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1. Introduction

Let V : R4 R, d > 3, be a non-negative locally integrable function that belongs to a reverse-Hélder class RH, for some
exponent q > d/2, i.e. there exists a constant C such that

L aq N_c d
— v <— [V , 1
<|B|/ W) y) lBle (y)dy (1)

B

for every ball B c RY.
For such a potential V we consider the Schrédinger operator

L=—A+V,
and the associated Riesz transform vector
R=vVLT1/2,

Boundedness results of R have been obtained in [10] by Shen, where he shows that they are bounded on LP(RY) for
1 < p < po, with pg depending on q. When V € RH; with q > d, R and its adjoint R* are in fact Calder6n-Zygmund
operators (see [10]).

We denote by T either R or R*. For some function b we will consider the commutator operator

Ty f(X) =T(bfH) —bOTfK), xeR% (2)
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It is well known (see [3]) that for the classical case (that is V = 0) the corresponding commutators Tj, are of strong
type (p, p) for 1 < p < oo whenever b belongs to BMO. However, for the case we deal with in this article, the operators R
have better properties related to their decay. This behavior was the key point to get a significant improvement about the
commutators Tp. In fact, in [2], it was obtained strong type (p, p), 1 < p < oo, for b in a wider space than BMO, that is the
space BMOuo(0) = Uy~ o BMOs (p), where for 6 > 0 the space BMOy(p) is the set of locally integrable functions f satisfying

1 r 0
b —bgldy <Cl1+ —) , 3
|M&n&/J(” ldy ('+mm) ©)

for all x e RY and r > 0, with by = ﬁfB b. A norm for b € BMOy(p), denoted by [b]y, is given by the infimum of the
constants in (3).

The present article is devoted to obtain weighted boundedness for T,. Once again, the special behavior of R allows us
to get better results than in the classical case.

Particularly, we get strong (p, p) inequalities for b € BMO,(p) and weights in a class larger than Muckenhoupt’s. Such
classes already appeared in connection with the LP-boundedness of R (see [1]).

Moreover, we obtain weighted weak type inequalities for Tp. Related to this, it is important to remember that weak type
(1, 1) is not true in the case of classical singular integrals (see [8]). Nevertheless in that situation we are able to prove an
LlogL weak estimate but for b in BMOs(p) and weights in a class larger than Aj. These results are completely new even
in the unweighted case.

In order to get the results for 1 < p < oo we use basically the same comparison techniques developed in [1]. However,
this method fails for the extreme case p =1, so we adapt the techniques in [9], based on some appropriate Calderén-
Zygmund decomposition. Also, since the kernels of R may not have point-wise smoothness, we have to work with a
Hormander type condition instead.

The article is organized as follows. In sections 2 and 3 we review some properties concerning the critical radius function
and the space BMOy,(p). Section 4 is devoted to the class of weights where, in particular, we give a method to construct
Afo’p weights using a maximal function. In Section 5 we collect some estimates of the kernels of the Schrodinger-Riesz
transforms, including a Hérmander type inequality, which slightly improves Lemma 4 in [6]. The main results concerning
the boundedness of the commutators are presented in Sections 6 and 7.

In the sequel, when B = B(x,r) and C > 0, we shall use the notation CB, to denote the ball with the same center x and
radius Cr.

2. The critical radius function

The notion of locality is given by the critical radius function

1
,o(><)=sup{r>0:rd—_2 / Vgl}, xeRY (4)
B(x,r)

which, under our assumptions, satisfies 0 < p(x) < oo (see [10]).

Proposition 1. (See [10].) If V € RHy,», there exist co and No > 1 such that

N No_
lx—yly X =yl Mo+t
(5)

Calp(X)<1+ p(x)> <p(y)<60p(><)(1+ e

forallx,y e R4

Corollary 1. Let X, y € B(xg, Ro). Then:

(i) There exists C > 0 such that

Ro Ro \'°
1 — < (|1 . 6
o <+pw0 ©

(ii) There exists C > 0 such that

1+L<c<1+ Ro )y(1+L> (7)
Py 0(X0) o))

forallr > Ry, where y = No(1 + N’:Sq ).




8 B. Bongioanni et al. /J. Math. Anal. Appl. 392 (2012) 6-22

Proof. Inequality (6) is a straightforward consequence of the left-hand side of (5). Inequality (7) follows from the right-hand
side of (5) and then (6). O

Proposition 2. (See [5].) There exists a sequence of points xj, j > 1, in RY, so that the family Qj = B(xj, p(xj)), j > 1, satisfies

)Uij:

(ii) For every o > 1 there exist constants C and N such that, Zj XoqQ; < CoMr,

Lemma 1. Let V € RHg withq > d/2 and € > %. Then for any constant Cy there exists a constant C, such that

2—d/q
/ &du < C2r€_2<L> ,
|u — x|4-¢ pX)

B(x,C11)

ifo<r<p).
3. The space BMO (p)

From the definition (3) given in the introduction, it is clear that BMO C BMOy(p) C BMOgy (p) for 0 <6 < 6’, and hence
BMO C BMOo(p). Moreover, it is in general a larger class. For instance, when p is constant (which corresponds to V a
positive constant) the functions bj(x) = ||, 1 < j < < d, belong to BMO4(p) but not to BMO. Also, when V (x) = |x|? and £
becomes the Hermite operator, we obtain p(x) ~ l+\x\ and we may take b(x) = |xj|2.

Given a Young function ¢ and a locally integrable f we consider the ¢-average over a ball or a cube (denoted by Q)
defined as

. 1

If we denote by ¢ the conjugate Young function of ¢, it is well known that the following version of Holder inequality
holds

1
@Q/|fg|<2||f||¢,Q||g||¢,Q- )

Let us remind that for a function b € BMO(Q ), as a consequence of the John-Nirenberg inequality (see for example [4,
p. 151]), we have

Iblismocq) = sup |Ib — bglly,s. (10)
BCQ

for certain Young functions ¢. For instance ¢(t) =t5, 1 <s < 0o, or ¢(t) =e' — 1.
For the spaces BMO,(0), we have a weaker version of this fact that will be enough to our purposes.

Lemma 2. Let b € BMOy (p) and ¢ such that (10) holds. Then there exist constants C and 6’ such that for every ball B = B(x, 1) we
have

2kr \ ¢
[Ib —bakglly,B < Ck[b] <1+ ) .
2kpllg,B 0 0(X)

Proof. For k =1 the proof follows the same lines than that of Proposition 3 in [2]. The case k > 1 is a consequence of the
case k=1 and the inequality

k
1
”b bZkB”(ﬂB ”b bB||(pB+ 1(1)Z|b2i3_b2i713|. O
4. Weights

As in [1], we need classes of weights that are given in terms of the critical radius function (4). Given p > 1, we define
AR =Upso Ay, where Ap is the set of weights w such that
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1 1/p 1 1 1/p r 0
|B| |B| pX)
B B

for every ball B= B(x,r).
For p =1 we define Af’oc =Us>o0 Af'e, where Af’g is the set of weights w such that

1 r 1\’

— fw<c(1+-1) infw, 11

IBl/W <+,0(x)) B (11)
B

for every ball B= B(x,1).
Remark 1. It is not difficult to see that in (11) it is equivalent to consider cubes instead of balls, due to Proposition 1.
These classes of weights, that contain Muckenhoupt weights, were introduced in [1], where the next property is proven.
Proposition 3. If w € Ag‘oo, 1 < p < oo, then there exists € > 0 such that w € Ag‘_os.
The following results are extensions of very well-known properties of A; weights.

Lemma 3. If u € AY"™, then there exists v > 1 such that u¥ € AY">.

Proof. This result follows immediately from the reverse-Holder type inequality valid for A,’;’OO weights (see Lemma 5
in[1]). O

For 6 > 0 let us introduce the maximal function M? by

oo 1 1 /
M= et J
B

(x.1)
Remark 2. Observe that a weight u belongs to Af’oo if and only if there exists 6 > 0 such that M%u <u.
Lemmad4.letgell ,0>0and0 <8 <1, then (Mg)° € AP,

loc’

Proof. It is enough to prove that there exists 8 > 0 such that for every ball By = B(xg, Ro),

1 s Ro b s
— [ (MPg)° < (1 f(M? g)°. 12
IBOIB/( g)N<+p(Xo)> inf(Me) (12)
0

We split g = g1 + g2, with g1 = gx25,.
For g; we use the weak type (1, 1) of M? and Kolmogorov inequality to get for any x € Bg,

1 5 1 ) Ro 668 s
— [ (M?g1)" (— / |g|) < (1 + —) M’g(x))".
|BO|/( ) |Bol px) ( )
Bo 2By
Using (6) we arrive to the right-hand side of (12).
For the term with g, we have that for any x and y in B(xg, Ro)
Ro

p(Xo)

where y is the constant appearing in (7).
In fact, considering a ball B(x,r) with r > Ry (otherwise the average of g is zero), and using (7) it follows

)44
M9g2<x>5(1+ ) M g5 (y), (13)

1

— sz (14 - o | el
2 2
(1+ )7 |B(x, 1) ~ (x0)) (4 =55)? |B(y,Cr)
p(x) | |B(X’r) p p(y) IB(y |B(y,Cr)

for any y € By, leading to (13).

Raising (13) to the § power and taking averages over Bg respect to x we arrive to the right-hand side of (12) with
B=ybs.

Finally, collecting the estimates for g; and g, the proof of the lemma is finished. O
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5. Estimates of the kernels

The operators R and R* have singular kernels with values in R? that will be denoted by K and K* respectively. For
such kernels, we have the following estimates that are basically proved in [10] and [6] (see also Lemma 3 in [2]).

Lemma 5. Let V € RHg withq > d/2.

(i) Forevery N there exists a constant Cy such that

Cn(1+ E2H=N V(u 1
K (x, y)| < ———L20 ( 21_1 u ) (14)
Ix =yl [u—yl Ix—yl
B(y.1x=yl/4)
Moreover, the last inequality also holds with p(x) replaced by p(y).
(ii) Forevery N and 0 < 8 < min{1, 2 — d/q} there exists a constant C such that
|K*(x,2) — K*(y. 2)|
s [x—2|\—N
<Clx—yl a+ 7)) V(u) " 1 (15)
[x — z|d=145 lu—z/d-1 x—2z|)
B(z,1x~z|/4)
whenever |x — y| < %|x — z|. Moreover, the last inequality also holds with p(x) replaced by p(z).
(iii) IfK* denotes the RY vector valued kernel of the adjoint of the classical Riesz operator, then
|K*(x, 2) — K*(x, 2)|
c v 1 (k—z\*
u X—z
< —— / du + ( , (16)
|x — z|d—1 lu —z/d-1 Ix—z|\ pXx)

B(z.|x—z|/4)

whenever |x — z| < p(x).
(iv) When q > d, the term involving V can be dropped from inequalities (14) and (16).
(v) Ifq > d, the term involving V can be dropped from inequalities (14), (15) and (16).

The following lemma improves a result appearing in [6].

Lemma 6. Let V € RHy with d/2 < q < d and s such that % = % — %. Then the kernel K satisfies the following Hérmander type
inequality
, 2k \? 1/s
Zk(z"r)d/s (1 + ) ( / [K(x, y) — K(x, xo)]sdx) < Cp, (17)
p(Xo)

k
|x—xg|~2kr

whenever |y — xg| <1, andr > 0.

Proof. We follow the lines of the proof of Lemma 4 in [6] but performing a more careful estimate.
Using (15) we get

1/s
< / \/C(x,y)—/C(x,xo)yde>

|x—xg|~2kr

k -N
<02 (14 T ) (I K+ (),

P (Xo0)

where I7 stands for the fractional integral operator of order one.
The estimate of (17) involving the second term above follows easily.
Now, from the boundedness of I and the fact that V € RH,

d
7

e U (18)
B(xg,2kr)
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where the last integral can be estimated as

k B
/ v<(ﬂ0“2<2r ) (19)

P (o)
B(xg,2kr)

with =2 — g when 2%r < p(xp) and B = ud, i > 1 in other case (see [1]).

Therefore we can bound the left-hand side of (18) by either ,o(xo)g*2 or

d_ 2]( /‘Ld
(2r) 0 2(/)(;)) with 1t > 1.
0

Now, to finish the estimate of the sum on the left-hand side of (17) we first sum over k € J; = {k € N: 2k < p(xo)}. For
such sum, using the above estimates and that 2 — g > 0 we get the bound

Y k2 ko (2"r)1‘d+sd"p(xo)§‘2 <Y ke k<,
k k

Similarly, the other sum can be bounded by
k —N+6+ud
Zkz*"“(z"r)‘“"*%ﬂ—/ <_2 ! ) <> k2,
p P (Xo) p
choosing N large enough. O

Lemma?7.let V € RHg, § <q<d,and 1 = % — L. Then, for all N there exists Cy such that for any ball B = B(z,r) with t > p(2),
y € B and B¥ = 2¥B, the inequality

1/s d N—pd

renla) - <cn@n T (52) @
r

Bk\Bk’]

holds for some . > 1, which depends only on the constants appearing in the doubling condition that V satisfies.

Proof. From Lemma 5 we know

Cn(1+ BN V() 1
a1 a1 Ut :
x—yl u—yl X—y

K@ y)| <

(21)
B(y.2lx-yl)

Now, for B and y as in the statement and x € BX\ B¥~! we have B(y,2|x — y|) C B¥t1. Also, since x € B! we may use
Corollary 1 to reduce (21), with perhaps a different N, to

_ N/
|K(x, y)| <c,\,(2’<r)1 d(%) (E‘FIl(XBkHV)(}’))-

Therefore,

1/s kn1—d [ P2 N ko d-1
|IC(x,y)|sdx> < (24r) (2"r> (@) + [ Ogen V) | )-
Bk\Bk—l

According to inequalities (18) and (19) we have
d
—digoaf 2Kr\M
Li(xgea V). < (2%) @ (—
” B ”S ( ) ,O(Z)

for some p > 1. Thus, plugging this estimate and using that r > p(z) and that g —1= % —-2= —% +d — 2, we arrive
to (20). O
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6. LP? inequalities

For an operator T we associate the local and global operators of T as

Tioc f(X) = T(fXB(x,p(x)))(x)

and

Tglobf(x) = T(fXB(x,p(x))C)(X)

respectively, where the first integral should be understood, if necessary, in the sense of principal value.

In the following theorem, we use a larger classes of weights Ag’loc already defined in [1] as those weights that satisfy
the classical A, condition for balls B(x,r) with r < p(x). From the well-known proof for A, classes it is easy to derive the
following result.

p,loc

Proposition 4. If w € A'g‘loc, 1 < p < oo, then there exists € > 0 such that w € A} "

Let us observe that a function b € BMO(p) has bounded mean oscillations over sub-critical balls, that is balls B(x,1)
with r < p(x). For the next result we shall denote BMOjoc(p) the set of functions with the latter property.

Remark 3. Notice that using Proposition 2 it is possible to prove that for each constant C we have BMOjoc(0) = BMOjoc(Cp)
and the norms are equivalent with a constant that depends on C.

Theorem 1. Let p a function satisfying (5) and b € BMOjoc(p), then (Rp)ioc are bounded on LP(w), 1 < p < oo, for w € A,’;’loc.

Proof. Let {Q;}; be a covering by critical balls as in Proposition 2. It is possible to find a constant 8 such that if Qj =BQ;
then Uerj B(x, p(x)) C Qj.

From Lemma 1 in [1] a weight in A%"'°° when restricted to some @ ; can be extended to R? as an A, weight preserving
the Aﬁ‘loc constant. This kind of result can be extended also to BMO functions because of their well-known relationship
with A, weights [4]. Therefore, given b € BMOjoc(0) and any Qj, there is an extension of bXQj to the whole RY that we
call b; belonging to BMO and with norm bounded by [b]joc, the natural norm in BMOjoc(0).

For x € Qj, since b=b; on Qj, we have

|(Roroc f (0] < | (Rp)iac S (X) = (Re) (X, NE| + |[(Ro ) (g, HX]-

The first term can be bounded as

LfIIb;j(x) —b;(y)] dy

— ~ <
[Roocl @0 = R g NEO] S [ T

Q;\B(x.p(x))
< [b]IOCMS,IOC(f)(X)a (22)

for each s > 1, with M; joc f(X) = supB(l%| fB |fI$)1/$ where the sup is taken over sub-critical balls respect to the func-
tion Bp. Notice that to get the last inequality we made use of Remark 3. Then, since w = w; on Qj,

/|<Rb)locf|”w < Z([bhoc/|Ms,1oc(f>|"w + /\(ijxx@jnl”w,-).
R J Qj Qj

By Proposition 4 and the boundedness of My joc with Aﬁ’loc weights (see Theorem 1 in [1]), we obtain the desired
estimate for the first term.
For the second term we use that, since b; belongs to BMO, the commutator Ry; is bounded on LP(w;) where w; is an

A) extension of wXg, to all R? with Ap constant depending only on the Aﬁ’loc constant of the original weight w. We also

notice that the operator norm of Rp; is independent of j. O
Now, give a technical lemma that we will need in the proof of Theorem 3.

Lemma 8. Let p a function satisfying (5) and b € BMOgy (p). Let w verifying the reverse-Hélder’s inequality (1) for ¢ = § and B any
sub-critical ball. Then, given any p, v > 0, there exists a constant M > 0 such that
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p/v
[w(x)( f|b<x> - b(y)l”dy) dx < AMib1|BIPY w(B)
B AB

for any sub-critical ball B and all A > 1.

Proof. Let B = B(xp,r) with r < p(xp). The left side of (23) can be bounded by

p/
Aap/v|B|p/v/W(x)|b(x)—bw|"clx+ W(B)(/|b(y)—bm]vdy>
B

AB

13

(24)

For the first term of the last expression we use Holder’s inequality with exponent § and the assumption on w and Lemma 2

to bound it by

, 178
)LdP/VIB|P/V—1/5 W(B)( f|b(x) _bXB|p6 dX)
AB

/ }\' pe,
§Adp/v+d/6 |B|P/Vw(3)[b]g (1 + pZXo)) '

Using that r < p(xp) and A > 1, we arrive to the desired estimate with M =d(p/v +1/8' +6'p/d).

For the second term of (24) we use again Lemma 2 to get the bound

o\

and the proof is finished proceeding as before. O

Theorem 2. Let V € RHg and b € BMOoo ().

(i) If q > d, the operators R and R} are bounded on LP(w), 1 < p < oo, for w € Ag"’o.

1 1

(ii) Ifd/2 < q <d, and s is such that } =7 a the operator R} is bounded on LP (w), fors' < p <ocoand w € Aﬁ}i,o and hence by

1
duality Ry, is bounded on LP (w), for 1 < p < s, with w satisfying w™ P-1 € A

Proof. First of all, notice that there is no need to consider g = d since in that case there exists an € > 0 such that V € RHy..

We begin giving estimates for R}.
Now we write

(RZ)f = (RZ)locf + (R;)globf + [(Rz)loc - (RZ)loc]f'

(25)

As a consequence of Theorem 1 the first term is bounded on LP(w) for w € Ag‘loc, 1 < p < oo. Since w € A'g‘oo C A'g‘loc,

1<p<ooand we A';)'/;),o C Ag‘loc. s’ < p < 00, all the conclusions for (R})joc hold.

For the second term of (25) we use (14) to obtain

[(R5) o f 0] < / Ib(y) — b@)|[K* (% || F )] dy < 2109 + £2(%),

B(x,p(x))*
with
x
210 =) 2"Ng1 0,
k=0

where g1k(X) = G [p2tpe) 1Y) = b1 f(¥)|dy, and

o
20 =) 2"Ng ),
k=0

__ 1 ACE _
gz,k(x)—(zkp(x))dq / ( f | du)!b(y) b)||f(y)|dy.

u -yt
B(x,2kp(x)  B(x,2Kp(x))
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No_
To deal with g1, let o =cg2M*T, with Ng and cg as in Proposition 1. Let {Q ;} be the family given by Proposition 2 and

set Qj =0 Q. Clearly, we have

U B(x, p(x)) C Q;. (26)

xeQ;

Denoting Q" 2kQ Qj, then 2kBy Q" and p(x) ~ p(x;), whenever x € Q ;. Therefore, by Hélder’s inequality with y and v
such that ;+ SHe=1

/(gl,k)Pw5/<K;—H/|b(x) —b(y)||f<y>|dy>pw(x)dx
Qj Q L
1 ply
Sl o) (froew)
. 3

&
; p/v
x/w(x)</|b(x)—b(y)| dy) dx
Q; Q¥
<2 af) @l ( fworr)” / 1w
Q¥

for some M > 0, where in the last inequality we have used Lemma 8 for 6 such that b e BM09 (0).
From Proposition 3 we can choose y close enough to p’ in such a way that w € AP for some n > 0. Therefore, for
some Mi > 0, we get

f (8107w < 24 [p? f FPw
Qk

1+P/V

and hence for M; > 0,

lgilrw S Y27V igiklrw)

k

<Zz kN(Z/g1kW>]/p

]Qj

1/p
<[b1922’<‘ N+M><Z/|f|” )

Qk

S bloll flieew) ZZk(_N“‘Mﬁ‘Nl)’
k

where in the last inequality is due to Proposition 2. Choosing N large enough the last series is convergent.
Regarding g, according to Lemma 5, we only have to consider % <q<d.
Observe that for x € Qj we have

Vv
f #du Shixg Vo),

B(x,.2¢p(x)

where [ is the classical fractional integral of order 1.
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Therefore, by Holder’s inequality with y and v such that % +141y % =1,

/(gz,k)”w<f(W/|b(X) b(y)lIf(y)lh(Vij)(y)dy) w(x)dx
; Q;

J J

1 , p/y ) b

< ~y/p N X

~ |Q§|p(1_1/d) (/W ) ||XQ5_<f||Lp(W)”Il(XQ;sV)”S
Ak

i

p/v
x/w(x)</|b(x)—b(y)|vdy> dx.
Qk

Qj k

Recall that V € RHy for some q > 1 implies that V satisfies the doubling condition, i.e., there exist constants p > 1 and
C such that

/vgcrdﬂ/v,
tB B

holds for every ball B and t > 1. Therefore, due to the boundedness of Iy from L7 into LS, and the assumptions on V,

”’“Xé]k””ssnx@wllqsIéﬂ‘”"'/v

of

<2k @k / V< 2’<dw—1+?—,>|Q§<|%*§

Qj

where the last inequality follows from the definition of p (see (4)). With this estimate and using the claim, we proceed as
in the case of g1, choosing this time y such that 1+ % is close enough to 2, to obtain

/(gz P w < 2kMz / |fIPw
Qk

s

for some M, leading to the desired estimate.
Now we have to deal with the term [(R})ioc — (R})ioclf of (25). By using estimate (16), we have

|[(Rz)loc - (R;)loc]f(x)| S hl (X) + hZ(X)

where

hi() =) 274 CDhy (),
k

with
hy () =25 p(x) ™ / |f)||bGx) —b(y)|dy
B(x,27*p(x))
and
o0
ha () S Y244 Py (),
k=0

where

\%4
hy k(%) = p(x)~¢+1 £ ()||b@) —b(y))| VW) ay.
lu — y|d-1

B(x,27%p(x)) B(y,lx—yl|/4)



16 B. Bongioanni et al. / J. Math. Anal. Appl. 392 (2012) 6-22

Let us take a covermg {Q;} as before. For each j and k there exist 2% balls of radio 27¥p(x;), BJ ok B(x’ ok 278 p(xj))
such that Q; C Ul=1 B,] e 2Q; and Zl:l Xgik < < 2¢. Moreover, this construction can be done in a way that for each k the
1

family of a fixed dilation {E.lj,k}“ is a covering of RY such that

2dk

ZZX;{* <C, (27)
I=1

J
with the constant C independent of k. To our purpose we take the dilation E‘lj’k = SCoBlj’k (where ¢ appears in (5)).
Observe that if x € B{’k, B(x,27%p(x)) C B{‘k and p(x) =~ p(x;). Then
hi k() S 2 p(x)™ / [ fFW[b@x) —b(y)|dy
s ~ J °
Blj.k

By Hélder’s inequality with y and v as for g, and using Lemma 8 and Proposition 3, we have

p
/ (10" w < / (2"dp<xj>*d / \b(x)—b(y>||f<y>|dy) W) dx

Bij,k Blj,k Blj'k
p/y
<29 pp o ( [wrr) 7 ( [irew)
Bi* Bi*
y p/v
x/w(x)( /|b(x)—b(y)| dy) dx
Blj'k Blj,k
s, [ 1rrw
A

Adding over j and [, and using the bounded overlapping property (27),
A1 klleewy S DIo Il f IlLe (wys

and thus we obtain the desired estimate for hy.
To deal with hy, we use that Iy is bounded from LY into LS, together with Lemma 1, to get

HIl(Xg‘JZk V[, < X5+ Vllq

~jki—1+1/q
slafe [
Bk
< plxy) 2. (28)

Now, we proceed as for hq but this time we apply Holder’s inequality with y and v such that % + % + % + % =1,

p/y
/ (h20"w S~ )p(d U( / w—V/P> g I 111 e VI
k

B/* B/
p/v
x[w(x)( /|b(x)—b(y)|”dy> dx
B B

—kpd(1—141
SI127 N i 1 -
Therefore, with the same argument as for hi, and adding over k,

Ih2.kllewy S [b1o Il FllLe (w)-
and we finish the proof of the theorem. O
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7. An Orlicz weak estimate for the case p =1
In the next lemma we will use the notation P(x,r) to denote the cube of center x and side 2r.

Lemma 9. Let p be a function satisfying (5) and 6 > 0 fixed. Then for any A > 0 there exists an at most countable family of cubes {P ;},
Pj = P(xj,r;) such that

6 o
r 1 r

14 )Ag—/lﬂg&\(l—k ) , (29)

( P X)) [Pl P X))
Pj
for some o > 6, depending only on the constants appearing in (5), and
f@|<i aexe¢l JP; (30)
J

Proof. First, let us observe that for any cube P = P(x,r),

r\ 71 1
1+ X i< X [,
<+p<x>> |Q|/|f|<|Q|/|f|

Q R4

and the right-hand side tends to zero when r goes to infinity. Therefore we may start the Calder6n-Zygmund decomposition
process with some rp-grid such that

6
o 1

1 —_ —_ <A, 31

(U(z)) Pz 10 / 1< 1)

P(z,rp)

for any cube in the grid. We divide dyadically the cubes selecting those for which the average on the left turns greater
than A.

Continuing dividing those cubes that have not been selected we obtain a sequence of P; satisfying the left inequality
of (29).

To check the other inequality, observe that if P; = P(xj,rj) was selected, then P; is contained in a cube P(y,2r;)
satisfying (31) for some y. Hence

< < Tj Mo
1 )
Pl /'f' ( p(y)) ”( +p<xj>)

where in the last inequality we used (5).
Next, if x ¢ | iPj there exists a sequence of cubes containing x and with radius tending to zero satisfying (31). Since
p is continuous and positive (30) follows from the Lebesgue’s differentiation theorem. 0O

Theorem 3. Let V € RHg and b € BMOoo ().

(i) Ifq>dand w € Ap | then there exists a constant C such that forevery f e L1 and A > 0,

loc

w({[Res|= 1) <€ [T (14 108" 1. (52)

Rd

(i) Ifd/2 < q <d and w* € AY'™, with 1 = % — 1. inequality (32) holds.

Proof. First, let us observe that (i) can be deduced from (ii). In fact, if w € Af‘oo there exist yp > 1 such that w? e Af’oo.

for 1 <y <y, according to Lemma 5. Oh the other hand if V € RHy for q >d it certainly belongs to RH; for any s <d. In
d 1

particular we may choose 5 <s <d and y > yp such that 1 - % =5 — 7, to get the de51red estimate.

Assume then V € RHg, % <q <d. Let w be such that ws e Af’oo and therefore w* € Af ﬂ, for some B > 0. In this case
it is also true that w € Ap‘9 with 6 = 8/s'.

Given f e L!, let us con51der P; = P(xj,rj) the Calderén-Zygmund decomposition given in Lemma 9 associated to 6. We
define the set of indexes

h={ir<p@p), =i > pxpl,
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and

=Jr;

j€h

2= P;

j€l2
Now we split f=g+h-+Hh, as
l,}Tijf, ifxe Pj, je i,
0, ifxePj, je Jo,
f), ifx¢ 82,

with 2 = 21U 29,

1 . .
h(X):{f(X)_W/ij’ ifxePj, je J1,
0, otherwise,

g(x) =

and therefore h'(x) =
Let P; j=

w({x: IRy fI(x) > 1}) <

The first term of the last expression, can be controlled using (29) and that w € Af’e
- ~ 1
W) <Y WP = ( ) /Ifl
j j
< Zinfw/ If15 / |flw
J P; Rd

X2, f-
= Pj(xj,2rj) and Q= U] P] Now,

w(2) +w({x ¢ 2: Ry f1(x) > 1}).

w(P])
|Pj]

p(x )

For the second term of (33

(see Remark 1), as

(34)

), it is enough to arrive to the right-hand side of inequality (32) estimating II; =

w({x: |Rpg(X)| > A)), Il = w({x ¢ 2: [Rph(x)| > A}) and Il = w({x ¢ $2: |Rph’ (x)| > A}).
To deal with II; notice that, from Lemma 9 it follows that |g| < A. On the other hand, from Theorem 2 it follows that

Ry is bounded on LP(w) for some p close enough to one.
In fact, from w* € A'f'oo

. Therefore, since strong type implies weak type (p,

/|g|P (] /|f|+/|f|w)

Since w € and for j e J1, rj < p(xj) we have

bounded by I fpalflw.
To take care of II, we observe that

1
is easy to check that w™ »-T ¢ A

w(Pj)

w({x: [Rpg)] > 1}) T

eh

.00
Al

Rph(x) =/K(x, N[bE —bW]hy)ydy =" /K(x, V[bx) —b(y)]h(y)dy.

Rd jeh P;
Adding and subtracting bp; inside the integral we write
Rph(x) = —A(x) + B(x),

where

Ax) =Y [ Kx.p)[by)—bp;]h(y)dy.

je
j€eh P]
and

B(x) =

> / K&, y)[bex) —

jeflpj

bp;|h(y)dy.

So we need to estimate

Ii=w({x¢2:|A®|>1}) and Io=w({x¢ 2:|BXx)|>1r}).

we get wsV e Ap’oo for some v > 1 (see Lemma 3) and taking p such that p(1 —s') +s' =

L jt

p), we get

(35)

Wp—jf) < infp; w, and hence the last expression in (35) can be easily
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To deal with the first expression let v > 1 be such that wsV e Af’oo. Hence, according to Remark 2 there exists o >0
such that

MO (W) S w'. (36)

We set w, = w . and since wi” e Ll we may apply Lemma 4 for g = wi/“, 0 =0 and § = 1/v to get that the weight

loc
u=(M° Wi”)ﬁ is such that u¥' belongs to Af‘w. Also, from differentiation, w, < u and from (36) u < w. Moreover, notice
that for y,z e Pj, j € J1 we have u(x) >~ u(y). This is due to the facts that w, =0 in P; and that p(x) >~ p(y).
Then since A(x) = —R(Zjeh (b—bp;)xp;h)(x) and u e Af’oo (see Theorem 3 in [1]),
I = wy({x: [A®)| > 1})
Su({x: |[A®| > 1})

1
e X,: f[b(y) —bp,]|h()|uy)dy
J€ 1p.

meu/ [b() — b, ]| )| dy

JE]1

Pj

4 - meu'P | b(J/)—ij]/’f(Y)’dy'
Pj Pj

Clearly, the last sum is controlled by [bly| fw]1 since u < w. For the first term we apply Hoélder’s inequality (9) and
Lemma 2,

PRI —[b]e > inful P[] flly.p;.

jen

We remind that from [7, p. 92], we get that for any cube Q

1Fllp.q = mf{r+ a <p<|f|)}.

Now, taking t = A,

Elisign sie0+ o) (37)

Pj

But since Pj satisfies (29), we have
1
IPjISX Ifl. (38)
P.

Inserting these estimates an using again that u < w it follows

112,15[b]9</%w+/(/)<|kﬂ>w>-
Rd Rd

For II;; we apply Tchebycheff inequality to get

PRBS /lBlW

Z /|b(x) bp,| </|IC(x, y)—IC(x,xj)||h(y)|dy)w(x)dx

JEJI P;

Z/|h(y)|</|b(x) bp|[Kx, y) — K(x, x])|w(x)dx>

]Eflp pe
j
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The inner integrals may be estimate splitting into annuli and applying Holder's inequality with s, s'v, y with v > 1 such

that ws" € A{"* and 1 + L R L — 1. In this way, setting P" =2kP; we have

/|b(x) —bp,|[KK(x, y) — K(x, x))|w(x) dx
P

o0

1/y
S ( oo b, o)

k=2 V7
P;

L
/

1/s v
|K(x, y)—IC(x,xj)|de> (/W”) .

k\ pk—1 k
Pi\P; P;

X

Next, observe that if b € BMogo(p), using Lemma 2, for some n > 6 we have

17y
</|b(x) — bijdx)

k
Pj

S(f!b(X)—bpl;VdX) +[Pj] WZ ,|/|b() bpi |

k
P;

k—1 0
< [blo| P¥[V” <1+ ]> + ( )
N ]0| ]| |: p(x) 2(; ,O(X]

26\
</<[b]g|P"|W<1+ (X’)>
J

. ’ ,00
Also, since w¥V € Af , for some o > 0 we have

.

, s’y / 2kr< o
</W”> ginfw}P’;|]/sv(l+ J > .
Pj p(x;)

k
Pj

Therefore, since ﬁ + - = % and Pj C P’]‘., the right-hand side of (39) can be bounded by a constant times

1
Y

00 oy 2y n+o 1/s
[ble ilglfw Zk(zkrj) /s (1 + (x])> ( / |K(x, y) — K(x, xj)|5dx>
[ j

k\ pk—1
P\ P

but for P;, we have |y —x;| <r; so we may apply Hérmander’s type condition of Lemma 6. Therefore,

[bls ]
[IPPRS me h <~ Z |flw Iflw
1511 P;
Finally, we take care of IIl which involves h’ = f x,. By Tchebycheff inequality and proceeding as for Il 7,

ms< - Z/|f(y)|<f|b(x) bp,||K(x, y)\w(x)dx)dy

JEJ 2p.
J Pj

(39)

(40)

Now, for each j € J, we bound the inner integral splitting into annuli and applying Holder’s inequality as in (39). With

the same notation there we get using Lemma 7,
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/Ib(X) —b(y)||Kx, y)|w(x)dx
pe

J
L

S i d A\ N—pud 1y N\
52(2'%) T ('25:;’3) </|b(x) —b(y)|ydx> (/ws ") . (41)
k

k=2 K
P; i

For the factor with w we use estimate (40), and the one concerning b we can add and subtract b to obtain
J

1/s L d 2k S\
</|b(x)—bpj]dx> < (@) ;[[b]g( rf) +|b,,§—b(y)|].

p(xj)

Collecting estimates, setting & = N — ud — n — o and using that rj > p(x;) for j e J,, we get

l —kat Tj ‘. / Zkrf )77 _ ]
m< - Zz Z(p(xj)) 1}1’1ij yf(y)y[[b]9<p(xj) +|b,,,} b(y)| |dy. (42)
k P;

jel2

For the term with [b]y choosing N such that N — ud —n — o > 0 and using that r; > p(x;) for j € J,, to obtain that it
is bounded by a constant times %f fw.
For the other term we apply as before Holder with ¢ and ¢ to get

15 Ibgs = b |dy SI1PLF D, 105t = bl -
Pj

Then, we apply Lemma 2 to bound the last factor. For the first factor we use (37) and (38). Therefore, choosing N large
enough in (42) such that N — ud — n — o — M > 0 we obtain that expression bounded by

ol -

Pj

Remark 4. We want to point out that inequality (32) is also true for Rj with weights in Af *°° provided the potential V
belongs to RHy. On the other hand, when V € RH;; for some q > d/2 but V ¢ RHy, we cannot expect this kind of result for
R} since R* is not of weak type (1,1) for w =1 (see [10]). Therefore, in order to get (32) for R} when V € RHy we cannot
argue as we did for R} in that case. Nevertheless, a close look at the proof of the case q < d reveals that the same pattern
could be followed in this case.

In fact, notice that the only instances in the argument where we use properties of Ry, R or of the kernel K are the
following:

(i) Strong type (p, p) of Ry with the weight w for some p > 1 (see (35)).
|
(ii) Weak type (1,1) of R with the weight u = (M?w}* )/, when estimating I ;.
(iii) Hérmander’s like property of I (see (17)) to bound Il 3.
(iv) Estimates of the size of K given by Lemma 7 to obtain inequality (41).

When V € RHy all these properties are true for Ry, R* and K* for the corresponding value s = oo. In fact, that (i) and
(ii) are true is a consequence of Theorem 2 of Section 6 and Theorem 3 in [1] together with Lemma 3 above.

Regarding (iii) and (iv) it is known that C* is a Calderon-Zygmund kernel when V € RH; and moreover it satisfies the
stronger inequalities

—-N
X — 1
WWJN<WQ+' ”) _
pX) |x —yI

and

|x—y|>‘”|;v—z|'S
P(X) |x — y|d+8’

whenever 2|y — z| < |x — y|, for some § > 0 and any N > 0. Also, p(x) can be substituted by p(y) in all instances (see
Lemma 4 in [2]).

!ﬁmw—wwM<m@+
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