Semiconvergence of block SOR method for singular linear systems with \(p \)-cyclic matrices

Yongzhong Song

School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China

Received 6 May 1999; received in revised form 20 September 1999

Abstract

In this paper, we discuss semiconvergence of the block SOR method for solving singular linear systems with \(p \)-cyclic matrices. Some sufficient conditions for the semiconvergence of the block SOR method for solving a general \(p \)-cyclic singular system are proved. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 65F10

Keywords: Singular linear systems; \(p \)-cyclic matrix; Block SOR method; Semiconvergence

1. Introduction

Let us consider a system of \(n \) equations

\[Ax = b, \]

(1.1)

where \(A \in \mathbb{C}^{n \times n}, b, x \in \mathbb{C}^n \) with \(b \) known and \(x \) unknown. Suppose also that \(A \) is in the \(p \times p \) block partitioned form

\[
A = \begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1, p-1} & A_{1, p} \\
A_{21} & A_{22} & \cdots & A_{2, p-1} & A_{2, p} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
A_{p1} & A_{p2} & \cdots & A_{p, p-1} & A_{pp}
\end{pmatrix}.
\]

As usual, we write \(A \) as

\[A = D(I - L - U), \]

where \(D, L, U \) are diagonal, lower triangular, and upper triangular matrices, respectively.

E-mail address: yzsong@pine.njnu.edu.cn (Y. Song).
where \(D = \text{diag}(A_{11}, \ldots, A_{pp}) \) is nonsingular and \(L, U \) are, respectively, strictly lower and strictly upper triangular matrices. It is well known that the block Jacobi iteration matrix \(J \) can be expressed as
\[
J = L + U.
\]

For any \(\omega \neq 0 \) the block SOR method for solving (1.1) is defined as
\[
x^{(k)} = L'_\omega x^{(k-1)} + c, \quad k = 1, 2, \ldots,
\]
where
\[
L'_\omega = (I - \omega L)^{-1}[(1 - \omega)I + \omega U]
\]
is the block SOR iteration matrix and
\[
c = \omega(I - \omega L)^{-1}D^{-1}b.
\]
Furthermore, suppose that \(A \) is in the \(p \times p \) block partitioned form
\[
A = \begin{pmatrix}
 A_{11} & 0 & \cdots & 0 & A_{1p}
 \\
 A_{21} & A_{22} & \cdots & 0 & 0
 \\
 0 & A_{32} & \cdots & 0 & 0
 \\
 \vdots & \vdots & \ddots & \vdots & \vdots
 \\
 0 & 0 & \cdots & A_{pp-1} & A_{pp}
\end{pmatrix}
\] (1.2)
or
\[
A = \begin{pmatrix}
 A_{11} & A_{12} & 0 & \cdots & 0 & 0
 \\
 0 & A_{22} & A_{23} & \cdots & 0 & 0
 \\
 \vdots & \vdots & \ddots & \ddots & \vdots & \vdots
 \\
 0 & 0 & \cdots & A_{p-1,p-1} & A_{p-1,p}
 \\
 A_{p1} & 0 & 0 & \cdots & 0 & A_{pp}
\end{pmatrix}
\] (1.3)
where the diagonal block matrices \(A_{ii} \) are square and nonsingular, \(1 \leq i \leq p \), we assume throughout that \(p \geq 2 \). As is known, the matrix \(A \) above is \(p \)-cyclic (cf. [13]). Let \(D = \text{diag}(A_{11}, \ldots, A_{pp}) \). Then the block Jacobi iteration matrix \(J \) associated with respect to \(A \) is in the form
\[
J = \begin{pmatrix}
 0 & 0 & \cdots & 0 & J_{1p}
 \\
 J_{21} & 0 & \cdots & 0 & 0
 \\
 0 & J_{32} & \cdots & 0 & 0
 \\
 \vdots & \vdots & \ddots & \vdots & \vdots
 \\
 0 & 0 & \cdots & J_{pp-1} & 0
\end{pmatrix}
\] (1.4)
or
\[
J = \begin{pmatrix}
 0 & J_{12} & 0 & \cdots & 0 & 0
 \\
 0 & 0 & J_{23} & \cdots & 0 & 0
 \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots
 \\
 0 & 0 & \cdots & 0 & J_{p-1,p}
 \\
 J_{p1} & 0 & 0 & \cdots & 0 & 0
\end{pmatrix}
\] (1.5)
By definition (cf. [13]) \(J \) is weakly cyclic of index \(p \).
The block SOR method for solving system (1.1) has been investigated in many papers and books (cf. [13,15]). It is well known that, for nonsingular system (1.1), the block SOR method converges if and only if \(\rho(L) < 1 \). The associated convergence factor is then \(\rho(L) \). For \(p \)-cyclic matrix \(A \) the optimal parameters and optimal convergence factor of the block SOR method has been derived (cf. [12,14,15]). When system (1.1) is singular, one requires only semiconvergence of the block SOR method. In fact, when \(A \) is singular, \(\lambda = 1 \) is an eigenvalue of \(L \) so that \(\rho(L) \geq 1 \). By (Berman and Plemmons) [1] the block SOR method is semiconvergent if and only if the following three conditions are satisfied:

- \(\rho(L) = 1 \).
- Elementary divisors associated with 1 are linear, i.e.,
 \[
 \text{rank}(I - L) = \text{rank}(I - L)
 \]
 or equivalently
 \[
 \text{index}(I - L) = 1.
 \]
- If \(\lambda \in \sigma(L) \) with \(|\lambda| = 1 \), then \(\lambda = 1 \), i.e.,
 \[
 \vartheta(L) = \max\{|\lambda|, \lambda \in \sigma(L), \lambda \neq 1\} < 1.
 \]

In this case, the associated convergence factor is then \(\vartheta(L) \).

As a special case of the singular systems, in recent years there has been much interest in using block iterative methods to compute the stationary probability distribution vector of a Markov chain. That is, the problem is to solve the homogeneous system of equations

\[
\pi^T(I - P) = 0
\]
subject to the normalizing condition \(\| \pi \|_1 = 1 \), where the matrix \(P \) is a row stochastic matrix. System (1.6) is equivalent to \(A\pi = 0 \) with singular matrix \(A = I - P^T \). Furthermore, as discussed in [7], the matrix \(P \) is often a \(p \)-cyclic matrix.

The block iterative methods, in particular, the block SOR method for solving singular system and Markov chains are investigated in many papers (cf. [1–3,5–10]).

In this paper, we discuss the semiconvergence of the block SOR method whenever \(A \) is a singular \(p \)-cyclic matrix \(A \) having form (1.2) or (1.3). Some basic facts about the eigenelements between block SOR iteration matrix and block Jacobi iteration matrix are given in Section 2. In Section 3 the general \(p \)-cyclic singular system is discussed. Some sufficient conditions for the semiconvergence of the block SOR method are proved.

2. Some basic results

First, when \(A \) has forms (1.2) and (1.3), Varga [12] and Hadjidimos et al. [4] proved important relationships between the eigenvalues \(\mu \) of \(J \) and \(\lambda \) of \(L \).

Lemma 2.1. (a) Let the matrix \(A \) be in form (1.2). Then, \(\lambda \in \sigma(L) \) iff there exists \(\mu \in \sigma(J) \) satisfying

\[
(\lambda + \omega - 1)^p = \lambda^{p-1} \omega^p \mu^p
\]

(2.1)
or, equivalently,
\[\lambda + \omega - 1 = \lambda^{(p-1)/p} \omega \mu. \] (2.2)

(b) Let the matrix A be in form (1.3). Then, $\lambda \in \sigma(L_\omega)$ iff there exists $\mu \in \sigma(J)$ satisfying
\[(\lambda + \omega - 1)^p = \lambda \omega^p \mu^p \] (2.3)
or, equivalently,
\[\lambda + \omega - 1 = \lambda^{(p-1)/p} \omega \mu. \] (2.4)

For the eigenvectors of J and L_ω, Song [11] gave the following relationships.

Lemma 2.2. Let the matrix A be in form (1.2). (a) If $\mu \in \sigma(J)$ and the corresponding eigenvector x has the partition form $x^T = (x_1^T, x_2^T, \ldots, x_p^T)$, then λ satisfying
\[\lambda + \omega - 1 = \lambda^{(p-1)/p} \omega \mu \]
is an eigenvalue of L_ω and the corresponding eigenvector y has the form
\[y^T = (0, \ldots, 0, x_1^T, \lambda^{(p-1)/p} x_2^T, \ldots, \lambda^{(p-1)/p} x_p^T), \]
whenever $x_k = 0$, $k = 1, \ldots, i - 1$, but $x_i \neq 0$.

Further, if $\lambda \neq 0$, then $y^T = (x_1^T, \lambda^{(p-1)/p} x_2^T, \ldots, \lambda^{(p-1)/p} x_p^T)$.

(b) If $\lambda \neq 0$ is an eigenvalue of L_ω and $y = (y_1^T, y_2^T, \ldots, y_p^T)^T$ is the corresponding eigenvector, then
\[\mu = \lambda^{(1-p)/p} \omega^{-1} (\lambda + \omega - 1) \]
is an eigenvalue of J and the corresponding eigenvector x has the form
\[x^T = (\lambda^{(p-1)/p} y_1^T, \lambda^{(p-2)/p} y_2^T, \ldots, \lambda^{(1-p)/p} y_{p-1}^T, y_p^T). \]

Further, if $\mu = 0$, then the eigenvector can be chosen as $x = y$.

Proof. A vector $y \neq 0$ is an eigenvector of L_ω corresponding to the eigenvalue λ if and only if
\[(I - \omega L)^{-1} [(1 - \omega)I + \omega U] y = \lambda y, \]
i.e., $G_{\omega, \lambda} y = 0$ with
\[
G_{\omega, \lambda} = \begin{pmatrix}
(1 - \lambda - \omega)I_1 & 0 & \cdots & 0 & \omega J_{1p} \\
\omega \lambda J_{21} & (1 - \lambda - \omega)I_2 & \cdots & 0 & 0 \\
0 & \omega \lambda J_{32} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \omega \lambda J_{p-1,p-1} & (1 - \lambda - \omega)I_p \\
\end{pmatrix},
\]
which is equivalent to
\[
\begin{pmatrix}
(1 - \lambda - \omega) y_1 + \omega J_{1p} y_p \\
(1 - \lambda - \omega) y_2 + \omega \lambda J_{21} y_1 \\
\vdots \\
(1 - \lambda - \omega) y_p + \omega \lambda J_{p,p-1} y_{p-1}
\end{pmatrix} = 0. \] (2.5)
Similarly, $x \neq 0$ is an eigenvector of J corresponding to the eigenvalue μ if and only if

\[
\begin{pmatrix}
J_{1p}x_p \\
J_{21}x_1 \\
\vdots \\
J_{p,p-1}x_{p-1}
\end{pmatrix} = \mu \begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_p
\end{pmatrix}.
\]

(2.6)

Now, by (2.2), (2.5) and (2.6) the results are directly obtained. \square

The result in (a) is consistent with the corresponding one given by Kontovasilis et al. [7, Theorem 3.2].

Similarly, we can prove the following statement (cf. [11]).

Lemma 2.3. Let the matrix A be in form (1.3).

(a) If $\mu \in \sigma(J)$ and the corresponding eigenvector x has the partition form $x^T = (x_1^T, x_2^T, \ldots, x_p^T)$, then λ satisfying

\[
\lambda + \omega - 1 = \lambda^{1/p} \omega \mu
\]

is an eigenvalue of L_ω and the corresponding eigenvector y has the form

\[
y^T = (0, \ldots, 0, x_i^T, \lambda^{1/p} x_{i+1}^T, \ldots, \lambda^{(p-i)/p} x_p^T),
\]

whenever $x_k = 0$, $k = 1, \ldots, i - 1$, but $x_i \neq 0$.

Further, if $\lambda \neq 0$, then $y^T = (x_1^T, \lambda^{1/p} x_2^T, \ldots, \lambda^{(p-i)/p} x_p^T)$.

(b) If $\lambda \neq 0$ is an eigenvalue of L_ω and $y = (y_1^T, y_2^T, \ldots, y_p^T)^T$ is the corresponding eigenvector, then

\[
\mu = \lambda^{-1/p} \omega^{-1} (\lambda + \omega - 1)
\]

is an eigenvalue of J and the corresponding eigenvector x has the form:

\[
x^T = (\lambda^{(p-i)/p} y_1^T, \lambda^{(p-2)/p} y_2^T, \ldots, \lambda^{1/p} y_{p-1}^T, y_p^T).
\]

Further, if $\mu = 0$, then the eigenvector can be chosen as $x = y$.

3. Semiconvergence

Since A is singular, $\lambda = 1 \in \sigma(L_\omega)$ and the corresponding $\mu \in \sigma(J)$ satisfies $\mu^p = 1$. Denote

\[
\gamma(J) = \max\{|\mu|, \mu \in \sigma(J), |\mu| < 1\}.
\]

In order to describe the semiconvergence we first prove some lemmas.

Lemma 3.1. Assume that $|\mu| < 1$ and τ satisfies

\[
\tau^p - \tau^{p-1} \omega \mu + \omega - 1 = 0. \tag{3.1}
\]

If $0 < \omega < 2/(1 + |\mu|)$, then $|\tau| < 1$.

Proof. Eq. (3.1) can be rewritten as \(\omega - 1 = \tau^{p-1}(\omega \mu - \tau) \), which implies that
\[
|\omega - 1| = |\tau|^{p-1}|\omega \mu - \tau|.
\] (3.2)

Assume that \(|\tau| \geq 1 \). It follows from (3.2) that
\[
|\omega - 1| \geq |\omega \mu - \tau|.
\] (3.3)

Denote \(\mu = \mu_1 + i\mu_2 \) and \(\tau = \tau_1 + i\tau_2 \) with \(\mu_1, \mu_2, \tau_1, \tau_2 \in \mathbb{R} \). Then \(|\mu|^2 = \mu_1^2 + \mu_2^2 < 1, |\tau| = \tau_1^2 + \tau_2^2 \geq 1 \). Now from (3.3) we obtain that \((\omega - 1)^2 \geq (\omega \mu_1 - \tau_1)^2 + (\omega \mu_2 - \tau_2)^2 \), i.e.,
\[
\omega^2(1 - |\mu|^2) - 2\omega + 2\omega(\mu_1 \tau_1 + \mu_2 \tau_2) + 1 - |\tau|^2 \geq 0.
\]
This inequality can be rewritten as follows:
\[
\omega(1 - |\mu|)[\omega(1 + |\mu|) - 2] + [2\omega(\mu_1 \tau_1 + \mu_2 \tau_2 - |\mu|) + 1 - |\tau|^2] \geq 0.
\] (3.4)

Since \(0 < \omega < 2/(1 + |\mu|) \), then \(\omega(1 + |\mu|) - 2 < 0 \), and, therefore,
\[
\omega(1 - |\mu|)[\omega(1 + |\mu|) - 2] < 0,
\] (3.5)
as \(|\mu| < 1 \). On the other hand, we have
\[
2\omega(\mu_1 \tau_1 + \mu_2 \tau_2 - |\mu|) + 1 - |\tau|^2 \leq 2\omega(|\mu||\tau| - |\mu|) + 1 - |\tau|^2
\]
\[
= (|\tau| - 1)(2\omega|\mu| - 1 - |\tau|)
\]
\[
\leq (|\tau| - 1) \left(\frac{4|\mu|}{1 + |\mu|} - 1 - |\tau| \right)
\]
\[
\leq 0
\] (3.6)
as \(|\tau| \geq 1 \).

Clearly, inequality (3.5) together with inequality (3.6) contradicts inequality (3.4), and consequently, the assumption \(|\tau| \geq 1 \) is not true, i.e., \(|\tau| < 1 \). \(\square \)

Similarly, we have

Lemma 3.2. Assume that \(|\mu| < 1 \) and \(\tau \) satisfies
\[
\tau^p - \tau \omega \mu + \omega - 1 = 0.
\] (3.7)
If \(0 < \omega < 2/(1 + |\mu|) \), then \(|\tau| < 1 \).

Proof. Assume that \(|\tau| \geq 1 \). Rewrite (3.7) as \(\omega - 1 = \tau(\omega \mu - \tau^{p-1}) \), which implies that \(|\omega - 1| = |\tau||\omega \mu - \tau^{p-1}| \geq |\omega \mu - \tau^{p-1}| \). Denote \(\mu = \mu_1 + i\mu_2 \) and \(\tau^{p-1} = \tau_1 + i\tau_2 \) with \(\mu_1, \mu_2, \tau_1, \tau_2 \in \mathbb{R} \). Then \(|\mu|^2 = \mu_1^2 + \mu_2^2 < 1, |\tau|^{p-1} = \tau_1^2 + \tau_2^2 \geq 1 \).

Now, using the same method with the proof of Lemma 3.1 we can derive a contradiction, and, consequently, \(|\tau| < 1 \). \(\square \)

By Lemmas 3.1 and 3.2 the following result is immediate.
Lemma 3.3. Assume that \(\mu \in \sigma(J) \) with \(|\mu| < 1 \) and \(0 < \omega < 2/(1 + |\mu|) \). If either the matrix \(A \) is in form (1.2) and \(\lambda \) satisfies (2.2) or the matrix \(A \) is in form (1.3) and \(\lambda \) satisfies (2.4), then \(|\lambda| < 1 \).

Lemma 3.4. Assume that \(|\mu| = 1 \) and \(\lambda \) satisfies (2.2) or (2.4) for \(0 < \omega \leq 1 \). Then \(|\lambda| \leq 1 \).

Proof. Assume that \(\lambda \) satisfies (2.2). Let \(\lambda = \tau^p \). If \(|\lambda| > 1 \) then \(|\tau| > 1 \) and by (2.2) it follows that \(1 - \omega = |\omega - 1| = |\tau|^{p-1}|\omega \mu - \tau| \geq |\tau| - \omega \), and, therefore, \(|\tau| \leq 1 \), which contradicts \(|\tau| > 1 \). Consequently, \(|\tau| \leq 1 \) and, hence, \(|\lambda| \leq 1 \).

For the case where \(\lambda \) satisfies (2.4) the proof is similar. \(\Box \)

Lemma 3.5. Assume that \(\mu^p = 1 \) and \(\lambda_0 \) satisfies (2.1) for some \(\omega \geq 1 \). If \(|\lambda_0| > 1 \), then \(|\lambda_0| \) satisfies (2.1).

Proof. Let
\[
f(\lambda) = (\lambda + \omega - 1)^p - \omega \lambda^{p-1}.
\]
We know that \(\lambda = 1 \) is a root of \(f(\lambda) \) for any \(\omega \). Similar to the proof of Hadjidimos [3, Theorem 3.3] we divide \(f(\lambda) \) by \(\lambda - 1 \) and obtain
\[
g(\lambda) = \frac{f(\lambda)}{\lambda - 1}
= \lambda^{p-1} - \left[\left(\frac{p}{p} \right) (\omega - 1)^p + \left(\frac{p}{p-1} \right) (\omega - 1)^{p-1} + \cdots + \left(\frac{p}{2} \right) (\omega - 1)^2 \right] \lambda^{p-2}
- \left[\left(\frac{p}{p} \right) (\omega - 1)^p + \left(\frac{p}{p-1} \right) (\omega - 1)^{p-1} + \cdots + \left(\frac{p}{3} \right) (\omega - 1)^3 \right] \lambda^{p-3}
- \cdots
- \left[\left(\frac{p}{p} \right) (\omega - 1)^p + \left(\frac{p}{p-1} \right) (\omega - 1)^{p-1} \right] \lambda - \left(\frac{p}{p} \right) (\omega - 1)^p.
\]
Since \(\lambda_0 \) is a root of \(f(\lambda) \), then it is also a root of \(g(\lambda) \) and, hence, we get
\[
\lambda_0^{p-1} = \left[\left(\frac{p}{p} \right) (\omega - 1)^p + \left(\frac{p}{p-1} \right) (\omega - 1)^{p-1} + \cdots + \left(\frac{p}{2} \right) (\omega - 1)^2 \right] \lambda_0^{p-2}
+ \left[\left(\frac{p}{p} \right) (\omega - 1)^p + \left(\frac{p}{p-1} \right) (\omega - 1)^{p-1} + \cdots + \left(\frac{p}{3} \right) (\omega - 1)^3 \right] \lambda_0^{p-3}
+ \cdots
+ \left[\left(\frac{p}{p} \right) (\omega - 1)^p + \left(\frac{p}{p-1} \right) (\omega - 1)^{p-1} \right] \lambda_0 + \left(\frac{p}{p} \right) (\omega - 1)^p.
\]
Consequently,

\[
|\lambda_0|^{p-1} \leq \left[\left(\frac{p}{2} \right)(\omega - 1)^p + \left(\frac{p}{p-1} \right)(\omega - 1)^{p-1} + \cdots + \left(\frac{p}{2} \right)(\omega - 1)^2 \right] |\lambda_0|^{p-2} + \\
\left[\left(\frac{p}{p} \right)(\omega - 1)^p + \left(\frac{p}{p-1} \right)(\omega - 1)^{p-1} + \cdots + \left(\frac{p}{3} \right)(\omega - 1)^3 \right] |\lambda_0|^{p-3} + \\
\cdots + \\
\left[\left(\frac{p}{p} \right)(\omega - 1)^p + \left(\frac{p}{p-1} \right)(\omega - 1)^{p-1} \right] |\lambda_0| + \left(\frac{p}{p} \right)(\omega - 1)^p.
\]

Hence, we have

\[
1 \leq \left(\frac{p}{2} \right)(\omega - 1)^2 \frac{1}{|\lambda_0|} + \left(\frac{p}{3} \right)(\omega - 1)^3 \left(\frac{1}{|\lambda_0|} + \frac{1}{|\lambda_0|^2} \right) + \cdots \\
+ \left(\frac{p}{p-1} \right)(\omega - 1)^p \left(\frac{1}{|\lambda_0|} + \frac{1}{|\lambda_0|^2} + \cdots + \frac{1}{|\lambda_0|^{p-1}} \right) \\
= \frac{1}{|\lambda_0|} - 1 \left[\left(\frac{p}{2} \right)(\omega - 1)^2 \left(1 - \frac{1}{|\lambda_0|} \right) + \left(\frac{p}{3} \right)(\omega - 1)^3 \left(1 - \frac{1}{|\lambda_0|^2} \right) + \cdots \\
+ \left(\frac{p}{p-1} \right)(\omega - 1)^p \left(1 - \frac{1}{|\lambda_0|^{p-2}} \right) + \left(\frac{p}{p} \right)(\omega - 1)^p \left(1 - \frac{1}{|\lambda_0|^{p-1}} \right) \right] \\
= \frac{1}{|\lambda_0|} - 1 \left\{ \left[\left(\frac{p}{2} \right)(\omega - 1)^2 + \left(\frac{p}{3} \right)(\omega - 1)^3 + \cdots + \left(\frac{p}{p-1} \right)(\omega - 1)^{p-1} \\
+ \left(\frac{p}{p} \right)(\omega - 1)^p \right] - |\lambda_0| \left[\left(\frac{p}{2} \right) \left(\frac{\omega - 1}{|\lambda_0|} \right)^2 + \left(\frac{p}{3} \right) \left(\frac{\omega - 1}{|\lambda_0|} \right)^3 + \cdots \\
+ \left(\frac{p}{p-1} \right) \left(\frac{\omega - 1}{|\lambda_0|} \right)^{p-1} + \left(\frac{p}{p} \right) \left(\frac{\omega - 1}{|\lambda_0|} \right)^p \right] \right\} \\
= \frac{1}{|\lambda_0|} - 1 \left\{ \omega^p - \left(\frac{p}{1} \right)(\omega - 1) - 1 \right\} - |\lambda_0| \left[\left(\frac{\omega - 1}{|\lambda_0|} + 1 \right)^p - \left(\frac{p}{1} \right) \left(\frac{\omega - 1}{|\lambda_0|} + 1 \right) \right] \\
= \frac{1}{|\lambda_0|} - 1 \left\{ \omega^p - |\lambda_0| \left(\frac{\omega - 1}{|\lambda_0|} + 1 \right) \right\} + 1,
\]

which implies that \(\omega^p - |\lambda_0|((\omega - 1)/|\lambda_0|) + 1)^p \geq 0 \) as \(|\lambda_0| > 1 \), i.e.,

\[
|\lambda_0|^{p-1} \omega^p \geq (|\lambda_0| + \omega - 1)^p. \tag{3.8}
\]
From \((\lambda_0 + \omega - 1)^p = \lambda_0^{p-1}\omega^p\) it follows that
\[
|\lambda_0|^{p-1}\omega^p = |\lambda_0^{p-1}\omega^p| = |\lambda_0 + \omega - 1|^p \leq (|\lambda_0| + |\omega - 1|)^p
\]
which together with (3.8) proves the result. □

Lemma 3.6. If \(\mu^p = 1\) and \(\lambda\) satisfies (2.1) for some \(1 \leq \omega \leq p/(p - 1)\), then \(|\hat{\lambda}| \leq 1\).

Proof. Assume that \(|\hat{\lambda}| > 1\). Then, by Lemma 3.5, \(|\lambda|\) satisfies (2.1), i.e.,
\[
(|\lambda| + \omega - 1)^p = |\lambda|^{p-1}\omega^p.
\]
(3.9)
Denote \(\tau = \lambda^{1/p}\). Then \(|\tau| > 1\) and (3.9) is equivalent to \(\tau^p - \omega \tau^{p-1} + \omega - 1 = 0\). This shows that \(\tau\) is a root of the equation
\[
x^p - \omega x^{p-1} + \omega - 1 = 0.
\]
(3.10)
However, by Kontovasilis et al. [7, Theorem 4], the moduli of all roots of (3.10) must be smaller than or equal to 1 from which it follows that \(|\tau| \leq 1\), which contradicts the assumption \(|\tau| > 1\). Consequently, we obtain \(|\hat{\lambda}| \leq 1\). □

Lemma 3.7. Assume that \(|\mu| = 1\) and \(\lambda\) satisfies (2.1) for \(\omega \in \mathbb{R} \setminus \{0\}\). If \(|\hat{\lambda}| = 1\), then
\[
\hat{\lambda} = \begin{cases} \mu^p & \text{for } \omega = 1, \\ 1 & \text{otherwise}. \end{cases}
\]

Proof. For the case where \(\omega = 1\) the result is obtained from (2.1), directly.
Now, we consider the case when \(\omega \neq 1\). From (2.1) we derive
\[
|\hat{\lambda} + \omega - 1| = |\omega|.
\]
(3.11)
Denote \(\lambda = \tau_1 + i\tau_2\) with \(\tau_1, \tau_2 \in \mathbb{R}\). Then \(\tau_1^2 + \tau_2^2 = 1\), and from (3.11) it follows that \((\tau_1 + \omega - 1)^2 + \tau_2^2 = \omega^2\), or, equivalently, \(2(\omega - 1)(\tau_1 - 1) = 0\), which implies that \(\tau_1 = 1\), and, hence, \(\lambda = \tau_1 = 1\). □

Similarly, the following lemma can be proved.

Lemma 3.8. Assume that \(|\mu| = 1\) and \(\lambda\) satisfies (2.3) for \(\omega \in \mathbb{R} \setminus \{0\}\). If \(|\hat{\lambda}| = 1\), then
\[
\hat{\lambda} = \begin{cases} \mu^{p(p-1)} & \text{for } \omega = 1, \\ 1 & \text{otherwise}. \end{cases}
\]

Lemma 3.9. Let the matrix \(A\) be in form (1.2) or (1.3). Assume that \(\rho(J) = 1\) and \(\lambda \in \sigma(\mathcal{L}_\omega)\) for \(0 < \omega < 2/(1 + \gamma(J))\) and \(\omega \neq 1\). If \(|\hat{\lambda}| = 1\), then \(\hat{\lambda} = 1\).

Proof. By Lemma 3.3 the condition \(|\hat{\lambda}| = 1\) implies that the corresponding \(\mu \in \sigma(J)\) satisfies \(|\mu| = 1\). Now, the result follows from Lemmas 3.7 and 3.8, directly. □
In order to give the semiconvergence theorem, let us define $f_1(\omega, \mu^p, \lambda)$, $f_2(\omega, \mu^p, \lambda)$ and $\beta(\omega)$ as

$$f_1(\omega, \mu^p, \lambda) = (\lambda + \omega - 1)^p - \omega^p \mu^p \lambda^{p-1},$$

$$f_2(\omega, \mu^p, \lambda) = (\lambda + \omega - 1)^p - \omega^p \mu^p \lambda,$$

and $\beta(\omega) = \max\{1, f_1(\omega, \mu^p, \lambda), f_2(\omega, \mu^p, \lambda) = 0, \omega \in \sigma(J), |\mu| = 1\}$, whenever the matrix A is in form (1.2), while $\beta(\omega) = \max\{1, f_2(\omega, \mu^p, \lambda) = 0, \omega \in \sigma(J), |\mu| = 1\}$, whenever the matrix A is in form (1.3).

Theorem 3.10. Assume that the matrix A is in form (1.2) or (1.3), $\rho(J) = 1$ and $\text{index}(I - J) = 1$. Then the block SOR method is semiconvergent if the parameter ω satisfies one of the following conditions:

(a) $0 < \omega < 1$;

(b) $\beta(\omega) \leq 1$ and either $1 < \omega < \min\{2/(1 + \gamma(J)), p/(p - 1)\}$ whenever A is in form (1.2) or $1 < \omega < 2/(1 + \gamma(J))$ whenever A is in form (1.3).

Proof. Let $\lambda \in \sigma(L_\omega)$. For $|\mu| < 1$ Lemma 3.3 insures that $|\lambda| < 1$. For $|\mu| = 1$ Lemma 3.4 gets $|\lambda| \leq 1$ whenever $0 < \omega < 1$ and the definition of $\beta(\omega)$ together with the condition (b) derives $|\lambda| \leq 1$ whenever $1 < \omega < 2/(1 + \gamma(J))$. Since $\omega \neq 1$, by Lemma 3.9 it follows that if $\lambda \in \sigma(L_\omega)$ with $|\lambda| = 1$, then $\lambda = 1$.

On the other hand, when $\lambda = 1$ the corresponding $\mu \in \sigma(J)$ satisfies $\mu^p = 1$, i.e., $\mu = e^{2\pi i k}$, for some integer $0 \leq k \leq p - 1$. By Romanovsky’s theorem (cf. [13, Theorem 2.4]) the numbers $\mu = e^{2\pi i k}$, $k = 0, \ldots, p - 1$, as the eigenvalues of J have the same multiplicity, since

$$\frac{\partial}{\partial \lambda} f_1(\omega, \mu^p, \lambda) = p(\lambda + \omega - 1)^{p-1} - (p - 1)\omega^p \mu^p \lambda^{p-2}.$$

Clearly, $f_1(\omega, 1, 1) = 0$ and $(\partial/\partial \lambda) f_1(\omega, 1, 1) = p\omega^{p-1} - (p - 1)\omega^p = \omega^{p-1}[p - (p - 1)\omega] > 0$, as $0 < \omega < p/(p - 1)$.

Similarly,

$$\frac{\partial}{\partial \lambda} f_2(\omega, \mu^p, \lambda) = p(\lambda + \omega - 1)^{p-1} - \omega^p \mu^p.$$

It holds that $f_2(\omega, 1, 1) = 0$ and $(\partial/\partial \lambda) f_2(\omega, 1, 1) = p\omega^{p-1} - \omega^p = \omega^{p-1}(p - \omega) > 0$, as $0 < \omega < 2/[1 + \gamma(J)]\leq 2 < p$.

Thus, we have proved that $\lambda = 1$ is a simple root of $f_i(\omega, 1, \lambda)$, $i = 1, 2$. This shows that $\lambda = 1$ as the eigenvalue of L_ω has the same multiplicity with $\mu = 1$ as the eigenvalue of J. Hence, Lemmas 2.2 and 2.3 insure that

$$\text{index}(I - L_\omega) = \text{index}(I - J) = 1.$$

Now, we have shown that the block SOR method is semiconvergent. \square

Theorem 3.11. Assume that the matrix A is in form (1.2). Further, assume that $\rho(J) = 1$, $\text{index}(I - J) = 1$ and $\mu \in \sigma(J)$ with $|\mu| = 1$ implies that $\mu^p = 1$. Then the block SOR method is semiconvergent for

$$1 \leq \omega < \min\left\{\frac{2}{1 + \gamma(J)}, \frac{p}{p - 1}\right\}.$$
Proof. By Lemma 3.6 it follows that if $\lambda \in \sigma(L_\omega)$ then $|\lambda| \leq 1$, which implies that $\beta(\omega) \leq 1$. Moreover, for $\omega = 1$ Lemmas 3.3 and 3.7 show that if $\lambda \in \sigma(L_\omega)$ with $|\lambda| = 1$, then

$$\lambda = \mu^p = 1.$$

By Theorem 3.10 we can prove the statement. □

Clearly, $\mu^p = 1$ implies that $|\mu| = 1$, but the inverse is not always true. When $J \geq 0$ is an irreducible cyclic matrix of index p, then by [13, p. 39, Corollary] $|\mu| = 1$ implies that $\mu^p = 1$ and, thus, in this case for $\mu \in \sigma(J)$ the equality $|\mu| = 1$ is equivalent to $\mu^p = 1$.

On the other hand, when A is a singular M-matrix the splitting $A = D - DJ$ is regular. By [8, Corollary 2] (also see [1, Theorems 7-6.20, 6-4.16]) we obtain that if A is a singular M-matrix with “property c”, in particular, A is an irreducible singular M-matrix, then the assumptions $\rho(J) = 1$ and $\text{index}(I - J) = 1$ are true. Hence, in this case the results in Theorems 3.10 and 3.11 are valid.

A special and important case is when $p = 2$. In this case the matrices in (1.2) and (1.3) have the same form

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

and relationships (2.1) and (2.3) reduce to

$$\lambda^2 + [2(\omega - 1) - \omega^2 \mu^2] \lambda + (\omega - 1)^2 = 0.$$

Solving this equation we obtain

$$\lambda = \frac{1}{2} \{\omega^2 \mu^2 - 2(\omega - 1) \pm \sqrt{\omega^2 \mu^2[\omega^2 \mu^2 - 4(\omega - 1)]}\}.$$

(3.12)

We give the following lemma.

Lemma 3.12. Assume that $p = 2$ and $\rho(J) = 1$.

(a) If $\mu \in \sigma(J)$ with $|\mu| = 1$ which implies that $\mu^2 = 1$, then for $0 < \omega < 2/(1 + \gamma(J))$ it holds that $\rho(L_\omega) \leq 1$.

(b) If $\sigma(J) \subseteq \mathbb{R}$, then for $0 < \omega < 2$ it holds that $\rho(L_\omega) \leq 1$.

Proof. When $|\mu| = 1$ the condition insures that $\mu^2 = 1$, and from (3.12) it gets either $\lambda = 1$ or $(\omega - 1)^2$ so that $|\lambda| < 1$.

Now, we consider the case where $|\mu| < 1$. Lemma 3.3 insures that the corresponding $\lambda \in \sigma(L_\omega)$ satisfies $|\lambda| < 1$ whenever $0 < \omega < 2/(1 + \gamma(J))$, and (a) is true. Assume that $\sigma(J) \subseteq \mathbb{R}$ and $0 < \omega < 2$. It then holds that $\mu^2 < 1$. If $\omega^2 \mu^2 - 4(\omega - 1) \leq 0$, then

$$|\lambda| = \frac{1}{2} [\omega^2 \mu^2 - 2(\omega - 1)]^2 - \omega^2 \mu^2[\omega^2 \mu^2 - 4(\omega - 1)] = |\omega - 1| < 1.$$

When $\omega^2 \mu^2 - 4(\omega - 1) > 0$ it follows that

$$|\lambda| \leq \frac{1}{2} \{\omega^2 \mu^2 - 2(\omega - 1) + \sqrt{\omega^2 \mu^2[\omega^2 \mu^2 - 4(\omega - 1)]}\} < 1.$$

From this lemma the following semiconvergence theorem is obvious.
Theorem 3.13. Assume that $p=2$, $\rho(J) = 1$ and $\text{index}(I-J) = 1$. If $\mu \in \sigma(J)$ with $|\mu| = 1$ implying that $\mu^2 = 1$, then the block SOR method is semiconvergent for $0 < \omega < 2/(1 + \gamma(J))$.

Furthermore, we have

Theorem 3.14. Assume that $p=2$, $\sigma(J) \subseteq \mathbb{R}$, $\rho(J) = 1$ and $\text{index}(I-J) = 1$. Then
(a) the block SOR method is semiconvergent for $0 < \omega < 2$.
(b) the optimum parameter and optimum convergence factor are defined, respectively, by

$$\omega_{\text{opt}} = \frac{2}{1 + (1 - \gamma(J)^2)^{1/2}}, \quad \gamma(L_{\omega_{\text{opt}}}) = \frac{1 - (1 - \gamma(J)^2)^{1/2}}{1 + (1 - \gamma(J)^2)^{1/2}}.$$

Proof. (a) follows from Lemma 3.12 and (b) from Hadjidimos [3, Theorem 3.3], directly. □

Remark 3.15. For the Markov chains problem since P is row stochastic, it follows by Rothblum [10, Corollary 3.5] that $\text{index}(I-P) = 1$ and it is easy to check that the conditions of Theorems 3.10 and 3.11 are satisfied so that we can derive the semiconvergence theorems, directly.

Acknowledgements

The author is most grateful to Professor W. Niethammer for his help, many helpful suggestions and discussions during the former’s visit at the Institute for Practical Mathematics of University Karlsruhe. He thanks also the referees for their very constructive comments and suggestions.

References