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Abstract

We show that Horrocks criterion for the splitting of vector bundle®bcan be extended to vector
bundles on multiprojective spaces and to smooth projective varieties with the weak CM property (see
Definition 3.11). As a main tool we use the theory:eblocks and Beilinson type spectral sequences.
Cohomological characterizations of vector bundles are also showed.

0 2005 Elsevier Inc. All rights reserved.

1. Introduction

There are two starting points for our work. The first one is the following well-known
result of Horrocks (see [14]) which states that a vector bundle on a projective space has
no intermediate cohomology if and only if it decomposes into a direct sum of line bun-
dles. In [20], Ottaviani showed that Horrocks criterion fails on nonsingular hyperquadrics
Q3 C P*. Indeed, the spinor bundlg on Q3 c P* has no intermediate cohomology and
it does not decompose into a direct sum of line bundles. So, it is natural to consider two
possible generalizations of Horrocks criterion to arbitrary varieties. The first one consists
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of characterizing direct sums of line bundles and the second one consists of characterizing
vector bundles without intermediate cohomology.

Related to the characterization of vector bundles which splits as direct sum of line bun-
dles; it has been done for vector bundles on hyperquadrics P**! and Grassmannians
Gr(k, n) by Ottaviani in [19,20], respectively. It turns out that a vector bundleggr(re-
spectivelyGr (k, n)) is a direct sum of line bundles if it has no intermediate cohomology
and satisfies other cohomological conditions involving spinor bundles (respectively the
tautologicalk-dimensional bundle) and explicitly written down. Concerning the character-
ization of vector bundles without intermediate cohomology besides the result of Horrocks
for vector bundles on projective spaces, there is such a characterization for vector bundles
on hyperquadrics due to Kndrrer; i.e. the line bundles and the spinor bundles are the only
indecomposable vector bundles gy c P"*+1 without intermediate cohomology. More-
over, Buchweitz et al. [7] proved that hyperplanes and hyperquadrics are the only smooth
hypersurfaces in a projective space for which there are, up to twist, a finite number of
indecomposable vector bundles without intermediate cohomology. See [2] for the charac-
terization of vector bundles o@r (2, 5) without intermediate cohomology and [1] for the
characterization of rank 2 vector bundles on Fano 3-folds of index 2 without intermediate
cohomology.

The first goal of this paper is to generalize Horrocks result to vector bundles on mul-
tiprojective space®"t x --- x P and to vector bundles on any smooth projective va-
riety with the strong CM property (see Definition 3.11). Indeed, using the notions of
exceptional collections (see Definition 2.14);blocks (see Definition 3.3) and the spec-
tral sequences associated to them (see Theorem 3.16), we prove that a vectorFbundle
on X =P" x ... x P" splits providedE ® Ox(t1,...,t) is an ACM bundle for any
—n; <<0,1<i<r.

Our second starting point for this note was another result of Horrocks which gives a
cohomological characterization of the sheaf of hdifferential formss2/, onP" [15] and
the increasing interest in further conomological characterization of vector bundles. Using
the notion of left dualn-block collection and again Beilinson’s type spectral sequence, we
characterize the-differential forms on multiprojective spaces.

Next we outline the structure of this paper. In Section 2, we briefly recall the notions
and properties of exceptional sheaf and full, strongly exceptional collections of sheaves
needed later. It is well known that the length of any full strongly exceptional collection
of coherent sheaves= (Eo, E1, ..., E;;) on a smooth projective variety of dimension
n is greater or equal te + 1 and, in [8] we call excellent collection any full exceptional
collection of coherent sheaves of length- 1. Excellent collections have nice properties:
they are automatically full strongly exceptional collections and their strong exceptionality
is preserved under mutations. Nevertheless the existence of an excellent collection on an
n-dimensional smooth projective variety imposes a strong restrictioki,aramely,X has
to be Fano an&(X) aZ-free module of rank + 1. In Section 3, we generalize the notion
of excellent collection allowing exceptional collectioms= (Eo, E1, ..., E;;) of arbitrary
length but packing the sheavés in suitable subcollections called blocks. We introduce
the notion of left and right duak-block collection and we prove its existence (Proposi-
tion 3.9). In the last part of Section 3, we concentrate our attention in varigtiegh a
number of blocks generating” (O x-mod) one greater than the dimensionf This leads
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us to the following definition: we say that andimensional smooth projective variety has

the weak CM property if it has am-block collection which generate3” (Ox-mod) (see

Definition 3.11). Finally, given a coherent shef&fon a smooth projective variety with

the weak CM property, we derive two Beilinson type spectral sequences which atfuts to

(Theorem 3.16). These two spectral sequences will play an important role in next section.
In Section 4, we use Beilinson type spectral sequence to establish under which con-

ditions a vector bundle splits. As an immediate consequence of Proposition 4.1 we will

re-prove: (1) Horrock’s criterion which states that a vector bundi@obhas no intermedi-

ate cohomology if and only if it decomposes into a direct sum of line bundles (Corollary

4.2), (2) the characterization of vector bundles on a quadric hypersudace P"*1,

n > 2, which splits into a direct sum of line bundles (Corollary 4.3) and (3) the charac-

terization of vector bundles on a Grassmannxdk, n) which splits into a direct sum of

line bundles (Corollary 4.4). As a main result, we generalize Horrocks criterion to vector

bundles on multiprojective spaces (see Theorem 4.7) and we get a cohomological char-

acterization of thep-differential forms on multiprojective spaces (see Theorem 4.11). We

end the paper in Section 5 with some final comments which naturally arise from this paper.

Notation. Throughout this papeX will be a smooth projective variety defined over
the complex number€ and we denote byD = D?(Ox-mod) the derived category of
bounded complexes of coherent sheave®gfmodules. Notice thaD is an abelian lin-

ear triangulated category. We identify, as usual, any coherent gheafX to the object
(0— F — 0) € D concentrated in degree zero and we will not distinguish between a vec-
tor bundle and its locally free sheaf of sections. A coherent sheaf a smooth projective
variety X is anACM sheaf if H' (X, E® Ox (1)) =0 foranyi, 0 <i < dimX, and for any

t € Z; and we say thakE hasno intermediate conomology if and only if H/ (X, EQ L) =0

for anyi, 0<i < dimX, and for any line bundl& on X.

2. Preliminaries

As we pointed out in the introduction, in this section we gather the basic definitions and
properties on exceptional sheaves, exceptional collections of sheaves, strongly exceptional
collections of sheaves and full exceptional collections of sheaves needed in the sequel.

Definition 2.1. Let X be a smooth projective variety.

(i) AnobjectF € D is exceptional if Hom%, (F, F) is a 1-dimensional algebra generated

by the identity.

(i) An ordered collection Fo, Fy, ..., Fy;) of objects ofD is anexceptional collection if
each object; is exceptional and EY(Fy, F;) =0 for j < k.

(iif) An exceptional collection(Fo, F1, ..., Fy;) of objects ofD is astrongly exceptional
collection if in addition Efo(Fj, F)=0fori £#0andj <«k.

(iv) An ordered collection of objects dP, (Fop, F1, ..., Fy), is afull (strongly) excep-
tional collection if it is a (strongly) exceptional collection an, Fi, ..., F,, gener-
ate the bounded derived categdpy
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Remark 2.2. The existence of a full strongly exceptional collectigfy, F1, ..., Fy,) of
coherent sheaves on a smooth projective vakeiyposes rather a strong restriction Bn
namely that the Grothendieck groufy(X) = Ko(Ox-mod) is isomorphic taz”+1.

Example 2.3.

(1) (Opr(—r), Opr(—r + 1), Opr(—r + 2),...,Opr) is a full strongly exceptional col-
lection of coherent sheaves on a projective sgéicand (Opr, .Qlf,:, (1), 22.(2),...,
2p,(r)) is also a full strongly exceptional collection of coherent sheave® on

(2) LetF, =P(Op1 ® Op1(n)), n > 0, be a Hirzebruch surface. Denotefpgrespectively
F) the class of the tautological line bundle (respectively the class of a fiber of the
natural projectiorp : F,, — P1). Then, 0, O(F), O(&), O(F + &)) is a full strongly
exceptional collection of coherent sheavedin

(3) Letx :P?(l) — P? be the blow up ofP? at/ points and letL; = 7~ 1(p1),...,L; =
7~ 1(p;) be the exceptional divisors. Then,

(0,0(L1),0(L2),...,O(L), O(H), O(2H))

is a full strongly exceptional collection of coherent sheaveB).

(4) Let £ be a rankr vector bundle on a smooth projective variety If X has a full
strongly exceptional collection of line bundles tH&(f) also has a full strongly excep-
tional collection of line bundles. In particular, adydimensional, smooth, complete
toric variety V with a splitting fan X' (V) has a full strongly exceptional collection
of line bundles and ang-dimensional, smooth, complete toric variétywith Picard
number 2 or, equivalently, witli 4+ 2 generators has a full strongly exceptional collec-
tion of line bundles (see [8]).

(5) (Opr(—n) B Opn(—m), Opi(—n + 1) K Opn(—m),...,Op K Opn(—m), ...,
Opn (—n) X Opm, Opn (—n + 1) K Opn, ..., Opn K Opn) is a full strongly exceptional
collection of locally free sheaves df x P™.

We have seen many examples of smooth projective varieties which have a full strongly
exceptional collection of line bundles and we want to point out that there are many other
examples of smooth projective varieties which have a full strongly exceptional collection
of bundles of higher rank but they do not have a full strongly exceptional collection of line
bundles.

Example 2.4.

(1) Let X = Gr(k,n) be the Grassmannian df-dimensional subspaces of the
dimensional vector space. Assurke- 1. We have PieX) = Z = (Ox (1)), Kx =
Ox (—n) and the canonical exact sequence

0-S—->0%y—->Q—0

whereS denotes the tautologicatdimensional bundle an@ the quotient bundle.
In the sequel X“S denotes the space of the irreducible representations of the group
GL(S) with highest weightx = (@1, ..., a) and|e| = >"}_; ;. Denote byA(k, n)
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the set of locally free sheaves®S on Gr(k, n) wherea runs over Young diagrams
fitting inside ak x (n — k) rectangle. Sep(k,n) := gA(k,n). By [16, Proposi-
tions 2.2(a) and 1.4]A(k,n) can be totally ordered in such a way that we obtain
a full strongly exceptional collectionH, ..., E,x.)) of locally free sheaves on
X. Notice thatS € A(k,n) has rankk and hence this collection has locally free
sheaves of rank greater than one. In addition, any full strongly exceptional collec-
tion of coherent sheaves aki has a sheaf of rank greater than one. Indeed, any
full strongly exceptional collection of coherent sheavesXmas the same length
equals to the rank (k, n) of the Grothendieck group of. On the other hand, since
Pic(X) = (Ox (1)) andK x = Ox (—n), any full strongly exceptional collection of co-
herent sheaves has at mast 1 summands which are line bundles. Therefore, since
n+1< p(k,n) =rk(Ko(X)), any full strongly exceptional collection has a sheaf of
rank different from one.

(2) Any full strongly exceptional collection of locally free sheaves on a hyperquadric
0, c P**1 ;> 2, has a sheaf of rank different from one. In factpif> 3 then
Pic(Q,) =Z = (09, (1), Ko, = Og, (—n) and

n+1 ifnisodd
n+2 ifniseven

rank(Ko(Qn)) = {

Moreover, by [17, Proposition 4.9], if is even and¥;, X» are the spinor bundles on
QOn, then

(Z1(=n), Za2(—n), Og,(—n+1),..., 09, (-1),0y,)

is a full strongly exceptional collection of locally free sheavesyn and ifn is odd
and X is the spinor bundle o®,,, then

(Z(=n),09,(=n+1),...,00,(-1),0y,)

is a full strongly exceptional collection of locally free sheaveshn

Definition 2.5. Let X be a smooth projective variety and let, B) be an exceptional pair
of objects ofD. We define objectd. , B and Rg A with the aid of the following distin-
guished triangles in the categoBy

LsB — Hom% (A, B) ® A — B — LAB[1], (2.1)
RpA[-1] — A — Hom$" (A, B) ® B — RpA. (2.2)

Notation 2.6. Let X be a smooth projective variety and tet= (Fo, ..., Fy,;) be an excep-
tional collection of objects oD. It is convenient to agree that for any<0i, j < m and
i+ j<m,

R(j)Fi = R(j_l)RFi = RF'+j - Rp L,RF  Fi = RFi+_/"-Fi+2F[+1Fi

i

and similar notation for compositions of left mutations.
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If X is a smooth projective variety amd= (Fy, ..., F),) iS an exceptional collection of
objects ofD, then any mutation of is an exceptional collection. Moreovergfgenerates
the categornyD, then the mutated collection also generdes

Nevertheless, in general, a mutation of a strongly exceptional collection is not a strongly
exceptional collection. In fact, také = P* x P* and consider the full strongly exceptional
collectione = (Ox, Ox(1,0), Ox(0, 1), Ox (1, 1)) of line bundles orX. It is not difficult
to check that the mutated collection

(Ox,0x(1,0), Loy 0,10x(1, 1), 0x(0,1)) = (Ox, Ox(1,0), Ox(—1,1), Ox (0, 1))

is no more a strongly exceptional collection of line bundleskon

3. m-Blocksand Beilinson’s spectral sequence

Let X be a smooth projective variety of dimensian It is well known that all full
strongly exceptional collections of coherent sheaveXdmve the same length and it is
equal to the rank oKo(X). Even more, this length is bounded belowrby- 1 because for
any smooth projective variet¥ of dimensiorm we have rankko(X)) > n + 1. In [9] we
give the following definition (see also [6,13]).

Definition 3.1. Let X be a smooth projective variety of dimensioriVe say that an ordered
collection of coherent sheaves= (Ej, ..., E,) is anexcellent collection if it is a full
exceptional collection of coherent sheavesXmf minimal length,n + 1, i.e. of length
one greater than the dimensionXf

By [5, Assertion 9.2, Theorem 9.3 and Corollary 9.4], excellent collections are automat-
ically strongly exceptional collections of coherent sheaves and the strongly exceptionality
is preserved under mutations.

Example 3.2. (1) The collections = (Opr (—r), Opr (—r + 1), Opr (—r + 2), ..., Opr) oOf
line bundles or?" is an excellent collection of coherent sheaves.

(2) If n is odd andQ, c P"*1 is a quadric hypersurface, the collection of locally free
sheaves

(Z(=n), 09, (—n+1),...,00,(-1),09,)
being X the spinor bundle o, is an excellent collection of locally free sheaves@n

(3) If n is even and2,, c P"*1 is a quadric hypersurface, the collection of locally free
sheaves

(Z1(—=n), Zo(—n), Og,(—n+1),...,09,(-=1),0p,)

being 1 and X» the spinor bundles o, is a full strongly exceptional collection of lo-
cally free sheaves of,,. Since all full strongly exceptional collections of coherent sheaves
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on Q, have length: + 2 we conclude that there are no excellent collections of coherent
sheaves om,, for evenn.

(4) 1t follows from Example 2.4 that there are no excellent collections of coherent
sheaves oer (k, n) if k #n — 1.

(5) Any smooth Fano threefold with Pic(X) = Z and trivial intermediate Jacobian
has an excellent collection (see [9, Proposition 3.6]).

It is an interesting problem to characterize the smooth projective varieties which have
an excellent collection. We want to stress that the existence of an excellent collection on an
n-dimensional smooth variety imposes a strong restriction oft e.g.X has to be a Fano
variety [6, Theorem 3.4] and the Grothendieck gratg(X) has to be &-free module
of rankn + 1. So, it is convenient to generalize the notion of excellent collection in order
to be able to apply the results derived from its existence to varieties as Grassmannians,
even-dimensional hyperquadrics, multiprojective spaces, etc., which do not have excellent
collections. This will be achieved allowing exceptional collectiens- (Fy, ..., F,,) of
arbitrary length but packing the objeck € D in suitable subcollections called blocks.

The notion of block was introduced by Karpov and Nogin in [18] and we will recall its
definition and properties (see also [13]).

Definition 3.3.
(i) An exceptional collectioriFp, F1, ..., Fy,) of objects ofD is ablock if

Exty(F;, Fr) =0 foranyi and; # k.

(iiy An m-block collection of type («ag, @1, .. ., o)) Of Objects ofD is an exceptional col-
lection

(€0, &1 Em) = (EY, ... ED

oQ’

Ei, ... E}

apr - ET. . EN)
such that all the subcollectiods = (E}, E5. ..., E/,) are blocks.
Note that an exceptional collectighy, E1, ..., E,,) isanm-block of type(1, 1, ..., 1).

Example 3.4. (1) Let X = Gr(k, n) be the Grassmannian éfdimensional subspaces of
then-dimensional vector spack,> 1. In Example 2.4(1), we have seen thgk, n) can
be totally ordered in such a way that we obtain a full strongly exceptional collection

o =(E1,.... Epm)

of locally free sheaves oi. On the other hand, by [17, (3.5)], Hg@m*S, ¥£S) # 0
only if o; > B; for all i. So, packing in the same blogk the bundlesX®S € o with
|a| = k(n — k) — r and taking into account thatQ |«| < k(n — k) we obtain

o= (E1,....Epqem) = (&0, -, Ek—k))

ak(n — k)-block collection of vector bundles ax.
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(2) Let 0, c P"*1 n > 2, be a hyperquadric variety. According to Example 2.4(2), if
n is even and¥1, X are the spinor bundles aB,,, then

(Z1(=n), Za2(—n), Og,(—n+1),...,09,(-1),0y,)

is a full strongly exceptional collection of locally free sheaves®n and ifn is odd and
X is the spinor bundle o®,,, then

(2(=n),00,(-=n+1),...,00,(-1),0y,)

is a full strongly exceptional collection of locally free sheavegipn Since Ext(X1, X5) =
0 for anyi > 0, we get that&p, &1, ..., &) where

(Z1(=n)X2(—n)) if neven

i — _ | <'< fr—
& =0g,(—n+i) forl<i<n, &o {(ZJ(—n)) if 1 odd

is ann-block collection of coherent sheaves o) for all n.
(3) LetX =P"1 x ... x P"s be a multiprojective space of dimensi@n=n1 + - - - + ny.
For any 1< i < s, denote byp; : X — P" the natural projection and write
Ox(a1,az, ..., as) == p1Opni(a1) ® p3O0pr2(a2) ® - -- ® p; Opns (ay).
For any 0< j < d, denote by¢; the collection of all line bundles ol

(’)x(ai,aé ...,asj)

with —n; < aij < 0 and Zleaij = j — d. Using the Kinneth formula for locally free
sheaves on algebraic varieties, we prove that €ach a block and that

(507 El? AR ) Ed)
is ad-block collection of line bundles oK.
We will now introduce the notion of mutation of block collections.
Definition 3.5. Let X be a smooth projective variety and consider a 1-block collection
(&, F)=(Ex,...,Ey, F1,..., Fy) of objects of D. A left mutation of F; by £ is the
object defined by (see Notation 2.6)
LeFj:=LgE,. E,Fj

and aright mutation of E; by F is the object defined by

R]:E] = RFmFm—l“'FlEj'
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A left mutation of (€, F) is the pair(Lg F, £) where
LeF :=(LgF1,LgF>, ..., LeFy)
and aright mutation of (£, F) is the pair(F, RxE) where
R7E:=(RrE1, RFE>, ..., RFEy,).

Remark 3.6. By [12, (2.2)], for any exceptional objedt € D, any pair of object, G € D
and any integer we have:

Exty(LxF, LxG) = Ext(F, G),
Exty(Rx F, RxG) = Exty(F, G).
Hence, for any 1-block collectiot€, 7) = (E1, ..., E,, F1, ..., F,,) and integerg # k,
Exty(Le Fj, Le Fi) = EXty (L gy, Fj L iy, Fe) = EXty(Fj, Fi),
Exty(RFE;, RFEy) = EXtp(RE,..r Ej, RE,..F Ex) = EX(E;, Ex)

and thus bott. ¢ F andR £€ are blocks and the paitd ¢ F, £) and(F, Rx€) are 1-block
collections.

Remark 3.7. It follows from the proof of [18, Propositions 2.2 and 2.3] that given a
1-block collection(€, F) = (E1, ..., E4, F1, ..., Fy), the objectsLg F; and R E; can
be defined with the aid of the following distinguished triangles in the catefory

n
LeFj — D Homy, (Ei, Fj) ® E; — Fj — Le Fj[1], (3.1)
i=1
m
RFEj[-1]— E; > @HHoms (E;. F)) ® F; - RrE;. (3.2)

i=1
Applying Hont, (E;, ) to the triangle (3.1) we get the orthogonality relation
Homy(E;, LgFj) =0 forall1<i <n, (3.3)
i.e,LegF; e [E1t:={FeD| Hom%, (E, F) =0 for all E € [£]}, where we denote b¢]
the full triangulated subcategory &f generated by, ..., E,.
Similarly, Hont, (x, F;) applied to the triangle (3.2) gives the orthogonality relation
Hom%, (RFE;, Fj) =0 forall1<j <m, (3.4)

ie., RFE; € [[F]:={(E € D |Homi(E, F) =0 for all F € [F]}.
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Taking E’ € *[F] andE” € [£]* and applying Hofy(E’, x) and Hon, (+, E”) to the
triangles (3.1) and (3.2) we get for atiy € D

Hom$% (E’, H) = Hom}, (E', Lg H)[1], (3.5)

Hom%, (H, E”) = Hom}, (Re H, E")[1]. (3.6)

Notation 3.8. It is convenient to agree that

RYE = RUVRE =R,

i+j

- ReRe & = R5i+j"'51+28i+1gi’

LVE =LY VLE =Le,_ ;- Le,_,Le, & =: Le,_,..6,_6, 15
Leto = (&, ..., En) be anm-block collection of typexo, . . ., o, 0f objects ofD which
generated. Two m-block collectionsH = (Ho, ..., H) andG = (G, ..., Gu) of type

Bo, - .., Bm With B; = o, _; Of objects ofD are calledeft dual m-block collection of o and
right dual m-block collection of o if

Hom, (H/, Ef) = Homi, (Ef, G) =0 (3.7)
except for
Exts (Hf, EM %) = Extpy M (E" %, G¥) =C. (3.8)

Proposition 3.9. Left dual m-block collections and right dual m-block collections exist
and they are unique up to isomor phism.

Proof. Leto = (&, ..., &) be anm-block collection of typexo, .. ., a,, of objects ofD.
We will construct explicitly the left and the right duad-block collection ofo by conse-
guent mutations of the:-block collections . We consider

H=(ROE, RYE,_1,..., R™E) (3.9)
where by definition
RVE, i =(RVEY, ..., RVEL)
= (Repgp1Emin BT o Rep i Eat).

Let us check that it satisfies the orthogonality conditit$g) and(3.8). It follows from
@A thatRe, ¢, g, 1 Er ' € [Em—it1. ..., En] and hence for anywith m —i +1 <
[<mandanyj withl<; <o

Horn'b (Rgmgm—l"'gm—ﬂrlEl};n_i’ Eﬁ) =0.
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On the other hand, sinee is an exceptional collection, for arywith 0 <! <m — i,
andanypwithm —i+1<p<m

Homy, (Ef, EY) =0, 1<g<a, 1<j<a.

So, for anyl with 0 <! <m — i and anyj with 1< j < oy, Ei e "Emit1,....Enl and
applying repeatedly (3.6) we get

Homd, (Re, 6, 1-0ina BX ' Ej)

ifl<m—1i,

) 0
_ o m—i Y —
= Homy, (B}, E}) (il {(Cindegree‘ if I =m—i.

Therefore H is indeed the left duak-block collection ofo. By consequent left mutations
of the m-block collections and arguing in the same way we get the right duablock
collection ofo. O

We want to point out that the notion ef-block collection is the convenient general-
ization of the notion of excellent collection we were looking for. Indeed, we will see that
the behavior of:-block collectionsy = dim(X), is really good in the sense that they are
automatically strongly exceptional collections and that their structure is preserved under
mutations through blocks. More precisely we have:

Proposition 3.10. Let X be a smooth projective variety of dimension n» and let o =
(&0, ..., &) be an n-block collection of coherent sheaves on X and assume that o gen-
erates the category D. Then we get:

(1) The sequence o isa full strongly exceptional collection of coherent sheaveson X.

(2) All mutations through the blocks &£; can be computed using short exact sequences of
coherent sheaves.

(3) Any mutation of o through any block &; isafull strongly exceptional collection of pure
sheaves, i.e. complexes concentrated in the zero component of the grading.

(4) Any mutation of o through any block &; is an n-block collection.

Proof. See [5, Theorem 9.5 and Remark (b) below] and [13, Theorem(i].
These nice properties led us to introduce the following definition.

Definition 3.11. Let X be a smooth projective variety of dimensienWe say thatX has
theweak CM property if there exists am-block collection(&y, . . ., &,) of type(wo, - . ., o)
of coherent sheaves axi which generate®. We say thatX has the CM property if in
addition, for allE" € &, and allEf € & with 0<k <n — 1, E!' ® Ef is an ACM sheaf;
and finally we say thak has thestrong CM property if in addition, all the exceptional
coherent sheava§§ € &; are line bundles.
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Remark 3.12. We want to point out that the number of blocks is one greater than the
dimension ofX but a priori there is no restriction on the length of each blockE; =
(EL,....EL).

It is clear that any smooth projective variety with an excellent collection has the weak
CM property. Let us now see many examples of varieties with the (weak) CM property
which do not have excellent collections of coherent sheaves.

Example 3.13. (1) Since any line bundle of" is ACM, it follows from Example 3.2(1)
thatP" has the strong CM property.

(2) Let 0, c P**t1, n > 2, be a hyperquadric variety. According to Example 3.4(2),
o= (&, E1,...,&,) where

=g (i) fori<icn,  gon | (I Hoeten
is ann-block collection of coherent sheaves @r for all n. Since spinor bundles and line
bundles onQ,, are ACM bundles and,, = O, , we deduce thap, has the CM property.
(3) LetX =P"1 x - .- x P"s be any multiprojective space anddet= (&, . .., Engtotn,)
be the(ny + - - - + ny)-block collection of line bundles o given in Example 3.4(3). Us-
ing the Kiinneth formula, the fact that® (P"/, Op»; (a)) = 0 for any 0< @ < n; and any
a € Z unlesse =0 anda > 0 ora =n; anda < —n; — 1, together with the fact that
Eni+-+n, = Ox we deduce that for anye Z and anyEf €&, 0<k<n+---+n,—1,
O<a<nyi+---+ny,

HY(X,Ox(t,....H) ® Ef) =0.

Hence,X has the strong CM property.

(4) Let X = Gr(k, n) be the Grassmannian varietyleflimensional subspaces of the
dimensional vector space and take= (o, . . ., Ekn—k)) be thek(n — k)-block collection
of vector bundles oX given in Example 3.4(1). Notice thd&j,,—x) = Ox. Hence, since
anyX*Seé&,,0<r <k(m—k)—1,isan ACM vector bundle, we get th&t= Gr (k, n)
has the CM property but not the strong CM property.

(5) Letx : IP2(3) — IP? be the blow up oP? at 3 points and lek; = 7 ~1(p;), 1<i <3,
be the exceptional divisors. Then,

(0,0(H),0(H — L1 — L — L3), O(2H — L3 — L3),
ORH — L1 — L3),O2H — L1 — L))
is a full exceptional collection of coherent sheaved’8(B). By [18, Proposition 4.2(3)],
the collection(&p, £1, £2) with &g = (0), E1=(O(H), O(2H — L1 — Lo — L3)) and& =

(O(2H — L3~ L3),O(2H — L1 — L3), O(2H — L1 — L)), is a 3-block collection of line
bundles orP2(3). HenceP2(3) has the weak CM property.

We are led to pose the following problem/question.
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Problem 3.14. To characterize smooth projective varieties with the (weak, strong) CM
property.

By [6, Theorem 3.4], any smooth projective variety with an excellent collection is Fano.
All examples described above about smooth projective varieties with the (weak, strong)
CM property are Fano. So, we wonder

Question 3.15. Let X be a smooth projective variety and assume fidtas the (weak,
strong) CM property. IX Fano?

Beilinson theorem was stated in 1978 [4] and since then it has became a major tool in
classifying vector bundles over projective spaces. Beilinson spectral sequence was gener-
alized by Kapranov to hyperquadrics and Grassmannians [16,17] and by the authors to any
smooth projective variety with an excellent collection [9]. We are now ready to generalize
Beilinson theorem to any smooth projective variety which has the weak CM property and
to state the main result of this section.

Theorem 3.16 (Beilinson type spectral sequenckgt X be a smooth projective variety of
dimension n with an n-block collection o = (€0, €1, ..., £,), & = (E, ..., EL) of coher-
ent sheaves on X which generates D. Then for any coherent sheaf F on X there are two
spectral sequences with E1-term

D EXU (R, e, L EPT ) QEPT if—n < p< 1,

p+n+1771

3.10
Dz, Ext (E], F) ® E} if p=0, (3.10)

|Efq={

o _ [ BILTEXOE T ) ® (Re,gy i BT i on < p <1,
! P Ext (E!", F) @ EI if p=0,
(3.11)

situated in the square —n < p <0, 0 < g < n which convergeto
; ; F fori=0
i 1 )
1Eoo =1 EOO_{O for i 0.

Proof. We will only prove the existence of the first spectral sequence. The other can be
done similarly. For any, 0< y <n, we write’ V7 for the graded vector spaces

iv; =Hom},(Rg, .., , E] . F) =Homy (E], Lg ., ..6, F)

where the second equality follows from standard properties of mutations [12, pp. 12-14].
By Remark 3.7, the triangles defining the consequent right mutatiorfs ahd the
consequent left mutations &f{n] through(&, . .., &,) can be written as

Ay . . oy
iy7® k ! J iy7®
(@ Ve ® Ef)[—l] —> Re,.6oFI-11—> Re,_,..eeF > 'V @ E/
i=1 i=1
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N o y 37 N v (AN y
PV, RE > Lg .6, FInl — L, .., Fin+ 11— | P 'Vy @ E] )I11.
i=1 i=1

We arrange them into the following big diagram:

0=Rg,.e,F

=
S

k

/
|

in Dz, 'V ® E] i°

dy-1 Lg F[l’l]

n

=
N

i
AN
&

kn—1

|
Y,

. ~1iyse n—1 .
In-1 @i;l Vn—l ® Ei it

Jn—1

¥
%

dy—2 Lg, g, Fln]
kn—2

x

B vy 0 Bl

n—

Re e F Lg,..c Fln]

/
=
~
B
|
5N

-

&
L
h
I
&
=
2

o
>~
o

io @,V E? i

\
/

Lg,..c,Fln]=0

1

At this diagram, all oriented triangles along left and right vertical borders are distin-
guished, the morphisms andi® have degree one, and all triangles and rhombuses in the
central column are commutative. So, there is the following complex, functorial,on



L. Costa, RM. Mir6-Roig / Journal of Algebra 294 (2005) 73-96 87

%) o1
L*0->P VE > VI QE - -

i=1 i=1

p—1 (7]

— EBiV;71®E?_l—>@i\C;®E?—>O
i=1 i=1

and by the above Postnikov-system we have i a right convolution of this complex.
Then, for an arbitrary linear covariant cohomological functdr, there exists an spectral
sequence wittE1-term

(D = (L)

situated in the square9Q p, ¢ < n and converging t@”*4(F) (see [17, 1.5]). Since*
is a linear functor, we have

ap

®p
»I(L") =P ('Vy @ E') =P P 'V, @ 2?7 (E)
i=1 1

i=1

—D D vies () 312

i=1a+p=¢q

In particular, if we consider the covariant linear conomology functor which takes a complex
to its cohomology sheaf and acts identically on pure sheaves, i.e.,

F forg=0,

B _
¢ (F)_{O for p #£0,

on any pure sheaf’, in the square & p, g < n, we get

ap ap
Y =@ Vi © B = DEX (Re, 6, El F) @ Ef
i=1 i=1
which converges to
; F fori=0,
1E, = .
0 fori#0.

Finally, if we call p’ = p — n, we get the spectral sequence

¥/ n

EY = D Ext! (Re,..e,, EV T F)@EM"
i=1

P+l i
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situated in the squaren < p’ <0, 0< g < n which converges to

B — F fori=0, -
"o~ 10 fori 0.

4. Splitting vector bundles and cohomological characterization of vector bundles

A well-known result of Horrocks states that a vector bundlé®bmas no intermediate
cohomology if and only if it splits into a direct sum of line bundles. The first goal of this
section is to generalize Horrocks criterion to vector bundles on multiprojective spaces and
to any smooth projective variety with the strong CM property. As a main tool we will use
the Beilinson type spectral sequences stated in the previous section.

Proposition 4.1. Let X be a smooth projective variety of dimension n with the CM prop-
erty given by the n-block collection o = (&0, €1, ..., &), & = (EY, ..., E(’;li) of coherent
sheaves on X. Let F be a coherent sheaf on X such that for any —n < p < —1 and
1<i<a,

H P Y X, Fo E'™) =0.
Then F contains @?;l(E;'*)hO(F@’E?) asa direct summand.

Proof. By Theorem 3.16, there is a spectral sequence ®witherm

DLy EXU((EI™)*, F)® (Rg,.c,,,, EL " if -n<p<—1,

p+n+1710

nEy? = .
! @, Ext(E*, F) ® E'™* if p=0,

situated in the squaren < p <0, 0< g < n which converges to

£ F fori=0,
5= 10 forio.

By assumptiony Ef’fpfl =0, i.e., theE1-term looks like

q
. n
0 e n—1
. 2
0O o 1
0 p
—n -2 -1
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So, the limit Ei,, i.e., F, contains; EQ = @ (E!*)*FOE)) as a direct sum-
mand. O

As an immediate consequence of Proposition 4.1 we will first re-prove Horrocks crite-
rion.

Corollary 4.2. Let E be a vector bundle on P". The following conditions are equivalent:

(i) E splitsinto a sum of line bundles. '
(i) E has no intermediate cohomology; i.e. H' (P", E(¢)) =0for 1<i <n — 1and for
al r e Z.

Proof. (i) = (ii). It follows from Bott’s formula.

(i) = (i). We may suppose thdl is indecomposable. So that it suffices to prove that
E is a line bundle. To this end, we choose an integesuch thatd°(P", E(m — 1)) =0
and HO(P", E(m)) # 0 and we apply Proposition 4.1 t§ = P", o = (Op:(—n), ...,
Opn (—1), Opn) and F = E(m). We conclude tha®"°E™ is a direct summand of and
sinceF is indecomposable we get thAt= Op» and we are done. O

In [20] Ottaviani pointed out that Horrocks criterion fails on a nonsingular quadric hy-
persurface?, c P**1; the spinor bundles$ on Q,, have no intermediate conomology and
they do not decompose into a direct sum of line bundles. Nevertheless, we have the follow-
ing cohomological characterization of vector bundlesghnwhich split into a direct sum
of line bundles; and of vector bundles on a Grassman@idk, n) which also split into a
direct sum of line bundles.

On Q,,, we shall use the unified notatidn, meaning that for evem both spinor bundles
X1 and X» are considered, and for odd the spinor bundleX' (see Example 3.4(2) for
more details).

Corollary 4.3. Let E be a vector bundle on Q,, ¢ P**1. The following conditions are
equivalent:

(i) E splitsinto a sumof line bundles.
(i) H(Qn, Et))=0for1<i<n—1landreZ;and H" 1(Q,, E® X.(t —n)) =0.

Proof. (i) = (ii). It is a well-known statement.

(i) = (i). We may suppose thd is indecomposable. So that it suffices to prove #at
is a line bundle. To this end, we choose an integesuch that{°(Q,,, E(m — 1)) =0 and
H°(0Q,, E(m)) # 0 and we apply Proposition 4.1 0= Q,, 0 = (o, ..., &) defined in

Example 3.4(2) and’ = E (m) (see also Example 3.13). Hence, we obtain fhé(itf(m) is
a direct summand of and sinceF is indecomposable we conclude that= Op,. O

Keeping the notations introduced in Example 3.4(1), we have:
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Corollary 4.4. Let E be a vector bundle on Gr (k, n) and set
&E={ZSlk(n—k)—r=lal}.
The following conditions are equivalent:

(i) E splitsinto a sum of line bundles.
(i) H (Grk,n),E(t) ® £*S) =0 for 1 <i<k(n —k)—1,t €Z and XS ¢
Ek(n—tk)—i—1-

Proof. (i) = (ii). Itis a well-known statement.

(i) = (i). We may suppose thdt is indecomposable. So that it suffices to prove #hat
is a line bundle. To this end, we choose an integeuch that?%(Gr (k, n), E(m —1)) =0
and HO(Gr (k, n), E(m)) # 0. We consider Proposition 4.1 appliedXo= Gr(k, n), c =
(o, - - .. Ekm—rk)) given in Example 3.4(1) anfl = E(m) (see also Example 3.13) and we
get thatogﬁ(”z)) is a direct summand of'. Since F is indecomposable we derive that
F = Ocrk,n) and we are done. O

Remark 4.5. Applying again Proposition 4.1 and arguing as in Corollaries 4.3 and 4.4, we
can deduce the splitting criteria for vector bundles on the Fano 3-faJdsd V»2 given
by Faenziin [10,11].

Theorem 4.6. Let X be a smooth projective variety of dimension n with the strong CM
property given by then-block collection o = (&o, ..., &), & = (EL, ..., Eg.), of line bun-
dleson X. Let E be a vector bundle on X such that £ ® E; is an ACM bundle for any
E; €&,0<i <n—1 Then, E splitsinto a direct sum of line bundles.

Proof. We may suppose thdt is indecomposable. So that it suffices to prove thas a
line bundle. By assumption, for ariyj €&,0<i<n—1,any0< p <nandany € Z,

HP(X,E® E'; ® Ox(1)) =0.
We choose an integer such that
oy Qp
@HO(X, E®Ox(m—1)®E})=0 and @HO(X, E ® Ox(m) ® E) #0.
j=1 j=1

We apply Proposition 4.1 t&, o = (&0, &1, ..., &) and F = E (m). We conclude thaF
contains@f‘;l(E{'*)ho(mE?) as a direct summand and sinEes indecomposable we get
that F = E'* for some 1< i <, which proves what we want.0

As a consequence we get:
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Theorem 4.7. Let X = P"t x ... x [P"r be a multiprojective space and let E be a vector
bundle on X such that

EQ®Ox(t1,...,t)

isan ACM bundlefor any —n; <t <0, 1<i <r.Then, E splitsinto a direct sum of line
bundles.

Proof. Leto = (&, ..., Engt-tn, ) DE the(ng + - - - + n,)-block collection of line bundles
on X given in Example 3.4(3) (see also Example 3.13). Then, we apply Theorem®.6.

The converse of Theorem 4.6 turns to be true for vector bundles on projective spaces
(Horrocks criterion) but, in general, itis not true. For instance, as a consequence of the Kiin-
neth formula, on any multiprojective spaéét x - .. x P there are many line bundlds
suchthaL ® O(t1, ..., ;) is not an ACM bundle (take, for example,= Opz, ps(—3, 4)).

As another application of Beilinson type spectral sequence we will derive a cohomolog-
ical characterization of huge families of vector bundles. The first attempt in this direction
is due to Horrocks who in [15] gave a cohomological characterization of the sheaf of
differential forms,.QI{,?n. Similarly, in [3], Ancona and Ottaviani obtained a cohomological
characterization of the vector bundlés on Q,, introduced by Kapranov in [17]. These
two results are a particular case of this following much more general statement.

Proposition 4.8. Let X be a smooth projective variety of dimension n with an n-block col-
lectiono = (&g, €1, ..., &), & = (EL, ..., Egi) of coherent sheaves on X which generates
D and let F be a coherent sheaf on X. Assumethere exists j, 0 < j < n, such that for any
—-n<p<—j—landl<i<aq,

HP 7YX, FRE'"™) =0
andforany —j+1<p<O0and1<i<a,
HP (X, F® EI'™) =0.

Then F contains ;"1 ((Re, ...¢,,,_ E; )" FEE ) asa direct summand.

n+1—j

Proof. By Theorem 3.16, there is a spectral sequence itherm

DLy EX((EI™)*, F)® (Rg,.c,,,, EL )" if -n<p<—1,

I qu — p+n+17"10
! @, Ext!(E*, F) ® E™* if p=0,
situated in the squaren < p <0, 0< g < n which converges to

B F fori=0,
o= 10 fori 0.
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By assumption, there exists an integerO < j < n, such that”Ef’_"’_1 =0 for any

—n<p<—j—-1 and..Ef”erl =0 for any—j + 1< p < 0. Therefore, we have the
following E1-diagram:

q

. n
O o n—1
0 o O J

2

e 0 1

p
-n —J -2 -1

So, the vector bundlé containsy EJ/ = @’ (Re, b El."fj)*)hj(F@EiH) as a
direct summand. O

Our next goal is to extend Horrocks characterizatiop dfifferentials ove®” to mul-
tiprojective spaceB"! x ... x P, To this end, we will first determine the left du@l; +
-+~ +ny)-block collection of then1 + - - - +ny)-block collectiono = (&, . .., Epyttny))
described in Example 3.4.

Notation 4.9. Let X; andX» be two smooth projective varieties and let
pi X1 x Xo— X, i=12,

be the natural projections. We denote By X B the exterior tensor product d@#; in
Ox,;-mod,i =1,2,i.e.B1 X B, = p] B1 ® p3 B2 in Oy, xx,-mod.

Proposition 4.10. Let X =P x --- x P"s be a multiprojective space of dimension d =
ni+---+n,. Forany 0< j <d, denote by £; the collection of all line bundleson X

(’)x(a{,aé ...,a])

with —n; < al.j < 0and Zleaij = j —d. Then, for any Ox(t1,...,1t) € E;—x and any
0<k<d,

-1 —Is

ROOx(t1, ... 1) = Regy 0y Ox (s oo t) = \ Tpra (1) K- - B\ Tpns (15).
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Proof. According to Proposition 3.9, (3.9), we only need to see thaf! Tpn (1) X - - - X
AT Tpns (1) verifies the orthogonality conditions (3.7) and (3.8). For ary<i < d, let
Ox(a}, ..., ay) € &. By the Kinneth formula,

—11 —ls
H <X /\ Qpr(—t) X - K& /\ Qpns (—1;) ® Ox (df, ..., a;)>
—n —Is
= @ HY (Ipﬂ’ll7 /\ ‘Q]P’"l (ai — [l)) KRR H%s <]P>m , /\ .Q]pns (a.lY — l‘s)) .
a1+ tog=a
Using Bott’s formula, it is zero unless=k, i =d — k and
Ox(ai, ceey alv) =0x(t1,...,t),
which proves what we want. O

The following result gives us a precise cohomological characterization of sheaves of
p-differential forms on multiprojective spaces.

Theorem 4.11. Let X =P"t x --- x P"s be a multiprojective space of dimension d =
ny+---+ng. Forany0<i <d, denoteby & = (EY, - Eg) the collection of all line
bundleson X

i

Ox(ai,aé, ...,as)

with —ny < af <Oand Yj_;af =i — d. Assume there exists a rank (%)vector bundle F
on X withO < j <d,suchthatforany —-d < p<—j—-land1<i<a,

H P Y(x, F® E'?) =0,
forany —j+1<p<Oand1<i<a,
H "X, F®E'") =0

and H/(F ® Elfi_j) =C for any 1 <i < ay—j. Then F isisomorphic to the bundle of
(d — j)-differential forms, i.e.

d—j - —ts

F= N (2w L. D)= P N\ R & A Qpn (1)

t+tts=j—d

being El.d*j =0x(t1,...,t).
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Proof. It follows from Propositions 4.8 and 4.10.0

We will end this section extending Horrocks characterization of sheavep- of
differential forms inP" to Grassmannians. Notice that under the isomorph@nti,
n + 1) = P", the universal quotient bundl@ on Gr(1,n + 1) corresponds ta2p: (1).
So, it is natural to get, as a generalization of Horrocks characterization of the bundles
QI{,?,, (p) = N\’ (£2pn (1)), a conomological characterization of the bundie$Q being Q
the universal quotient bundle @r (k, n). More precisely, keeping the notations introduced
in Example 2.4(1) and in Example 3.4(1) we have the following.
According to Example 2.4, for ang = (B1,....Bn—kx) With k > 1 =22 > --- >
Bn—k > 1, denote by the rank of2#Q and consider; = 2ipl=j T8

Corollary 4.12. Let F be a vector bundleon Gr (k, n), set d = k(n — k) and
E={ZSk(n—k) —r=|al}.

Assumethereexists j, 0 < j < d, suchthatforany —d < p < —j —1,1<i < «p, andany
2“86€d+p

H™ P71 (Gr(k,n), F® £S) =0
andforany —j+1<p<0,1<i<ap,andany XS €&y,

H™"Y(Gr(k,n), F ® ¥*S) =0.
If rankF = r; then F isisomorphic to @, _; ¥ Q*.

Proof. Itis well known that the following orthogonality relation between the bundlés
and 2# Q* holds:

HI(Gr(k.n), 55 ® 59 Q*) = {C if o= B andg = Jal.

0 otherwise
So, the bundles? Q* verify the orthogonality conditions (3.7) and (3.8) and we apply
Proposition 4.8. O

5. Final comments

In [21] Rouquier introduced the notion of dimension for a triangulated category and
he determined bounds for the dimension of the bounded derived cat®jo€yx-mod)
of coherent sheaves over an algebraic varigtyln particular, among other results, he
proved that if the diagonal of an algebraic variétyhas a resolution of length+ 1 then
dim D?(Ox-mod) < r and for anyn-dimensional smooth projective variey we have
n < dim D?(Ox-mod) < 2n . He also posed the following questions:
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Question 5.1. Does the inequality
dim D?(Ox «y-mod) < dim D? (Ox-mod) + dim D? (Oy-mod)
hold for X, Y separated schemes of finite type over a perfect field?

Question 5.2. Is there any example of-dimensional smooth projective variey with
n < dim D?(Ox-mod)?

Using the results we have obtained in this paper, we are able to contribute to these
guestions and we will prove that the equality in Question 5.1 holds for multiprojective
spaces and we will enlarge the familyofdimensional smooth projective variek such
thatn = dim D?(Ox-mod) < 2. Indeed, we have
Theorem 5.3. Let X be a smooth projective variety with the weak CM property. Then

dim D?(Ox-mod) = dim X.

Proof. Denote byn the dimension ofX and consider am-block collectiono =
(&o, ..., &) With & = (Eq, ..., E,,.). Suchn-block collection exists because has the
weak CM property. By Theorem 3.16, we have the following resolution of the diagonal:

0—)@ Rg S E ®E0—>® Rg & 1) &El
i=1

Ap_q (&7}
- P (Re, E ' RE ™ - P (E}) ' RE} > Os— 0.
i=1 i=1

So, according to [21, Proposition 5.5], didf (Ox-mod) < dimX. On the other hand, by
[21, Proposition 5.36], dinX < dim D?(Ox-mod) and we are done. O

In particular, we have:

Proposition 5.4. Let X =P" x ... x P" be a multiprojective space. Then

N
dim D” (Opr1 ...xprs -mod) = Y~ dim D? (Ops; -mod.
i=1

Proof. Since by Example 3.13(3X has the weak CM property, the result follows from
Theorem 5.3 and the fact that, by [21, Example 5.6], 8iOp -mod) = n; for any
1<i<s. O
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