q′

(
ρ(z)

2kr

)N−μd

(20)

holds for some μ� 1, which depends only on the constants appearing in the doubling condition that V satisfies.

Proof. From Lemma 5 we know

∣∣K(x, y)
∣∣ � CN (1 + |x−y|

ρ(x) )−N

|x − y|d−1

( ∫
B(y,2|x−y|)

V (u)

|u − y|d−1
du + 1

|x − y|
)

. (21)

Now, for B and y as in the statement and x ∈ Bk \ Bk−1 we have B(y,2|x − y|) ⊂ Bk+1. Also, since x ∈ Bk+1 we may use
Corollary 1 to reduce (21), with perhaps a different N , to

∣∣K(x, y)
∣∣ � CN

(
2kr

)1−d
(

ρ(z)

2kr

)N(
1

2kr
+ I1(χBk+1 V )(y)

)
.

Therefore,( ∫
Bk\Bk−1

|K(x, y)|s dx

)1/s

�
(
2kr

)1−d
(

ρ(z)

2kr

)N((
2kr

) d
s −1 + ∥∥I1(χBk+1 V )

∥∥
s

)
.

According to inequalities (18) and (19) we have

∥∥I1(χBk+1 V )
∥∥

s �
(
2kr

)− d
q′ +d−2

(
2kr

ρ(z)

)μd

for some μ � 1. Thus, plugging this estimate and using that r � ρ(z) and that d
s − 1 = d

q − 2 = − d
q′ + d − 2, we arrive

to (20). �
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6. L p inequalities

For an operator T we associate the local and global operators of T as

T loc f (x) = T ( f χB(x,ρ(x)))(x)

and

Tglob f (x) = T ( f χB(x,ρ(x))c )(x)

respectively, where the first integral should be understood, if necessary, in the sense of principal value.
In the following theorem, we use a larger classes of weights Aρ,loc

p already defined in [1] as those weights that satisfy
the classical A p condition for balls B(x, r) with r � ρ(x). From the well-known proof for A p classes it is easy to derive the
following result.

Proposition 4. If w ∈ Aρ,loc
p , 1 < p < ∞, then there exists ε > 0 such that w ∈ Aρ,loc

p−ε .

Let us observe that a function b ∈ BMO∞(ρ) has bounded mean oscillations over sub-critical balls, that is balls B(x, r)
with r � ρ(x). For the next result we shall denote BMOloc(ρ) the set of functions with the latter property.

Remark 3. Notice that using Proposition 2 it is possible to prove that for each constant C we have BMOloc(ρ) = BMOloc(Cρ)

and the norms are equivalent with a constant that depends on C .

Theorem 1. Let ρ a function satisfying (5) and b ∈ BMOloc(ρ), then (Rb)loc are bounded on L p(w), 1 < p < ∞, for w ∈ Aρ,loc
p .

Proof. Let {Q j} j be a covering by critical balls as in Proposition 2. It is possible to find a constant β such that if Q̃ j = β Q j

then
⋃

x∈Q j
B(x,ρ(x)) ⊂ Q̃ j .

From Lemma 1 in [1] a weight in Aρ,loc
p when restricted to some Q̃ j can be extended to R

d as an A p weight preserving

the Aρ,loc
p constant. This kind of result can be extended also to BMO functions because of their well-known relationship

with A p weights [4]. Therefore, given b ∈ BMOloc(ρ) and any Q̃ j , there is an extension of bχQ̃ j
to the whole R

d that we

call b j belonging to BMO and with norm bounded by [b]loc, the natural norm in BMOloc(ρ).
For x ∈ Q j , since b = b j on Q̃ j , we have∣∣(Rb)loc f (x)

∣∣ � ∣∣(Rb)loc f (x) − (Rb)(χQ̃ j
f )(x)

∣∣ + ∣∣(Rb j )(χQ̃ j
f )(x)

∣∣.
The first term can be bounded as

∣∣(Rb)loc f (x) − (Rb)(χQ̃ j
f )(x)

∣∣ � ∫
Q̃ j\B(x,ρ(x))

| f (y)||b j(x) − b j(y)|
|x − y|d dy

� [b]locMs,loc( f )(x), (22)

for each s > 1, with Ms,loc f (x) = supB( 1
|B|

∫
B | f |s)1/s where the sup is taken over sub-critical balls respect to the func-

tion βρ . Notice that to get the last inequality we made use of Remark 3. Then, since w = w j on Q̃ j ,∫
Rd

∣∣(Rb)loc f
∣∣p

w �
∑

j

(
[b]loc

∫
Q j

∣∣Ms,loc( f )
∣∣p

w +
∫
Q j

∣∣(Rb j )(χQ̃ j
f )

∣∣p
w j

)
.

By Proposition 4 and the boundedness of M1,loc with Aρ,loc
p weights (see Theorem 1 in [1]), we obtain the desired

estimate for the first term.
For the second term we use that, since b j belongs to BMO, the commutator Rb j is bounded on L p(w j) where w j is an

A p extension of wχQ̃ j
to all Rd with A p constant depending only on the Aρ,loc

p constant of the original weight w . We also

notice that the operator norm of Rb j is independent of j. �
Now, give a technical lemma that we will need in the proof of Theorem 3.

Lemma 8. Let ρ a function satisfying (5) and b ∈ BMOθ (ρ). Let w verifying the reverse-Hölder’s inequality (1) for q = δ and B any
sub-critical ball. Then, given any p, ν > 0, there exists a constant M > 0 such that
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∫
B

w(x)

( ∫
λB

∣∣b(x) − b(y)
∣∣ν dy

)p/ν

dx � λM [b]p
θ |B|p/ν w(B) (23)

for any sub-critical ball B and all λ� 1.

Proof. Let B = B(x0, r) with r � ρ(x0). The left side of (23) can be bounded by

λdp/ν |B|p/ν

∫
B

w(x)
∣∣b(x) − bλB

∣∣p
dx + w(B)

( ∫
λB

∣∣b(y) − bλB
∣∣ν dy

)p/ν

. (24)

For the first term of the last expression we use Hölder’s inequality with exponent δ and the assumption on w and Lemma 2
to bound it by

λdp/ν |B|p/ν−1/δ′
w(B)

( ∫
λB

∣∣b(x) − bλB
∣∣pδ′

dx

)1/δ′

� λdp/ν+d/δ′ |B|p/ν w(B)[b]p
θ

(
1 + rλ

ρ(x0)

)pθ ′

.

Using that r � ρ(x0) and λ� 1, we arrive to the desired estimate with M = d(p/ν + 1/δ′ + θ ′ p/d).
For the second term of (24) we use again Lemma 2 to get the bound

λp/ν w(B)[b]p
θ

(
1 + rλ

ρ(x0)

)pθ ′

|B|p/ν,

and the proof is finished proceeding as before. �
Theorem 2. Let V ∈ RHq and b ∈ BMO∞(ρ).

(i) If q � d, the operators Rb and R∗
b are bounded on L p(w), 1 < p < ∞, for w ∈ Aρ,∞

p .

(ii) If d/2 < q < d, and s is such that 1
s = 1

q − 1
d , the operator R∗

b is bounded on L p(w), for s′ < p < ∞ and w ∈ Aρ,∞
p/s′ and hence by

duality Rb is bounded on L p(w), for 1 < p < s, with w satisfying w− 1
p−1 ∈ Aρ,∞

p′/s′ .

Proof. First of all, notice that there is no need to consider q = d since in that case there exists an ε > 0 such that V ∈ RHd+ε .
We begin giving estimates for R∗

b .
Now we write(

R∗
b

)
f = (

R∗
b

)
loc f + (

R∗
b

)
glob f + [(

R∗
b

)
loc − (

R∗
b

)
loc

]
f . (25)

As a consequence of Theorem 1 the first term is bounded on L p(w) for w ∈ Aρ,loc
p , 1 < p < ∞. Since w ∈ Aρ,∞

p ⊂ Aρ,loc
p ,

1 � p < ∞, and w ∈ Aρ,∞
p/s′ ⊂ Aρ,loc

p , s′ < p < ∞, all the conclusions for (R∗
b)loc hold.

For the second term of (25) we use (14) to obtain∣∣(R∗
b

)
glob f (x)

∣∣ � ∫
B(x,ρ(x))c

∣∣b(y) − b(x)
∣∣∣∣K∗(x, y)

∣∣∣∣ f (y)
∣∣dy � g1(x) + g2(x),

with

g1(x) =
∞∑

k=0

2−kN g1,k(x),

where g1,k(x) = 1
(2kρ(x))d

∫
B(x,2kρ(x)) |b(y) − b(x)|| f (y)|dy, and

g2(x) =
∞∑

k=0

2−kN g2,k(x),

g2,k(x) = 1

(2kρ(x))d−1

∫
k

( ∫
k

V (u)

|u − y|d−1
du

)∣∣b(y) − b(x)
∣∣∣∣ f (y)

∣∣dy.
B(x,2 ρ(x)) B(x,2 ρ(x))
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To deal with g1, let σ = c02
N0

N0+1 , with N0 and c0 as in Proposition 1. Let {Q j} be the family given by Proposition 2 and
set Q̃ j = σ Q j . Clearly, we have

⋃
x∈Q j

B
(
x,ρ(x)

) ⊂ Q̃ j. (26)

Denoting Q̃ k
j = 2k Q̃ j , then 2k Bx ⊂ Q̃ k

j and ρ(x) � ρ(x j), whenever x ∈ Q j . Therefore, by Hölder’s inequality with γ and ν

such that 1
p + 1

γ + 1
ν = 1,

∫
Q j

(g1,k)
p w �

∫
Q j

(
1

|Q̃ k
j |

∫
Q̃ k

j

∣∣b(x) − b(y)
∣∣∣∣ f (y)

∣∣dy

)p

w(x)dx

� 1

|Q̃ k
j |p

( ∫
Q̃ k

j

w−γ /p
)p/γ ( ∫

Q̃ k
j

| f |p w

)

×
∫
Q j

w(x)

( ∫
Q̃ k

j

∣∣b(x) − b(y)
∣∣ν dy

)p/ν

dx

� 2kM [b]p
θ w

(
Q̃ k

j

)∣∣Q̃ k
j

∣∣ p
ν −p

( ∫
Q̃ k

j

w−γ /p
)p/γ ∫

Q̃ k
j

| f |p w

for some M > 0, where in the last inequality we have used Lemma 8 for θ such that b ∈ BMOθ (ρ).
From Proposition 3 we can choose γ close enough to p′ in such a way that w ∈ Aρ,η

1+p/γ for some η > 0. Therefore, for
some M1 > 0, we get∫

Q j

(g1,k)
p w � 2kM1 [b]p

θ

∫
Q̃ k

j

| f |p w

and hence for M ′
1 > 0,

‖g1‖L p(w) �
∑

k

2−kN‖g1,k‖L p(w)

�
∑

k

2−kN
(∑

j

∫
Q j

g p
1,k w

)1/p

� [b]θ
∑

k

2k(−N+M ′
1)

(∑
j

∫
Q̃ k

j

| f |p w

)1/p

� [b]θ‖ f ‖L p(w)

∑
k

2k(−N+M ′
1+N1),

where in the last inequality is due to Proposition 2. Choosing N large enough the last series is convergent.
Regarding g2, according to Lemma 5, we only have to consider d

2 < q < d.
Observe that for x ∈ Q j we have∫

B(x,2kρ(x))

V (u)

|u − y|d−1
du � I1(χQ̃ k

j
V )(y),

where I1 is the classical fractional integral of order 1.
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Therefore, by Hölder’s inequality with γ and ν such that 1
p + 1

s + 1
ν + 1

γ = 1,

∫
Q j

(g2,k)
p w �

∫
Q j

(
1

|Q̃ k
j |1−1/d

∫
Q̃ k

j

∣∣b(x) − b(y)
∣∣∣∣ f (y)

∣∣I1(V χ
Q̃ j

k
)(y)dy

)p

w(x)dx

� 1

|Q̃ k
j |p(1−1/d)

( ∫
Q̃ k

j

w−γ /p
)p/γ

‖χQ̃ k
j

f ‖p
L p(w)

∥∥I1(χQ̃ k
j
V )

∥∥p
s

×
∫
Q j

w(x)

( ∫
Q̃ k

j

∣∣b(x) − b(y)
∣∣ν dy

)p/ν

dx.

Recall that V ∈ RHq for some q > 1 implies that V satisfies the doubling condition, i.e., there exist constants μ � 1 and
C such that∫

t B

V � Ctdμ

∫
B

V ,

holds for every ball B and t > 1. Therefore, due to the boundedness of I1 from Lq into Ls , and the assumptions on V ,

∥∥I1(χQ̃ k
j
V )

∥∥
s � ‖χQ̃ k

j
V ‖q �

∣∣Q̃ k
j

∣∣−1/q′ ∫
Q̃ k

j

V

� 2kdμ
∣∣Q̃ k

j

∣∣−1/q′ ∫
Q̃ j

V � 2kd(μ−1+ 2
d )

∣∣Q̃ k
j

∣∣ 1
q − 2

d

where the last inequality follows from the definition of ρ (see (4)). With this estimate and using the claim, we proceed as
in the case of g1, choosing this time γ such that 1 + p

γ is close enough to p
s′ , to obtain∫

Q j

(g2,k)
p w � 2kM2

∫
Q̃ k

j

| f |p w

for some M2, leading to the desired estimate.
Now we have to deal with the term [(R∗

b)loc − (R∗
b)loc] f of (25). By using estimate (16), we have∣∣[(R∗

b

)
loc − (

R∗
b

)
loc

]
f (x)

∣∣ � h1(x) + h2(x)

where

h1(x) =
∑

k

2−k(2−d/q)h1,k(x),

with

h1,k(x) = 2kdρ(x)−d
∫

B(x,2−kρ(x))

∣∣ f (y)
∣∣∣∣b(x) − b(y)

∣∣dy

and

h2(x) �
∞∑

k=0

2k(d−1)h2,k(x),

where

h2,k(x) = ρ(x)−d+1
∫
−k

∣∣ f (y)
∣∣∣∣b(x) − b(y)

∣∣( ∫
B(y,|x−y|/4)

V (u)

|u − y|d−1
du

)
dy.
B(x,2 ρ(x))
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Let us take a covering {Q j} as before. For each j and k there exist 2dk balls of radio 2−kρ(x j), B j,k
l = B(x j,k

l ,2−kρ(x j))

such that Q j ⊂ ⋃2dk

l=1 B j,k
l ⊂ 2Q j and

∑2dk

l=1 χ
B j,k

l
� 2d . Moreover, this construction can be done in a way that for each k the

family of a fixed dilation {B̃ j,k
l } j,l is a covering of Rd such that

∑
j

2dk∑
l=1

χ
B̃ j,k

l
� C, (27)

with the constant C independent of k. To our purpose we take the dilation B̃ j,k
l = 5c0 B j,k

l (where c0 appears in (5)).

Observe that if x ∈ B j,k
l , B(x,2−kρ(x)) ⊂ B̃ j,k

l and ρ(x) � ρ(x j). Then

h1,k(x) � 2kdρ(x j)
−d

∫
B̃ j,k

l

∣∣ f (y)
∣∣∣∣b(x) − b(y)

∣∣dy.

By Hölder’s inequality with γ and ν as for g1, and using Lemma 8 and Proposition 3, we have∫
B j,k

l

(h1,k)
p w �

∫
B j,k

l

(
2kdρ(x j)

−d
∫

B̃ j,k
l

∣∣b(x) − b(y)
∣∣∣∣ f (y)

∣∣dy

)p

w(x)dx

� 2kdpρ(x j)
−dp

( ∫
B̃ j,k

l

w−γ /p
)p/γ ( ∫

B̃ j,k
l

| f |p w

)

×
∫

B j,k
l

w(x)

( ∫
B̃ j,k

l

∣∣b(x) − b(y)
∣∣ν dy

)p/ν

dx

� [b]p
θ

∫
B̃ j,k

l

| f |p w.

Adding over j and l, and using the bounded overlapping property (27),

‖h1,k‖L p(w) � [b]θ‖ f ‖L p(w),

and thus we obtain the desired estimate for h1.
To deal with h2, we use that I1 is bounded from Lq into Ls , together with Lemma 1, to get∥∥I1(χB̃ j,k

l
V )

∥∥
s � ‖χ

B̃ j,k
l

V ‖q

�
∣∣B̃ j,k

l

∣∣−1+1/q
∫

B̃ j,k
l

V

� ρ(x j)
−2+d/q. (28)

Now, we proceed as for h1 but this time we apply Hölder’s inequality with γ and ν such that 1
p + 1

s + 1
ν + 1

γ = 1,

∫
B j,k

l

(h2,k)
p w � 1

ρ(x j)
p(d−1)

( ∫
B̃ j,k

l

w−γ /p
)p/γ

‖χ
B̃ j,k

l
f ‖p

L p(w)

∥∥I1(χB̃ j,k
l

V )
∥∥p

s

×
∫

B j,k
l

w(x)

( ∫
B̃ j,k

l

∣∣b(x) − b(y)
∣∣ν dy

)p/ν

dx

� [b]p
θ 2−kpd(1− 1

q + 1
d )‖χ

B̃ j,k
l

f ‖p
L p(w).

Therefore, with the same argument as for h1, and adding over k,

‖h2,k‖L p(w) � [b]θ‖ f ‖L p(w).

and we finish the proof of the theorem. �
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7. An Orlicz weak estimate for the case p = 1

In the next lemma we will use the notation P (x, r) to denote the cube of center x and side 2r.

Lemma 9. Let ρ be a function satisfying (5) and θ � 0 fixed. Then for any λ > 0 there exists an at most countable family of cubes {P j},
P j = P (x j, r j) such that(

1 + r

ρ(x j)

)θ

λ � 1

|P j|
∫
P j

| f |� Cλ

(
1 + r

ρ(x j)

)σ

, (29)

for some σ � θ , depending only on the constants appearing in (5), and∣∣ f (x)
∣∣ � λ, a.e. x /∈

⋃
j

P j . (30)

Proof. First, let us observe that for any cube P = P (x, r),(
1 + r

ρ(x)

)−θ 1

|Q |
∫
Q

| f |� 1

|Q |
∫
Rd

| f |,

and the right-hand side tends to zero when r goes to infinity. Therefore we may start the Calderón–Zygmund decomposition
process with some r0-grid such that(

1 + r0

ρ(z)

)−θ 1

|P (z, r0)|
∫

P (z,r0)

| f |� λ, (31)

for any cube in the grid. We divide dyadically the cubes selecting those for which the average on the left turns greater
than λ.

Continuing dividing those cubes that have not been selected we obtain a sequence of P j satisfying the left inequality
of (29).

To check the other inequality, observe that if P j = P (x j, r j) was selected, then P j is contained in a cube P (y,2r j)

satisfying (31) for some y. Hence

1

|P j|
∫
P j

| f |�
(

1 + 2r

ρ(y)

)θ

�
(

1 + r j

ρ(x j)

)N0θ

,

where in the last inequality we used (5).
Next, if x /∈ ⋃

j P j there exists a sequence of cubes containing x and with radius tending to zero satisfying (31). Since
ρ is continuous and positive (30) follows from the Lebesgue’s differentiation theorem. �
Theorem 3. Let V ∈ RHq and b ∈ BMO∞(ρ).

(i) If q � d and w ∈ Aρ,∞
1 , then there exists a constant C such that for every f ∈ L1

loc and λ > 0,

w
({∣∣Rb f

∣∣ > λ
})

� C

∫
Rd

| f |
λ

(
1 + log+ | f |

λ

)
w. (32)

(ii) If d/2 < q < d and ws′ ∈ Aρ,∞
1 , with 1

s = 1
q − 1

d , inequality (32) holds.

Proof. First, let us observe that (i) can be deduced from (ii). In fact, if w ∈ Aρ,∞
1 there exist γ0 > 1 such that wγ ∈ Aρ,∞

1 ,
for 1 � γ � γ0, according to Lemma 5. Oh the other hand if V ∈ RHq for q � d it certainly belongs to RHs for any s < d. In
particular we may choose d

2 < s < d and γ > γ0 such that 1 − 1
γ = 1

s − 1
d , to get the desired estimate.

Assume then V ∈ RHq , d
2 < q < d. Let w be such that ws′ ∈ Aρ,∞

1 and therefore ws′ ∈ Aρ,β

1 , for some β � 0. In this case

it is also true that w ∈ Aρ,θ

1 with θ = β/s′ .
Given f ∈ L1, let us consider P j = P (x j, r j) the Calderón–Zygmund decomposition given in Lemma 9 associated to θ . We

define the set of indexes

J1 = {
j: r j � ρ(x j)

}
, J2 = {

j: r j > ρ(x j)
}
,
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and

Ω1 =
⋃
j∈ J1

P j, Ω2 =
⋃
j∈ J2

P j .

Now we split f = g + h + h′ , as

g(x) =
⎧⎨
⎩

1
|P j |

∫
P j

f , if x ∈ P j, j ∈ J1,

0, if x ∈ P j, j ∈ J2,

f (x), if x /∈ Ω,

with Ω = Ω1 ∪ Ω2,

h(x) =
{

f (x) − 1
|P j |

∫
P j

f , if x ∈ P j, j ∈ J1,

0, otherwise,

and therefore h′(x) = χΩ2 f .
Let P̃ j = P j(x j,2r j) and Ω̃ = ⋃

j P̃ j . Now,

w
({

x: |Rb f |(x) > λ
})

� w(Ω̃) + w
({

x /∈ Ω̃: |Rb f |(x) > λ
})

. (33)

The first term of the last expression, can be controlled using (29) and that w ∈ Aρ,θ

1 (see Remark 1), as

w(Ω̃) �
∑

j

w( P̃ j) �
1

λ

∑
j

w( P̃ j)

| P̃ j|
(

1 + r j

ρ(x j)

)−θ ∫
P j

| f |

� 1

λ

∑
j

inf
P j

w

∫
P j

| f |� 1

λ

∫
Rd

| f |w. (34)

For the second term of (33), it is enough to arrive to the right-hand side of inequality (32) estimating II1 =
w({x: |Rb g(x)| > λ}), II2 = w({x /∈ Ω̃: |Rbh(x)| > λ}) and II3 = w({x /∈ Ω̃: |Rbh′(x)| > λ}).

To deal with II1 notice that, from Lemma 9 it follows that |g| � λ. On the other hand, from Theorem 2 it follows that
Rb is bounded on L p(w) for some p close enough to one.

In fact, from ws′ ∈ Aρ,∞
1 we get ws′ν ∈ Aρ,∞

1 for some ν > 1 (see Lemma 3) and taking p such that p(1 − s′) + s′ = 1
ν it

is easy to check that w− 1
p−1 ∈ Aρ,∞

p′/s′ . Therefore, since strong type implies weak type (p, p), we get

w
({

x: ∣∣Rb g(x)
∣∣ > λ

})
� 1

λp

∫
Rd

|g|p w � 1

λ

( ∑
j∈ J1

w(P j)

|P j|
∫
P j

| f | +
∫
Ωc

| f |w
)

. (35)

Since w ∈ Aρ,∞
1 and for j ∈ J1, r j � ρ(x j) we have

w(P j)

P j
� infP j w , and hence the last expression in (35) can be easily

bounded by 1
λ

∫
Rd | f |w .

To take care of II2 we observe that

Rbh(x) =
∫
Rd

K(x, y)
[
b(x) − b(y)

]
h(y)dy =

∑
j∈ J1

∫
P j

K(x, y)
[
b(x) − b(y)

]
h(y)dy.

Adding and subtracting bP j inside the integral we write

Rbh(x) = −A(x) + B(x),

where

A(x) =
∑
j∈ J1

∫
P j

K(x, y)
[
b(y) − bP j

]
h(y)dy,

and

B(x) =
∑
j∈ J1

∫
P j

K(x, y)
[
b(x) − bP j

]
h(y)dy.

So we need to estimate

II2,1 = w
({

x /∈ Ω̃: ∣∣A(x)
∣∣ > λ

})
and II2,2 = w

({
x /∈ Ω̃: ∣∣B(x)

∣∣ > λ
})

.



B. Bongioanni et al. / J. Math. Anal. Appl. 392 (2012) 6–22 19
To deal with the first expression let ν > 1 be such that ws′ν ∈ Aρ,∞
1 . Hence, according to Remark 2 there exists σ � 0

such that

Mσ
(

ws′ν)
� ws′ν . (36)

We set w∗ = wχΩ̃c and since ws′ν∗ ∈ L1
loc we may apply Lemma 4 for g = ws′ν∗ , θ = σ and δ = 1/ν to get that the weight

u = (Mσ ws′ν∗ )
1

s′ν is such that us′ belongs to Aρ,∞
1 . Also, from differentiation, w∗ � u and from (36) u � w . Moreover, notice

that for y, z ∈ P j , j ∈ J1 we have u(x) � u(y). This is due to the facts that w∗ = 0 in P j and that ρ(x) � ρ(y).
Then since A(x) = −R(

∑
j∈ J1

(b − bP j )χP j h)(x) and us′ ∈ Aρ,∞
1 (see Theorem 3 in [1]),

II2,1 = w∗
({

x: ∣∣A(x)
∣∣ > λ

})
� u

({
x: ∣∣A(x)

∣∣ > λ
})

� 1

λ

∑
j∈ J1

∫
P j

[
b(y) − bP j

]∣∣h(y)
∣∣u(y)dy

� 1

λ

∑
j∈ J1

inf
P j

u

∫
P j

[
b(y) − bP j

]∣∣ f (y)
∣∣dy

+ 1

λ

∑
j∈ J1

inf
P j

u
1

|P j|
∫
P j

[
b(y) − bP j

]∫
P j

∣∣ f (y)
∣∣dy.

Clearly, the last sum is controlled by [b]θ‖ f w‖1 since u � w . For the first term we apply Hölder’s inequality (9) and
Lemma 2,

II2,1 �
1

λ
[b]θ

∑
j∈ J1

inf
P j

u|P j|‖ f ‖ϕ,P j .

We remind that from [7, p. 92], we get that for any cube Q

‖ f ‖ϕ,Q � inf
t>0

{
t + t

|Q |
∫
Q

ϕ

( | f |
t

)}
.

Now, taking t = λ,

|P j|
λ

‖ f ‖ϕ,P j � |P j| +
∫
P j

ϕ

( | f |
λ

)
. (37)

But since P j satisfies (29), we have

|P j|� 1

λ

∫
P j

| f |. (38)

Inserting these estimates an using again that u � w it follows

II2,1 � [b]θ
( ∫

Rd

| f |
λ

w +
∫
Rd

ϕ

( | f |
λ

)
w

)
.

For II2,2 we apply Tchebycheff inequality to get

II2,2 �
1

λ

∫
Ω̃c

|B|w

� 1

λ

∑
j∈ J1

∫
P̃ c

j

∣∣b(x) − bP j

∣∣(∫
P j

∣∣K(x, y) −K(x, x j)
∣∣∣∣h(y)

∣∣dy

)
w(x)dx

� 1

λ

∑
j∈ J1

∫
P j

∣∣h(y)
∣∣(∫

P̃ c

∣∣b(x) − bP j

∣∣∣∣K(x, y) −K(x, x j)
∣∣w(x)dx

)
dy.
j
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The inner integrals may be estimate splitting into annuli and applying Hölder’s inequality with s, s′ν , γ with ν > 1 such
that ws′ν ∈ Aρ,∞

1 and 1
s + 1

s′ν + 1
γ = 1. In this way, setting Pk

j = 2k P j we have

∫
P̃ c

j

∣∣b(x) − bP j

∣∣∣∣K(x, y) −K(x, x j)
∣∣w(x)dx

�
∞∑

k=2

(∫
Pk

j

∣∣b(x) − bP j

∣∣γ dx

)1/γ

×
( ∫

Pk
j \Pk−1

j

∣∣K(x, y) −K(x, x j)
∣∣s

dx

)1/s(∫
Pk

j

ws′ν
) 1

s′ν
. (39)

Next, observe that if b ∈ BMOθ∞(ρ), using Lemma 2, for some η � θ we have

(∫
Pk

j

∣∣b(x) − bP j

∣∣γ dx

)1/γ

�
(∫

Pk
j

∣∣b(x) − bPk
j

∣∣γ dx

)1/γ

+ ∣∣Pk
j

∣∣1/γ
k−1∑
i=0

1

|P i
j|

∫
P i

j

∣∣b(x) − bP i
j

∣∣

� [b]θ
∣∣Pk

j

∣∣1/γ

[(
1 + 2kr j

ρ(x j)

)η

+
k−1∑
i=0

(
1 + 2ir j

ρ(x j)

)θ
]

� k[b]θ
∣∣Pk

j

∣∣1/γ
(

1 + 2kr j

ρ(x j)

)η

.

Also, since ws′ν ∈ Aρ,∞
1 , for some σ > 0 we have

(∫
Pk

j

ws′ν
) 1

s′ν
� inf

P j

w
∣∣Pk

j

∣∣1/s′ν
(

1 + 2kr j

ρ(x j)

)σ

. (40)

Therefore, since 1
s′ν + 1

γ = 1
s′ and P j ⊂ Pk

j , the right-hand side of (39) can be bounded by a constant times

[b]θ inf
P j

w
∞∑

k=2

k
(
2kr j

)d/s′
(

1 + 2ir j

ρ(x j)

)η+σ ( ∫
Pk

j \Pk−1
j

∣∣K(x, y) −K(x, x j)
∣∣s

dx

)1/s

but for P j , we have |y − x j | < r j so we may apply Hörmander’s type condition of Lemma 6. Therefore,

II2,2 �
[b]θ
λ

∑
j∈ J1

inf
P j

w

∫
P j

|h|� 1

λ

∑
j∈ J1

∫
P j

| f |w � 1

λ

∫
Rd

| f |w.

Finally, we take care of III which involves h′ = f χΩ2 . By Tchebycheff inequality and proceeding as for II2,2,

III � 1

λ

∑
j∈ J2

∫
P j

∣∣ f (y)
∣∣(∫

P̃ c
j

∣∣b(x) − bP j

∣∣∣∣K(x, y)
∣∣w(x)dx

)
dy.

Now, for each j ∈ J2 we bound the inner integral splitting into annuli and applying Hölder’s inequality as in (39). With
the same notation there we get using Lemma 7,
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∫
P̃ c

j

∣∣b(x) − b(y)
∣∣∣∣K(x, y)

∣∣w(x)dx

�
∞∑

k=2

(
2kr j

)−1− d
q′

(
ρ(x j)

2kr j

)N−μd(∫
Pk

j

∣∣b(x) − b(y)
∣∣γ dx

)1/γ (∫
Pk

j

ws′ν
) 1

s′ν
. (41)

For the factor with w we use estimate (40), and the one concerning b we can add and subtract bPk
j

to obtain

(∫
Pk

j

∣∣b(x) − bP j

∣∣dx

)1/s

�
(
2kr j

)−1− d
q′

[
[b]θ

(
2kr j

ρ(x j)

)η

+ ∣∣bPk
j
− b(y)

∣∣].

Collecting estimates, setting α = N − μd − η − σ and using that r j � ρ(x j) for j ∈ J2, we get

III � 1

λ

∑
k

2−kα
∑
j∈ J2

(
r j

ρ(x j)

)α

inf
P j

w

∫
P j

∣∣ f (y)
∣∣[[b]θ

(
2kr j

ρ(x j)

)η

+ ∣∣bPk
j
− b(y)

∣∣]dy. (42)

For the term with [b]θ choosing N such that N − μd − η − σ > 0 and using that r j � ρ(x j) for j ∈ J2, to obtain that it
is bounded by a constant times 1

λ

∫
f w .

For the other term we apply as before Hölder with ϕ and ϕ̃ to get∫
P j

∣∣ f (y)
∣∣∣∣bPk

j
− b(y)

∣∣dy � |P j|
∥∥ f (y)

∥∥
ϕ,P j

‖bPk
j
− b‖ϕ̃,P j

.

Then, we apply Lemma 2 to bound the last factor. For the first factor we use (37) and (38). Therefore, choosing N large
enough in (42) such that N − μd − η − σ − M > 0 we obtain that expression bounded by∫

P j

ϕ

(
f

λ

)
w. �

Remark 4. We want to point out that inequality (32) is also true for R∗
b with weights in Aρ,∞

1 provided the potential V
belongs to RHd . On the other hand, when V ∈ RHq for some q > d/2 but V /∈ RHd , we cannot expect this kind of result for
R∗

b since R∗ is not of weak type (1,1) for w = 1 (see [10]). Therefore, in order to get (32) for R∗
b when V ∈ RHd we cannot

argue as we did for Rb in that case. Nevertheless, a close look at the proof of the case q < d reveals that the same pattern
could be followed in this case.

In fact, notice that the only instances in the argument where we use properties of Rb , R or of the kernel K are the
following:

(i) Strong type (p, p) of Rb with the weight w for some p > 1 (see (35)).

(ii) Weak type (1,1) of R with the weight u = (Mσ wνs′∗ )
1

νs′ , when estimating II2,1.
(iii) Hörmander’s like property of K (see (17)) to bound II2,2.
(iv) Estimates of the size of K given by Lemma 7 to obtain inequality (41).

When V ∈ RHd all these properties are true for R∗
b , R∗ and K∗ for the corresponding value s = ∞. In fact, that (i) and

(ii) are true is a consequence of Theorem 2 of Section 6 and Theorem 3 in [1] together with Lemma 3 above.
Regarding (iii) and (iv) it is known that K∗ is a Calderón–Zygmund kernel when V ∈ RHq and moreover it satisfies the

stronger inequalities

∣∣K∗(x, y)
∣∣ � CN

(
1 + |x − y|

ρ(x)

)−N 1

|x − y|d ,

and

∣∣K∗(x, y) −K∗(x, z)
∣∣ � CN

(
1 + |x − y|

ρ(x)

)−N |y − z|δ
|x − y|d+δ

,

whenever 2|y − z| � |x − y|, for some δ > 0 and any N � 0. Also, ρ(x) can be substituted by ρ(y) in all instances (see
Lemma 4 in [2]).
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