
627

⁄
0022-0000/01 $35.00

© 2001 Elsevier Science (USA)
All rights reserved.

Journal of Computer and System Sciences 63, 627–638 (2001)
doi:10.1006/jcss.2001.1781, available online at http://www.idealibrary.com on

On Approximate Nearest Neighbors
under l. Norm

Piotr Indyk1

1 Supported by a Stanford Graduate Fellowship and NSF Award CCR-9357849.

Department of Computer Science, Stanford University, Stanford, California 94305
E-mail: indyk@cs.stanford.edu

Received March 30, 1999; revised August 1, 2000

The nearest neighbor search (NNS) problem is the following: Given a set
of n points P={p1, ..., pn} in some metric space X, preprocess P so as to
efficiently answer queries which require finding a point in P closest to a query
point q ¥X. The approximate nearest neighbor search (c-NNS) is a relaxation
of NNS which allows to return any point within c times the distance to the
nearest neighbor (called c-nearest neighbor). This problem is of major and
growing importance to a variety of applications. In this paper, we give an
algorithm for (4 Klog1+r log 4dL+1)-NNS algorithm in ld. with O(dn1+r logO(1)n)
storage and O(d logO(1) n) query time. Moreover, we obtain an algorithm for
3-NNS for l. with n log d+1 storage. The preprocessing time is close to linear in
the size of the data structure. The algorithm can be also used (after simple
modifications) to output the exact nearest neighbor in time bounded by
O(d logO(1) n) plus the number of (4 Klog1+r log 4dL+1)-nearest neighbors of
the query point. Building on this result, we also obtain an approximation
algorithm for a general class of product metrics. Finally, we show that for any
c < 3 the c-NNS problem in l. is provably as hard as the subset query
problem (also called the partial match problem). This indicates that obtaining
a sublinear query time and subexponential (in d) space for c < 3 might be
hard. © 2001 Elsevier Science (USA)

1. INTRODUCTION

The nearest neighbor search (NNS) problem is the following: Given a set of n
points P={p1, ..., pn} in some metric space X, preprocess P so as to efficiently
answer queries which require finding the point in P closest to a query point q ¥X.
The nearest neighbors problem is of major and growing importance to a variety of
applications, usually involving similarity search; some examples are information
retrieval, image and video databases, protein databases, data mining and pattern

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82726402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

recognition. The problem was formally posed in 1969 by Minsky and Papert
[MP69] and was a subject of extensive study since then. Many efficient algorithms
were discovered for the case where X is a low dimensional Euclidean space [Cl88,
Me93]. However, many (if not most) of recent applications require X to be either
high-dimensional or non-Euclidean, or both. In these cases the known algorithms
become inefficient due to the so-called ‘‘curse of dimensionality’’—their query times
and/or storage requirements grow exponentially with the dimension.

Because of this phenomenon, recent research has focused on the approximate
version of the problem (called c-NNS), where the algorithm is allowed to return a
point within c times the distance to the nearest neighbor (called a c-nearest neigh-
bor). It is natural to expect that (as in the case for many NP-hard problems) solving
approximate version of the problem will avoid exponential dependence on the
dimension. Also, the relaxed version still remains of practical interest. This is due to
the fact that distance measures are designed to reflect the inherent similarity
between the objects, which is usually quite selective (in the sense that only a small
fraction of objects is usually considered similar to the query point while the
remaining ones are considered dissimilar). Thus if the distance function is chosen
appropriately, small perturbations in the distance are unlikely to affect the quality
of the output. Also, most of the existing approximate algorithms can be used (after
simple modifications) to output the exact nearest neighbor with the query time
multiplied by the number of c-nearest neighbors of the query point (we call this
property neighborhood sensitivity). As the number of c-nearest neighbors is usually
small for small values of c, the data structure enables fast access also in situations
when the quality of the result cannot be compromised.

The approximate nearest neighbor problem was recently a subject of extensive
research (see Section 1.1). The most recent results of [IM98] and [KOR98] give
algorithms for approximate nearest neighbor in d-dimensional Euclidean space with
polynomial storage and query time polynomial in log n and d. These algorithms are
of mainly theoretical interest, as their storage requirements are quite large. Indyk
and Motwani [IM98] also gave another algorithm with small polynomial storage
and sublinear query time, with much better behavior in practice [GIM97]. Thus
these results show that in Euclidean spaces the exponential dependence on the
dimension can be avoided by resorting to approximation algorithms. Unfortu-
nately, the techniques used to achieve these results heavily exploit properties of
Euclidean norm and therefore do not seem applicable to other metric spaces (see
Section 1.1 for more details).

In this paper, we investigate the complexity of approximate nearest neighbor
search in non-Euclidean spaces. Our main result is an algorithm for the l. norm
(i.e., the norm of a vector is equal to the maximum absolute value of its coordi-
nates). Our algorithm offers the following tradeoff: for any parameter r > 0 it uses
Õ(dn1+r)-size2 storage and finds a c(d, r)-nearest neighbor in Õ(d) time for

2 Õ(f(n))=O(f(n) logO(1) n).

c(d, r)=4 Klog1+r log 4dL+1; the preprocessing time is linear in the size of the data
structure. Moreover, we give an algorithm for c=3 for l. with n log d+1 storage.

628 PIOTR INDYK

Thus, we can guarantee a O(log log d)-nearest neighbor using a storage arbitrarily
close to linear, or a 3-nearest neighbor with mildly superpolynomial storage. We
note that the above bounds hold for worst-case scenarios and are likely to be much
better for instances occurring in practice. Also, the algorithm is neighborhood
sensitive.

The l. norm is of significant practical interest (e.g., see [ALSS95]). Its advantage
is that it enables to combine different similarity measures (color, texture, etc.)
without any assumptions about their additivity [AGGM98]; it has also other
attractive properties which make it useful for fuzzy information systems [Fagin96,
Fagin98]. Moreover, it has important theoretical properties which enable us to
further generalize the above result. One of them is that any finite metric space can
be embedded in ld. with finite d and no distortion. Moreover, if we allow a small
multiplicative distortion t, then any n-point metric space can be embedded in ld.
with small dimension d=Õ(n

1
N(t+1)/2M) [Mat96]. By exploiting this property we obtain

a tc(d, r)-approximation algorithm for a product of k arbitrary finite metrics of size
s with query time Õ(ks

1
N(t+1)/2M) and storage Õ(ks

1
N(t+1)/2M n1+r), with polynomial

preprocessing (a product of given metric spaces M1, ..., Mk with distance functions
D1...Dk is a metric space overM1× · · · ×Mk with the distance function D such that
D((p1, ..., pk), (q1, ..., qk))=max(D1(p1, q1) · · ·Dk(pk, qk))). Product metrics have
been studied earlier by Agarwal, Gionis, Guibas and Motwani [AGGM98] with
applications to similarity searching problem in large image databases, where the
individual metric spaces represent various properties of images (color, texture, etc).
Finally, Farach-Colton and Indyk recently gave several results on embedding of
Hausdorff metrics into l. [FI98].

Finally, we show that for any c < 3 the c-NNS problem in l. is provably as hard
as the subset query problem (also called the partial match problem). The latter
problem has been investigated for last few decades (e.g., see [Riv74] or [Knu73],
p. 557), but all solutions discovered so far have either W(n) query time or 2W(d)

space. Thus, it is natural to assume the problem is hard (see [BOR] for some
hardness results for this problem). Therefore, our reduction indicates that obtaining
a sublinear query time and subexponential (in d) space for c < 3 is hard and
therefore our 3-approximation upper bound is tight.

1.1. Related Work

In this section we review the work on approximate nearest neighbor in metric
spaces. We note that for the exact case the best known result is due to Meiser
[Me93], who obtained an algorithm with (roughly) Õ(nd) storage and query time
Õ(d5); the query time can be improved to O(d3 log n) ([AE], p. 46). The storage
requirements can be significantly reduced when the underlying norm is l.—for this
case Gabow et al. [GBT84] gave an algorithm with (roughly) O(n logd n) storage
and O(logd n) query time.

Arbitrary norm. The first result for approximate nearest neighbor in Rd was due
to Bern [Bern93]. His result (after recent improvement by Chan [Chan97])
guarantees polynomial storage and query time polynomial in d and log n, but with c

ON APPROXIMATE NEAREST NEIGHBORS UNDER l. NORM 629

polynomial in d. Arya, Mount, Netanyahu, Silverman, and Wu [AMNSW94]
obtained optimal O(dn) storage but with query time O((d/e)d log n) (here and later
we denote e=c−1). L

Euclidean/Manhattan norm. The first approximate algorithm for any c > 1 was
discovered by Arya and Mount [AM93], who gave an algorithm with query time
(roughly) O(1/e)d log3 n and preprocessing (roughly) O(1/e)d O(n). The depen-
dence on e was later reduced by Clarkson [Cl94] and Chan [Chan97] to e−(d−1)/2.
Kleinberg [Kl97] gave an algorithm with O(n log d)2d preprocessing and query
time polynomial in d, e, and log n, and another algorithm with preprocessing poly-
nomial in d and n but with query time O(n+d log3 n); all bounds also contain
1/eO(1) factors. Indyk and Motwani [IM98] and Kushilevitz et al. [KOR98] give
algorithms with polynomial storage and query time polynomial in log n and d.
Indyk and Motwani [IM98] also gave another algorithm with smaller storage
requirements and sublinear query time. The algorithms by Kleinberg, Indyk et al.
and Kushilevitz et al. are randomized Monte Carlo, i.e., are correct with high
probability.

All of the approximate algorithms above with query time polynomial in d (i.e.,
[Kl97], [IM98] and [KOR98]) use techniques applicable only for Euclidean/
Manhattan norms. The algorithm of [Kl97] is based random projections, which are
not well defined for lp norms with p > 2. The first algorithm of [IM98] uses the
Johnson–Lindenstrauss Lemma [JL84] to reduce the dimension to O(log n); this
lemma provably does not hold for other norms (like l. [Mat96, Mat]). The algo-
rithm of [KOR98] and the second result of [IM98] solve the problem by embed-
ding the original norm into the Hamming space; again it is known that such an
embedding is not possible for the l. norm. L

2. PRELIMINARIES

In this section we introduce the notions and notation used later in the paper.
Let ldp denote the space Rd under the lp norm. For any point v ¥Rd, we denote by
|vF|p the lp norm of the vector vF. Also, for any set S … {1...d} we use qS to denote the
characteristic function of a set S, i.e., a vector v ¥ {0, 1}d such that v(a)=1 iff
a ¥ S.

Let (M, D) be any metric space, P …X, and p ¥X. The ball of radius r centered
at p is defined as B(p, r)={q ¥X | d(p, q) [r}. For a normed space X (whose
norm we denote by | · |) and t \ 0 we say that a function f: MQX is a t-embedding
(or an embedding with distortion t) if we have

1
t
D(u, v) [|f(y)−f(v)| [D(u, v) (1)

for any two points u, v ¥M. We say that M t-embeds into X if there exists a
t-embedding f: MQX.

The following problem is a decision version of the c-NNS:

630 PIOTR INDYK

Definition 1 (c-Point Location in Equal Balls (c-pleb). Given n unit balls
centered at P={p1, ..., pn} in M=(X, d), devise a data structure which for any
query point q ¥X does the following:

• if there exists p ¥ P with q ¥ B(p, 1) then return yes and a point pŒ such that
q ¥ B(pŒ, c),

• if q ¨ B(p, c) for all p ¥ P then return no,

• if for the point p closest to q we have 1 [d(q, p) [c then return either yes
or no.

In [IM98] it was proved that given an algorithm for c-PLEB which uses f(n)
space on an instance of size n where f is convex, there is a data structure
for c−NNS problem requiring O(f(n poly(log n, 1/(c−1)))) space and using
O(poly(log n, 1/(c−1))) invocations to c-PLEB per query. Thus in this paper we
will concentrate on solving the c-PLEB problem.

In addition, in this paper we assume that for all dimensions i=1..d the ith
coordinate of all points in the database are different. This assumption can be taken
care of by using standard perturbation techniques without increasing the complex-
ity of the algorithms.

All logarithms have base equal to 2.

3. SOLVING c-PLEB FOR l.

In this section we present an algorithm for solving the (4 Klog1+r log 4dL+1)-
PLEB in l. (for any parameter r > 0) using O(dn1+r)-size storage and having
O(d log n) query time. The algorithm is based on the notion of a hyperplane
separator, defined as follows.

Definition 2. For a, b, c > 0 such that a+b+c=1, a hyperplane H is a
(a, b, c)-separator for a point set P if:

• the set

PL={p ¥ P | B(p, 1) 5H=”andp lies on the left side ofH}

has cardinality a |P|,

• the set

PM={p ¥ P | B(p, 1) 5H]”}

has cardinality b |P|,

• the set

PR={p ¥ P | B(p, 1) 5H=”andp lies on the right side ofH}

has cardinality c |P|.

The basic idea of the algorithm is as follows. We use hyperplanes Hi(t) consisting
of all points with the ith coordinate equal to t. We try to find hyperplane separator

ON APPROXIMATE NEAREST NEIGHBORS UNDER l. NORM 631

H having the property that |PR | is not ‘‘much smaller’’ than |PM |. If H exists, we
divide P into P1=PL 2 PM and P2=PR 2 PM and apply algorithm recursively on P1
and P2; we prove that (due to the fact that |PR | is comparable to |PM |) the increase
in storage caused by duplicating PM is moderate. If H does not exist, we prove that
a large subset C of P has a small diameter. In such a case we pick any point from C
as its representative and apply the algorithm recursively on P−C.

For any (a, b, c)-separator, define the quantity

L(b, c)= log
1/(c+b)

b+c
c
= log
1/(c+b)

1
c
−1.

The quantity L(b, c) will upper bound the exponent r in the space bound n1+r;
therefore, it is of interest to keep it low. In order to do this, that it is of crucial
importance to keep 1−(c+b)=a fairly large (greater than a constant), since
otherwise L(b, c)=W(1/a). On the other hand, large 1/c is not really that much of
a problem, since the dependence of L on 1/c is only logarithmic. We will exploit
this asymmetry below.

Also, note that L(b, c) > 0 for any b, c > 0 such that b+c < 1. The following
Lemma forms a basis of our algorithm.

Lemma 1. For any set P and r > 0

1. Either there exists an (a, b, c)-separator Hj(t) for P such that L(b, c) [r
and a, c > 1

4d , or

2. There is a set C … P of cardinality |P|/2 having diameter at most
4 Klog1+r log 4dL.

Proof. We assume that for every Hj(t) with |PR | >
1
4d |P| the value of L(b, c) is at

least r and show that it implies the existence of C as above. For any point p ¥ P let
p | j denote the jth coordinate of p; for simplicity in the following we assume j=1.
For an integer i define Si={p ¥ P | p | 1 ¥ [2i, 2i+2)} and si=|Si |/n. Note that the
sets Si are disjoint and therefore ;i si=1. Define ti=;j \ i si and t −i=;j [i si. By
translating the origin we can make sure that t0=1/2 (note, that by our assumption,
no two database points have the same value of jth coordinates). L

Claim 1. For any i \ 0 such that ti+1 >
1
4d we have ti+1 < t

1+r
i . Thus, ti [

1

2(1+r)
i

for such i.

Proof. Consider a plane H1(2i+1). Note that t −i−1 \ ti+1 for i \ 0. We know
that as long as ti+1 >

1
4d we have

L(si, ti+1) > r.

or equivalently

log
1

si+ti+1

si+ti+1
ti+1

> r

632 PIOTR INDYK

or

si+ti+1
ti+1

>
1

(si+ti+1)r
.

As ti+1+si=ti the above inequality implies

ti
ti+1
>
1
tri

which implies the first part of the claim. The second part follows from the fact that
t0=

1
2 and the first part. L

We now use Claim 1 to prove the theorem. Take i=Klog1+r log 4dL; from
Claim 1 and monotonicity of ti it follows that ti [

1
4d . By a symmetric argument,

t −−(i+1) [
1
4d . Therefore, we have ;−i [j [i−1 si \ 1−

1
2d . Thus if we delete from P all

points from Sj for i ¨ [−i, i−1] we decrease the size of P by at most a factor of
1− 1

2d . The difference in the first coordinate for any pair of remaining points is at
most 4i. By repeating the above argument for each dimension we obtain a set (call
it C) of size at least n2 such that any pair of points differ on each coordinate by at
most R=4i=4 Klog1+r log 4dL; thus its diameter is bounded by R as well. L

Lemma 1 facilitates the following algorithm.

Preprocessing. For a given set P we build a tree data structure in the following
way. The root of the tree corresponds to the set P; its subtrees are created as
follows. If we find a separator with L(b, c) [r then we create two point sets
P1=PL 2 PM and P2=PM 2 PR and build the data structures recursively on each of
them. We also store the parameters of the separator at the root node; we call such a
node a separator node. Otherwise, we know that P contains C of small diameter
such that |C| \ n/2. In this case we store the center of the box defining C, a point
from C (representing C) and build recursively a data structure for P−C. We call
such a node a box node. Thus each non-leaf node has at most two children. L

Searching. Given a query point q searching is performed recursively as follows.
If the root is a separator node, we check if q is on the left or on the right side of the
separating hyperplane; in the first case we move to node P1, otherwise to P2. On the
other hand, if the root is a box node, we compute the distance t between q and the
box. If the distance is less than 1, we output any point from the box (which is
within at most distance R+1 from q). If t > 1, we know that the point does not
belong to a ball around any point from C, thus we move to the node P−C.

The correctness of the above procedures can be easily seen. It is thus sufficient to
analyze the complexity of the procedure. L

Lemma 2. The search time is O(d log n).

Proof. Consider the path from the root to the leaf traversed by the searching
algorithm for given q. The number of box nodes on that path can be at most log n,
as a child of such a node contains at most half of the points of its parent. The time

ON APPROXIMATE NEAREST NEIGHBORS UNDER l. NORM 633

spent per each such node is O(d), therefore the total number of operations per-
formed at box nodes is O(d log n). On the other hand, the number of separator
nodes can be at most O(d log n), as a child of such a node contains at most a
fraction of (1− 1

4d) of the points of its parent. The time spent per separator is O(1),
thus the total incurred cost is O(d log n). L

In order to analyze the size of the data structure and the construction time, we
will use the following lemma. Let TP be a tree representing the data structure con-
structed for a set P. We define T −P to be a (conceptual) binary tree obtained from TP
by modifying the box nodes in a following way. Instead of removing the points
which fall inside the box, we create a balanced binary tree with the number of
leaves equal to the number of inside points and attach it as the second child of the
box node. The resulting data structure has still depth O(d log n) (since it could only
increase by log n); moreover the size of TP is clearly upper bounded by the size of
T −P. In the following lemma we give a bound on the size of T −P and then we use it to
bound the space/time requirements of the preprocessing stage.

Lemma 3. The tree T −P has at most O(n
1+r) nodes.

Proof. Let N(n) be the maximum number of leaf nodes of T −P for |P|=n. We
will show inductively that N(n) [n1+L where L=L(b, c) [r. Assume that
N(m) [m1+L for all m < n. We analyze only separator nodes, since the inductive
step holds trivially for box nodes. For each separator node we can write the
inequality

N(n) [N((a+b) n)+N((b+c) n).

By the inductive assumption we get

N(n) [((c+b) n)1+L+((b+a) n)1+L

=n1+L((c+b)(c+b)L+(1− c)1+L)

Since L(b, c)=L we can bound the latter quantity by

[n1+L 1 (c+b) c
c+b

+(1− c)2

[n1+L(c+(1− c))

=n1+L. L

Corollary 1. The data structure TP is of size at most O(dn1+r) and can be
constructed in time at most O(d2n1+r log n).

Proof. The first part follow from the upper bound for the size of TP via T −P and
the fact that both separator and box nodes have description size O(d). In order to
bound the running time notice that the processing of a node (say v) with mv points
(i.e., computing si’s and deciding whether the node is a separator node or a box
node) can be done in dmv time. Since T −P is a binary tree, mv can be bounded by the

634 PIOTR INDYK

number of leaves of v in T −P. Since the tree has depth O(d log n), each leaf node can
be ‘‘charged’’ in this way only O(d log n) times. Therefore, the sum of all mv’s can
be bounded by O(d log n · n1+r), which gives the promised bound on the prepro-
cessing time. L

In this way we proved the following theorem.

Theorem 1. For any r > 0, there exists a deterministic algorithm for the
(4 Klog1+r log 4dL+1)-PLEB using O(dn1+r) storage with query time O(d log n). The
data structure can be constructed in O(d2n1+r log n) time.

3-Approximation. The above result provides a 5-approximation algorithm with
space n log d+1. Unfortunately the factor 5 is tight for the above algorithm, if we
require nO(log d) storage. To see this, consider a set of 2d points such that for each
coordinate i data set with the following property for each coordinate i and value
v ¥ {−1, 1} there is exactly one point p such that p | i=−2v. By replicating this data
set n2d times we obtain n points such that:

• the fraction of points p s.t. p | i=−2 is 1
2d

• the fraction of points p s.t. p | i=2 is 1
2d

• the fraction of points p s.t. p | i=0 is 1−1/d

Now, one can verify that for this data set no good separator exists. However, the
diameter of the data set is equal to 4. Therefore the approximation factor is equal
to 5.3

3 One could observe that the algorithm is not completely doomed, since the data set in fact does
contain a subset of size n/2 of diameter 2 (the set of points with all coordinates non-negative). It is
possible, however, to construct a similar data set for which no small subset has diameter less than 5,
while keeping the fraction of coordinates with values in {−2, 2} small. Since this counterexample does
not seem to be particularly informative, we omit the description.

In the following we present a modified version of the algorithm which achieves
factor 3 within the space bound n log d+1. The basic idea is to enhance the search
procedure for the clusters of diameter 4 contained in [− 2, 2]d (call it C). Firstly,
note that we can assume q ¥ [−3, 3]d. Moreover, observe that if the query point q
belongs to [−1, 1]d, then any point from C is within distance 3 from q, so we are
done. Therefore, we only have to take care of the situation when there is i such that
|q | i | ¥ (1, 3]. Note that in such a case the only points p from P which could be
within distance 1 from q are those s.t. p | i > 0; call this set Pi. If we knew i during
preprocessing, we could build a separate search structure for Pi. Since |Pi | [n/2,
this approach would be very efficient. Of course, i is not known during the prepro-
cessing. However, it turns out that we can afford to build the structures for all
i=1...d and still keep the nO(log d) space bound. Let L=log d+1. We need to show
that the N(n) [n1+L, with the notation as in the proof of Theorem 1. To see this,
observe that the number of nodes in the data structures built for a cluster C of size
n is bounded by

d ·N(n/2) [d ·n1+L/21+L=n1+L/4

and thus N(n) [n1+L. The search time can be verified to remain O(d log n). L

ON APPROXIMATE NEAREST NEIGHBORS UNDER l. NORM 635

Modifications and other applications. By modifying the above construction
slightly one can obtain a data structure of size O(dn+n1+r) but with query time
O(d(d+log n)). To this end notice that the size of a separator node is constant. The
size of the leaf can be made constant as well, by storing a pointer to the structure
containing the point-set. Finally, we observe that if a box node contains at least 2d
points, then by deleting half of them and adding d-word description of the box we
only decrease the total storage; therefore if all nodes contain at least 2d points then
the cost of box nodes is negligible. We exploit this fact by creating a tree as above
except for the fact that now each leaf contains O(d) points; thus we have to add
O(d2) to the search time (we perform linear search within each leaf node).

The aditional benefit of the above construction is that if the set P has description
size M, then the size of the data structure is in fact O(M+n1+r). A situation when
M=o(nd) occurs for example when P is defined as all substrings (of length d) of a
given sequence of length n. In this caseM=O(n) and the above construction saves
up to a factor of d in the storage requirements.

Finally, we mention applications to similarity searching in product metrics. By
the embedding theorem mentioned in the introduction we can embed any finite
metric (say of size s) in ld. with distortion t, where d=s

1
N(t+1)/2M . Since the product

metric of k identical ld. metrics is just an ldk. metric, we obtain a tc(d, r)-
approximation algorithm for a product of k arbitrary finite metrics with query time
Õ(kd) and storage Õ(kdn1+r). Since by the result of [Amb98] each embedding can
be done in deterministic Õ(ds2) time, the preprocessing time is bounded by
Õ(kds2+(kd)2 n1+r). L

4. LOWER BOUND

In this section we provide an indication that getting improving the approximation
factor below 3 while maintaining space subexponential in d could be impossible. We
achieve by showing a reduction from the superset query to c-approximate PLEB in
l. for any c < 3.

We define the superset query problem as follows.

Definition 3 (Superset Query (SQ)). Given n sets S1...Sn such that Si …
X={1...d}, devise a data structure which for any query set Q …X, does the
following: if there exists Si such that Si … Q then return Si, else return no.

We refer to superset query problem with parameters n, d as the (n, d)-SQ
problem. The problem has been investigated for last few decades (e.g., see [Riv74]
or [Knu73], p. 557), but all solutions discovered so far have either W(n) query time
or 2W(d) space. Thus, it is natural to assume the problem is hard (see [BOR] for
some hardness results for this problem).

We establish the hardness of c-PLEB in the following lemma.

Lemma 4. For any 1 [c < 3 the (n, d)-SQ problem is reducible to the c-PLEB
problem in ld..

636 PIOTR INDYK

Proof. Define function g as

g(x)=˛
0 if x=0
2
3 if x=1

and a function f as

f(x)=˛
1
3 if x=0

1 if x=1

Now define functions F and G which map sets into points as F(S)=f(qS) and
G(Q)=g(qQ), where f((b1...bu)) denotes (f(b1), ..., f(bu)) and qA denotes the
characteristic vector of A. We reduce SQ to c-PLEB by mapping all sets in the
database to points by means of function F and building the c-PLEB data structure
for this set of points. Then, in order to find the answer for a query set Q, we
perform the c-PLEB query with argument G(Q).

The correctness of the reduction follows from the following claim.

Claim 2. For S, Q …X let D(Q, S)=|G(Q)−F(S)|.. Then D(Q, S)=
1
3 if

S … Q and is equal to 1 otherwise. L

ACKNOWLEDGMENTS

The author thanks Ashish Goel and the anonymous referees for helpful comments on the preliminary
version of this paper.

REFERENCES

[ALSS95] R. Agrawal, K. Lin, H. S. Sawhney, and K. Shim, Fast similarity search in the presence
of noise, scaling, and translation in time-series databases, in ‘‘Proc. 21st International
Conference on Very Large Databases,’’ 1995.

[AE] P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in
‘‘Advances in Discrete and Computational Geometry’’ (B. Chazelle, E. Goodman, and
R. Pollack, Eds.), Amer. Math. Soc., Providence, RI, 1998.

[Amb98] A. Ambainis, manuscript, 1998.

[AGGM98] P. K. Agarwal, A. Gionis, L. Guibas, and R. Motwani, Rank-based similarity searching,
in preparation, 1998.

[AM93] S. Arya and D. Mount, Approximate nearest neighbor searching, in ‘‘Proceedings of the
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,’’ pp. 271–280, 1993.

[AMNSW94] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu, An optimal algo-
rithm for approximate nearest neighbor searching, J. Assoc. Comput. Mach. 45 (1998),
891–923.

[Bern93] M. Bern, Approximate closest-point queries in high dimensions, Inform. Process. Lett. 45
(1993), 95–99.

[BOR] A. Borodin, R. Ostrovsky, and Y. Rabani, Lower bounds for high dimensional nearest
neighbor search and related problems, in ‘‘STOC’99.’’

ON APPROXIMATE NEAREST NEIGHBORS UNDER l. NORM 637

[Bou85] J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J.
Math. 52 (1985), 46–52.

[Chan97] T. M. Chan, Approximate nearest neighbor queries revisited, Discrete Comput. Geom. 20
(1998), 359–373.

[Cl88] K. Clarkson, A randomized algorithm for closest-point queries, SIAM J. Comput. 17
(1988), 830–847.

[Cl94] K. Clarkson, An algorithm for approximate closest-point queries, in ‘‘Proceedings of the
Tenth Annual ACM Symposium on Computational Geometry,’’ pp. 160–164, 1994.

[Coh97] E. Cohen, Fast algorithms for t-spanners and stretch-t paths, SIAM J. Comput. (1997).

[Fagin96] R. Fagin, Combining fuzzy information from multiple systems, in ‘‘Proceedings of the
ACM Symposium on Principles of Database Systems,’’ pp. 216–227, 1996.

[Fagin98] R. Fagin, Fuzzy queries in multimedia database systems, in ‘‘Proceedings of the ACM
Symposium on Principles of Database Systems,’’ 1998 (invited paper).

[QBIC] C. Faloutsos, R. Barber, M. Flickner, W. Niblack, D. Petkovic, and W. Equitz, Efficient
and effective querying by image content, J. Intell. Inform. Systems 3 (1994), 231–262.

[FI98] M. Farach-Colton and P. Indyk, Approximate nearest neighbor algorithms for
Hausdorff metric via embeddings, manuscript, 1998.

[GBT84] H. N. Gabow, J. L. Bentley, and R. E. Tarjan, Scaling and related techniques for com-
putational geometry, in ‘‘Proceedings of the 16th Annual ACM Symposium on Theory
of Computing,’’ pp. 135–143, 1984.

[GIM97] A. Gionis, P. Indyk, and R. Motwani, Similarity search in high dimensions via hashing,
manuscript, 1997.

[I97] P. Indyk, Deterministic superimposed coding with applications to pattern matching, in
‘‘Proceedings of the 38th Symposium on Foundations of Computer Science,’’ 1997.

[IM98] P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the curse
of dimensionality, in ‘‘Proceedings of the 30th Annual ACM Symposium on Theory of
Computing,’’ 1998.

[JL84] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mapping into Hilbert space,
Contemp. Math. 26 (1984), 189–206.

[HKP97] J. Hellerstein, C. H. Papadimitriou, and E. Koutsoupias, On the analysis of indexing
schemes, in ‘‘Symposium on Principles of Database Systems,’’ 1997.

[Kl97] J. Kleinberg, Two algorithms for nearest-neighbor search in high dimensions, in
‘‘Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,’’
1997.

[Knu73] D. Knuth, ‘‘The Art of Computer Programming: Sorting and Searching,’’ 1973.

[KOR98] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, Efficient search for approximate nearest
neighbor in high dimensional spaces, in ‘‘Proceedings of the 30th Annual ACM
Symposium on Theory of Computing,’’ 1998.

[Mat] J. Matoušek, On embedding expanders into lp spaces, Israel J. Math.

[Mat96] J. Matoušek, On the distortion required for embedding finite metric spaces into normed
spaces, Israel J. Math. 93 (1996), 333–344.

[Me93] S. Meiser, Point location in arrangements of hyperplanes, Inform. Comput. 106 (1993),
286–303.

[MP69] M. Minsky and S. Papert, ‘‘Perceptrons,’’ MIT Press, Cambridge, MA, 1969.

[Over83] M. H. Overmars, ‘‘The Design of Dynamic Data Structures,’’ Springer-Verlag, Berlin,
1983.

[Riv74] R. L. Rivest, ‘‘Analysis of Associative Retrieval Algorithms,’’ Ph.D. thesis, Stanford
University, 1974.

638 PIOTR INDYK

	1. INTRODUCTION
	2. PRELIMINARIES
	3. SOLVING c-PLEB FOR Linf1infinity1
	4. LOWER BOUND
	ACKNOWLEDGMENTS
	REFERENCES

