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Abstract

We show that Horrocks criterion for the splitting of vector bundles onP
n can be extended to vecto

bundles on multiprojective spaces and to smooth projective varieties with the weak CM prope
Definition 3.11). As a main tool we use the theory ofn-blocks and Beilinson type spectral sequenc
Cohomological characterizations of vector bundles are also showed.
 2005 Elsevier Inc. All rights reserved.

1. Introduction

There are two starting points for our work. The first one is the following well-kn
result of Horrocks (see [14]) which states that a vector bundle on a projective spa
no intermediate cohomology if and only if it decomposes into a direct sum of line
dles. In [20], Ottaviani showed that Horrocks criterion fails on nonsingular hyperqua
Q3 ⊂ P

4. Indeed, the spinor bundleS on Q3 ⊂ P
4 has no intermediate cohomology a

it does not decompose into a direct sum of line bundles. So, it is natural to consid
possible generalizations of Horrocks criterion to arbitrary varieties. The first one co
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of characterizing direct sums of line bundles and the second one consists of charac
vector bundles without intermediate cohomology.

Related to the characterization of vector bundles which splits as direct sum of line
dles; it has been done for vector bundles on hyperquadricsQn ⊂ P

n+1 and Grassmannian
Gr(k, n) by Ottaviani in [19,20], respectively. It turns out that a vector bundle onQn (re-
spectivelyGr(k, n)) is a direct sum of line bundles if it has no intermediate cohomo
and satisfies other cohomological conditions involving spinor bundles (respective
tautologicalk-dimensional bundle) and explicitly written down. Concerning the chara
ization of vector bundles without intermediate cohomology besides the result of Hor
for vector bundles on projective spaces, there is such a characterization for vector b
on hyperquadrics due to Knörrer; i.e. the line bundles and the spinor bundles are th
indecomposable vector bundles onQn ⊂ P

n+1 without intermediate cohomology. More
over, Buchweitz et al. [7] proved that hyperplanes and hyperquadrics are the only s
hypersurfaces in a projective space for which there are, up to twist, a finite num
indecomposable vector bundles without intermediate cohomology. See [2] for the c
terization of vector bundles onGr(2,5) without intermediate cohomology and [1] for th
characterization of rank 2 vector bundles on Fano 3-folds of index 2 without interme
cohomology.

The first goal of this paper is to generalize Horrocks result to vector bundles on
tiprojective spacesPn1 × · · · × P

nr and to vector bundles on any smooth projective
riety with the strong CM property (see Definition 3.11). Indeed, using the notion
exceptional collections (see Definition 2.1),m-blocks (see Definition 3.3) and the spe
tral sequences associated to them (see Theorem 3.16), we prove that a vector buE

on X = Pn1 × · · · × Pnr splits providedE ⊗ OX(t1, . . . , tr ) is an ACM bundle for any
−ni � ti � 0, 1� i � r .

Our second starting point for this note was another result of Horrocks which gi
cohomological characterization of the sheaf of thep-differential formsΩp

Pn onP
n [15] and

the increasing interest in further cohomological characterization of vector bundles.
the notion of left dualm-block collection and again Beilinson’s type spectral sequence
characterize thep-differential forms on multiprojective spaces.

Next we outline the structure of this paper. In Section 2, we briefly recall the no
and properties of exceptional sheaf and full, strongly exceptional collections of sh
needed later. It is well known that the length of any full strongly exceptional collec
of coherent sheavesσ = (E0,E1, . . . ,Em) on a smooth projective varietyX of dimension
n is greater or equal ton + 1 and, in [8] we call excellent collection any full exception
collection of coherent sheaves of lengthn + 1. Excellent collections have nice propertie
they are automatically full strongly exceptional collections and their strong exceptio
is preserved under mutations. Nevertheless the existence of an excellent collection
n-dimensional smooth projective variety imposes a strong restriction onX, namely,X has
to be Fano andK0(X) aZ-free module of rankn+1. In Section 3, we generalize the noti
of excellent collection allowing exceptional collectionsσ = (E0,E1, . . . ,Em) of arbitrary
length but packing the sheavesEi in suitable subcollections called blocks. We introdu
the notion of left and right dualm-block collection and we prove its existence (Propo
tion 3.9). In the last part of Section 3, we concentrate our attention in varietiesX with a
number of blocks generatingDb(OX-mod) one greater than the dimension ofX. This leads
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us to the following definition: we say that ann-dimensional smooth projective variety h
the weak CM property if it has ann-block collection which generatesDb(OX-mod) (see
Definition 3.11). Finally, given a coherent sheafF on a smooth projective varietyX with
the weak CM property, we derive two Beilinson type spectral sequences which abutF
(Theorem 3.16). These two spectral sequences will play an important role in next se

In Section 4, we use Beilinson type spectral sequence to establish under whic
ditions a vector bundle splits. As an immediate consequence of Proposition 4.1 w
re-prove: (1) Horrock’s criterion which states that a vector bundle onP

n has no intermedi
ate cohomology if and only if it decomposes into a direct sum of line bundles (Coro
4.2), (2) the characterization of vector bundles on a quadric hypersurfaceQn ⊂ P

n+1,
n � 2, which splits into a direct sum of line bundles (Corollary 4.3) and (3) the cha
terization of vector bundles on a GrassmannianGr(k, n) which splits into a direct sum o
line bundles (Corollary 4.4). As a main result, we generalize Horrocks criterion to v
bundles on multiprojective spaces (see Theorem 4.7) and we get a cohomologica
acterization of thep-differential forms on multiprojective spaces (see Theorem 4.11)
end the paper in Section 5 with some final comments which naturally arise from this

Notation. Throughout this paperX will be a smooth projective variety defined ov
the complex numbersC and we denote byD = Db(OX-mod) the derived category o
bounded complexes of coherent sheaves ofOX-modules. Notice thatD is an abelian lin-
ear triangulated category. We identify, as usual, any coherent sheafF on X to the object
(0→ F → 0) ∈D concentrated in degree zero and we will not distinguish between a
tor bundle and its locally free sheaf of sections. A coherent sheafE on a smooth projectiv
varietyX is anACM sheaf if Hi(X,E ⊗OX(t)) = 0 for anyi, 0< i < dimX, and for any
t ∈ Z; and we say thatE hasno intermediate cohomology if and only if Hi(X,E ⊗L) = 0
for anyi, 0< i < dimX, and for any line bundleL onX.

2. Preliminaries

As we pointed out in the introduction, in this section we gather the basic definition
properties on exceptional sheaves, exceptional collections of sheaves, strongly exce
collections of sheaves and full exceptional collections of sheaves needed in the seq

Definition 2.1. Let X be a smooth projective variety.

(i) An objectF ∈ D is exceptional if Hom•
D(F,F ) is a 1-dimensional algebra genera

by the identity.
(ii) An ordered collection(F0,F1, . . . ,Fm) of objects ofD is anexceptional collection if

each objectFi is exceptional and Ext•
D(Fk,Fj ) = 0 for j < k.

(iii) An exceptional collection(F0,F1, . . . ,Fm) of objects ofD is a strongly exceptional
collection if in addition ExtiD(Fj ,Fk) = 0 for i �= 0 andj � k.

(iv) An ordered collection of objects ofD, (F0,F1, . . . ,Fm), is a full (strongly) excep-
tional collection if it is a (strongly) exceptional collection andF0,F1, . . . ,Fm gener-
ate the bounded derived categoryD.
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Remark 2.2. The existence of a full strongly exceptional collection(F0,F1, . . . ,Fm) of
coherent sheaves on a smooth projective varietyX imposes rather a strong restriction onX,
namely that the Grothendieck groupK0(X) = K0(OX-mod) is isomorphic toZm+1.

Example 2.3.

(1) (OPr (−r),OPr (−r + 1),OPr (−r + 2), . . . ,OPr ) is a full strongly exceptional col
lection of coherent sheaves on a projective spaceP

r and (OPr ,Ω1
Pr (1),Ω2

Pr (2), . . . ,

Ωr
Pr (r)) is also a full strongly exceptional collection of coherent sheaves onP

r .
(2) LetFn = P(OP1 ⊕OP1(n)), n � 0, be a Hirzebruch surface. Denote byξ (respectively

F ) the class of the tautological line bundle (respectively the class of a fiber o
natural projectionp :Fn → P

1). Then, (O, O(F ), O(ξ), O(F + ξ)) is a full strongly
exceptional collection of coherent sheaves onFn.

(3) Let π : P̃2(l) → P
2 be the blow up ofP2 at l points and letL1 = π−1(p1), . . . ,Ll =

π−1(pl) be the exceptional divisors. Then,(
O,O(L1),O(L2), . . . ,O(Ll),O(H),O(2H)

)
is a full strongly exceptional collection of coherent sheaves onP̃

2(l).
(4) Let E be a rankr vector bundle on a smooth projective varietyX. If X has a full

strongly exceptional collection of line bundles thenP(E) also has a full strongly excep
tional collection of line bundles. In particular, anyd-dimensional, smooth, comple
toric varietyV with a splitting fanΣ(V ) has a full strongly exceptional collectio
of line bundles and anyd-dimensional, smooth, complete toric varietyV with Picard
number 2 or, equivalently, withd + 2 generators has a full strongly exceptional coll
tion of line bundles (see [8]).

(5) (OPn(−n) � OPm(−m),OPn(−n + 1) � OPm(−m), . . . ,OPn � OPm(−m), . . . ,

OPn(−n) �OPm,OPn(−n + 1) �OPm, . . . ,OPn �OPm) is a full strongly exceptiona
collection of locally free sheaves onPn × Pm.

We have seen many examples of smooth projective varieties which have a full st
exceptional collection of line bundles and we want to point out that there are many
examples of smooth projective varieties which have a full strongly exceptional colle
of bundles of higher rank but they do not have a full strongly exceptional collection o
bundles.

Example 2.4.

(1) Let X = Gr(k, n) be the Grassmannian ofk-dimensional subspaces of then-
dimensional vector space. Assumek > 1. We have Pic(X) ∼= Z ∼= 〈OX(1)〉, KX

∼=
OX(−n) and the canonical exact sequence

0→ S →On
X → Q→ 0

whereS denotes the tautologicalk-dimensional bundle andQ the quotient bundle.
In the sequel,ΣαS denotes the space of the irreducible representations of the g
GL(S) with highest weightα = (α1, . . . , αs) and |α| = ∑s

αi . Denote byA(k,n)
i=1
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the set of locally free sheavesΣαS on Gr(k, n) whereα runs over Young diagram
fitting inside a k × (n − k) rectangle. Setρ(k,n) := �A(k,n). By [16, Proposi-
tions 2.2(a) and 1.4],A(k,n) can be totally ordered in such a way that we obt
a full strongly exceptional collection (E1, . . . ,Eρ(k,n)) of locally free sheaves o
X. Notice thatS ∈ A(k,n) has rankk and hence this collection has locally fr
sheaves of rank greater than one. In addition, any full strongly exceptional c
tion of coherent sheaves onX has a sheaf of rank greater than one. Indeed,
full strongly exceptional collection of coherent sheaves onX has the same lengt
equals to the rankρ(k,n) of the Grothendieck group ofX. On the other hand, sinc
Pic(X) ∼= 〈OX(1)〉 andKX

∼= OX(−n), any full strongly exceptional collection of co
herent sheaves has at mostn + 1 summands which are line bundles. Therefore, s
n + 1 < ρ(k,n) = rk(K0(X)), any full strongly exceptional collection has a shea
rank different from one.

(2) Any full strongly exceptional collection of locally free sheaves on a hyperqua
Qn ⊂ P

n+1, n > 2, has a sheaf of rank different from one. In fact, ifn � 3 then
Pic(Qn) = Z = 〈OQn(1)〉, KQn

∼= OQn(−n) and

rank
(
K0(Qn)

) =
{

n + 1 if n is odd,

n + 2 if n is even.

Moreover, by [17, Proposition 4.9], ifn is even andΣ1, Σ2 are the spinor bundles o
Qn, then (

Σ1(−n),Σ2(−n),OQn(−n + 1), . . . ,OQn(−1),OQn

)
is a full strongly exceptional collection of locally free sheaves onQn; and if n is odd
andΣ is the spinor bundle onQn, then(

Σ(−n),OQn(−n + 1), . . . ,OQn(−1),OQn

)
is a full strongly exceptional collection of locally free sheaves onQn.

Definition 2.5. Let X be a smooth projective variety and let(A,B) be an exceptional pa
of objects ofD. We define objectsLAB andRBA with the aid of the following distin-
guished triangles in the categoryD:

LAB → Hom•
D(A,B) ⊗ A → B → LAB[1], (2.1)

RBA[−1] → A → Hom×•
D (A,B) ⊗ B → RBA. (2.2)

Notation 2.6. Let X be a smooth projective variety and letσ = (F0, . . . ,Fm) be an excep
tional collection of objects ofD. It is convenient to agree that for any 0� i, j � m and
i + j � m,

R(j)Fi = R(j−1)RFi = RFi+j
· · ·RFi+2RFi+1Fi =: RFi+j ···Fi+2Fi+1Fi

and similar notation for compositions of left mutations.
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If X is a smooth projective variety andσ = (F0, . . . ,Fm) is an exceptional collection o
objects ofD, then any mutation ofσ is an exceptional collection. Moreover, ifσ generates
the categoryD, then the mutated collection also generatesD.

Nevertheless, in general, a mutation of a strongly exceptional collection is not a st
exceptional collection. In fact, takeX = P

1 ×P
1 and consider the full strongly exception

collectionσ = (OX,OX(1,0),OX(0,1),OX(1,1)) of line bundles onX. It is not difficult
to check that the mutated collection(

OX,OX(1,0),LOX(0,1)OX(1,1),OX(0,1)
) = (

OX,OX(1,0),OX(−1,1),OX(0,1)
)

is no more a strongly exceptional collection of line bundles onX.

3. m-Blocks and Beilinson’s spectral sequence

Let X be a smooth projective variety of dimensionn. It is well known that all full
strongly exceptional collections of coherent sheaves onX have the same length and it
equal to the rank ofK0(X). Even more, this length is bounded below byn + 1 because fo
any smooth projective varietyX of dimensionn we have rank(K0(X)) � n + 1. In [9] we
give the following definition (see also [6,13]).

Definition 3.1. LetX be a smooth projective variety of dimensionn. We say that an ordere
collection of coherent sheavesσ = (E0, . . . ,En) is an excellent collection if it is a full
exceptional collection of coherent sheaves onX of minimal length,n + 1, i.e. of length
one greater than the dimension ofX.

By [5, Assertion 9.2, Theorem 9.3 and Corollary 9.4], excellent collections are aut
ically strongly exceptional collections of coherent sheaves and the strongly exceptio
is preserved under mutations.

Example 3.2. (1) The collectionσ = (OPr (−r),OPr (−r + 1),OPr (−r + 2), . . . ,OPr ) of
line bundles onPr is an excellent collection of coherent sheaves.

(2) If n is odd andQn ⊂ P
n+1 is a quadric hypersurface, the collection of locally fr

sheaves (
Σ(−n),OQn(−n + 1), . . . ,OQn(−1),OQn

)
beingΣ the spinor bundle onQn is an excellent collection of locally free sheaves onQn.

(3) If n is even andQn ⊂ P
n+1 is a quadric hypersurface, the collection of locally fr

sheaves (
Σ1(−n),Σ2(−n),OQn(−n + 1), . . . ,OQn(−1),OQn

)
beingΣ1 andΣ2 the spinor bundles onQn, is a full strongly exceptional collection of lo
cally free sheaves onQn. Since all full strongly exceptional collections of coherent shea
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on Qn have lengthn + 2 we conclude that there are no excellent collections of cohe
sheaves onQn for evenn.

(4) It follows from Example 2.4 that there are no excellent collections of cohe
sheaves onGr(k, n) if k �= n − 1.

(5) Any smooth Fano threefoldX with Pic(X) ∼= Z and trivial intermediate Jacobia
has an excellent collection (see [9, Proposition 3.6]).

It is an interesting problem to characterize the smooth projective varieties which
an excellent collection. We want to stress that the existence of an excellent collection
n-dimensional smooth varietyX imposes a strong restriction onX; e.g.X has to be a Fan
variety [6, Theorem 3.4] and the Grothendieck groupK0(X) has to be aZ-free module
of rankn + 1. So, it is convenient to generalize the notion of excellent collection in o
to be able to apply the results derived from its existence to varieties as Grassma
even-dimensional hyperquadrics, multiprojective spaces, etc., which do not have ex
collections. This will be achieved allowing exceptional collectionsσ = (F0, . . . ,Fm) of
arbitrary length but packing the objectsFi ∈ D in suitable subcollections called block
The notion of block was introduced by Karpov and Nogin in [18] and we will recal
definition and properties (see also [13]).

Definition 3.3.

(i) An exceptional collection(F0,F1, . . . ,Fm) of objects ofD is ablock if

ExtiD(Fj ,Fk) = 0 for anyi andj �= k.

(ii) An m-block collection of type (α0, α1, . . . , αm) of objects ofD is an exceptional col
lection

(E0,E1, . . . ,Em) = (
E0

1, . . . ,E0
α0

,E1
1, . . . ,E1

α1
, . . . ,Em

1 , . . . ,Em
αm

)
such that all the subcollectionsEi = (Ei

1,E
i
2, . . . ,E

i
αi

) are blocks.

Note that an exceptional collection(E0,E1, . . . ,Em) is anm-block of type(1,1, . . . ,1).

Example 3.4. (1) Let X = Gr(k, n) be the Grassmannian ofk-dimensional subspaces
then-dimensional vector space,k > 1. In Example 2.4(1), we have seen thatA(k,n) can
be totally ordered in such a way that we obtain a full strongly exceptional collection

σ = (E1, . . . ,Eρ(k,n))

of locally free sheaves onX. On the other hand, by [17, (3.5)], Hom(ΣαS,ΣβS) �= 0
only if αi � βi for all i. So, packing in the same blockEr the bundlesΣαS ∈ σ with
|α| = k(n − k) − r and taking into account that 0� |α| � k(n − k) we obtain

σ = (E1, . . . ,Eρ(k,n)) = (E0, . . . ,Ek(n−k))

a k(n − k)-block collection of vector bundles onX.
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(2) Let Qn ⊂ Pn+1, n � 2, be a hyperquadric variety. According to Example 2.4(2
n is even andΣ1, Σ2 are the spinor bundles onQn, then(

Σ1(−n),Σ2(−n),OQn(−n + 1), . . . ,OQn(−1),OQn

)
is a full strongly exceptional collection of locally free sheaves onQn; and if n is odd and
Σ is the spinor bundle onQn, then(

Σ(−n),OQn(−n + 1), . . . ,OQn(−1),OQn

)
is a full strongly exceptional collection of locally free sheaves onQn. Since Exti (Σ1,Σ2) =
0 for anyi � 0, we get that(E0,E1, . . . ,En) where

Ei = OQn(−n + i) for 1� i � n, E0 =
{

(Σ1(−n)Σ2(−n)) if n even,

(Σ(−n)) if n odd,

is ann-block collection of coherent sheaves onQn for all n.
(3) LetX = P

n1 × · · · × P
ns be a multiprojective space of dimensiond = n1 + · · · + ns .

For any 1� i � s, denote bypi :X → P
ni the natural projection and write

OX(a1, a2, . . . , as) := p∗
1OP

n1 (a1) ⊗ p∗
2OP

n2 (a2) ⊗ · · · ⊗ p∗
sOPns (as).

For any 0� j � d , denote byEj the collection of all line bundles onX

OX

(
a

j

1, a
j

2, . . . , a
j
s

)
with −ni � a

j
i � 0 and

∑s
i=1 a

j
i = j − d . Using the Künneth formula for locally fre

sheaves on algebraic varieties, we prove that eachEj is a block and that

(E0,E1, . . . ,Ed)

is ad-block collection of line bundles onX.

We will now introduce the notion of mutation of block collections.

Definition 3.5. Let X be a smooth projective variety and consider a 1-block collec
(E,F) = (E1, . . . ,En,F1, . . . ,Fm) of objects ofD. A left mutation of Fj by E is the
object defined by (see Notation 2.6)

LEFj := LE1E2···EnFj

and aright mutation of Ej by F is the object defined by

RFEj := RFmF ···F Ej .
m−1 1
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A left mutation of (E,F) is the pair(LEF ,E) where

LEF := (LEF1,LEF2, . . . ,LEFm)

and aright mutation of (E,F) is the pair(F ,RFE) where

RFE := (RFE1,RFE2, . . . ,RFEn).

Remark 3.6. By [12, (2.2)], for any exceptional objectX ∈D, any pair of objectF,G ∈ D
and any integeri we have:

ExtiD(LXF,LXG) = ExtiD(F,G),

ExtiD(RXF,RXG) = ExtiD(F,G).

Hence, for any 1-block collection(E,F) = (E1, . . . ,En,F1, . . . ,Fm) and integersj �= k,

ExtiD(LEFj ,LEFk) = ExtiD(LE1···EnFj ,LE1···EnFk) = ExtiD(Fj ,Fk),

ExtiD(RFEj ,RFEk) = ExtiD(RFm···F1Ej ,RFm···F1Ek) = ExtiD(Ej ,Ek)

and thus bothLEF andRFE are blocks and the pairs(LEF ,E) and(F ,RFE) are 1-block
collections.

Remark 3.7. It follows from the proof of [18, Propositions 2.2 and 2.3] that give
1-block collection(E,F) = (E1, . . . ,En,F1, . . . ,Fm), the objectsLEFj andRFEj can
be defined with the aid of the following distinguished triangles in the categoryD:

LEFj →
n⊕

i=1

Hom•
D(Ei,Fj ) ⊗ Ei → Fj → LEFj [1], (3.1)

RFEj [−1] → Ej →
m⊕

i=1

Hom×•
D (Ej ,Fi) ⊗ Fi → RFEj . (3.2)

Applying Hom•
D(Ei,∗) to the triangle (3.1) we get the orthogonality relation

Hom•
D(Ei,LEFj ) = 0 for all 1� i � n, (3.3)

i.e.,LEFj ∈ [E]⊥ := {F ∈ D | Hom•
D(E,F ) = 0 for all E ∈ [E]}, where we denote by[E]

the full triangulated subcategory ofD generated byE1, . . . ,En.
Similarly, Hom•

D(∗,Fj ) applied to the triangle (3.2) gives the orthogonality relation

Hom•
D(RFEi,Fj ) = 0 for all 1� j � m, (3.4)

i.e.,RFEi ∈ ⊥[F] := {E ∈D | Hom• (E,F ) = 0 for all F ∈ [F]}.
D
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TakingE′ ∈ ⊥[F] andE′′ ∈ [E]⊥ and applying Hom•D(E′,∗) and Hom•
D(∗,E′′) to the

triangles (3.1) and (3.2) we get for anyH ∈ D

Hom•
D(E′,H) = Hom•

D(E′,LEH)[1], (3.5)

Hom•
D(H,E′′) = Hom•

D(REH,E′′)[1]. (3.6)

Notation 3.8. It is convenient to agree that

R(j)Ei = R(j−1)REi = REi+j
· · ·REi+2REi+1Ei =: REi+j ···Ei+2Ei+1Ei ,

L(j)Ei = L(j−1)LEi = LEi−j
· · ·LEi−2LEi−1Ei =: LEi−j ···Ei−2Ei−1Ei .

Letσ = (E0, . . . ,Em) be anm-block collection of typeα0, . . . , αm of objects ofD which
generatesD. Two m-block collectionsH = (H0, . . . ,Hm) andG = (G0, . . . ,Gm) of type
β0, . . . , βm with βi = αm−i of objects ofD are calledleft dual m-block collection of σ and
right dual m-block collection of σ if

Hom•
D

(
Hi

j ,E
k
l

) = Hom•
D

(
Ek

l ,Gi
j

) = 0 (3.7)

except for

ExtkD
(
Hk

i ,Em−k
i

) = Extm−k
D

(
Em−k

i ,Gk
i

) = C. (3.8)

Proposition 3.9. Left dual m-block collections and right dual m-block collections exist
and they are unique up to isomorphism.

Proof. Let σ = (E0, . . . ,Em) be anm-block collection of typeα0, . . . , αm of objects ofD.
We will construct explicitly the left and the right dualm-block collection ofσ by conse-
quent mutations of them-block collectionσ . We consider

H = (
R(0)Em,R(1)Em−1, . . . ,R

(m)E0
)

(3.9)

where by definition

R(i)Em−i = (
R(i)Em−i

1 , . . . ,R(i)Em−i
αm−i

)
= (

REmEm−1···Em−i+1E
m−i
1 , . . . ,REmEm−1···Em−i+1E

m−i
αm−i

)
.

Let us check that it satisfies the orthogonality conditions(3.7) and(3.8). It follows from
(3.4) thatREmEm−1···Em−i+1E

m−i
k ∈ ⊥[Em−i+1, . . . ,Em] and hence for anyl with m− i +1�

l � m and anyj with 1� j � αl

Hom• (
RE E ···E Em−i ,El

) = 0.
D m m−1 m−i+1 k j
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On the other hand, sinceσ is an exceptional collection, for anyl with 0 � l � m − i,
and anyp with m − i + 1� p � m

Hom•
D

(
E

p
q ,El

j

) = 0, 1� q � αp, 1� j � αl.

So, for anyl with 0 � l � m − i and anyj with 1 � j � αl , El
j ∈ ⊥[Em−i+1, . . . ,Em] and

applying repeatedly (3.6) we get

Hom•
D

(
REmEm−1···Em−i+1E

m−i
k ,El

j

)
= Hom•

D
(
Em−i

k ,El
j

)[−i] =
{

0 if l < m − i,

C in degreei if l = m − i.

Therefore,H is indeed the left dualm-block collection ofσ . By consequent left mutation
of the m-block collectionσ and arguing in the same way we get the right dualm-block
collection ofσ . �

We want to point out that the notion ofm-block collection is the convenient gener
ization of the notion of excellent collection we were looking for. Indeed, we will see
the behavior ofn-block collections,n = dim(X), is really good in the sense that they a
automatically strongly exceptional collections and that their structure is preserved
mutations through blocks. More precisely we have:

Proposition 3.10. Let X be a smooth projective variety of dimension n and let σ =
(E0, . . . ,En) be an n-block collection of coherent sheaves on X and assume that σ gen-
erates the category D. Then we get:

(1) The sequence σ is a full strongly exceptional collection of coherent sheaves on X.
(2) All mutations through the blocks Ei can be computed using short exact sequences of

coherent sheaves.
(3) Any mutation of σ through any block Ei is a full strongly exceptional collection of pure

sheaves, i.e. complexes concentrated in the zero component of the grading.
(4) Any mutation of σ through any block Ei is an n-block collection.

Proof. See [5, Theorem 9.5 and Remark (b) below] and [13, Theorem 1].�
These nice properties led us to introduce the following definition.

Definition 3.11. Let X be a smooth projective variety of dimensionn. We say thatX has
theweak CM property if there exists ann-block collection(E0, . . . ,En) of type(α0, . . . , αn)

of coherent sheaves onX which generatesD. We say thatX has the CM property if in
addition, for allEn

i ∈ En and allEk
l ∈ Ek with 0 � k � n − 1, En

i ⊗ Ek
l is an ACM sheaf;

and finally we say thatX has thestrong CM property if in addition, all the exceptiona
coherent sheavesEi ∈ Ei are line bundles.
j
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Remark 3.12. We want to point out that the number of blocks is one greater than
dimension ofX but a priori there is no restriction on the lengthαi of each blockEi =
(Ei

1, . . . ,E
i
αi

).

It is clear that any smooth projective variety with an excellent collection has the
CM property. Let us now see many examples of varieties with the (weak) CM pro
which do not have excellent collections of coherent sheaves.

Example 3.13. (1) Since any line bundle onPn is ACM, it follows from Example 3.2(1)
thatPn has the strong CM property.

(2) Let Qn ⊂ P
n+1, n � 2, be a hyperquadric variety. According to Example 3.4

σ = (E0,E1, . . . ,En) where

Ei = OQn(−n + i) for 1� i � n, E0 =
{

(Σ1(−n),Σ2(−n)) if n even,

(Σ(−n)) if n odd,

is ann-block collection of coherent sheaves onQn for all n. Since spinor bundles and lin
bundles onQn are ACM bundles andEn = OQn , we deduce thatQn has the CM property

(3) LetX = P
n1 ×· · ·×P

ns be any multiprojective space and letσ = (E0, . . . ,En1+···+ns )

be the(n1 + · · · + ns)-block collection of line bundles onX given in Example 3.4(3). Us
ing the Künneth formula, the fact thatHα(Pnj ,O

P
nj (a)) = 0 for any 0� α � nj and any

a ∈ Z unlessα = 0 anda � 0 or α = nj anda � −nj − 1, together with the fact tha
En1+···+ns = OX we deduce that for anyt ∈ Z and anyEk

i ∈ Ek , 0� k � n1 + · · · + ns − 1,
0< α < n1 + · · · + ns ,

Hα
(
X,OX(t, . . . , t) ⊗ Ek

i

) = 0.

Hence,X has the strong CM property.
(4) LetX = Gr(k, n) be the Grassmannian variety ofk-dimensional subspaces of then-

dimensional vector space and takeσ = (E0, . . . ,Ek(n−k)) be thek(n − k)-block collection
of vector bundles onX given in Example 3.4(1). Notice thatEk(n−k) = OX. Hence, since
anyΣαS ∈ Er , 0� r � k(n − k) − 1, is an ACM vector bundle, we get thatX = Gr(k, n)

has the CM property but not the strong CM property.
(5) Letπ : P̃2(3) → P

2 be the blow up ofP2 at 3 points and letLi = π−1(pi), 1� i � 3,
be the exceptional divisors. Then,(

O,O(H),O(2H − L1 − L2 − L3),O(2H − L2 − L3),

O(2H − L1 − L3),O(2H − L1 − L2)
)

is a full exceptional collection of coherent sheaves onP̃
2(3). By [18, Proposition 4.2(3)]

the collection(E0,E1,E2) with E0 = (O), E1 = (O(H),O(2H −L1 −L2 −L3)) andE2 =
(O(2H −L2 −L3),O(2H −L1 −L3),O(2H −L1 −L2)), is a 3-block collection of line
bundles oñP2(3). Hence,̃P2(3) has the weak CM property.

We are led to pose the following problem/question.
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Problem 3.14. To characterize smooth projective varieties with the (weak, strong)
property.

By [6, Theorem 3.4], any smooth projective variety with an excellent collection is F
All examples described above about smooth projective varieties with the (weak, s
CM property are Fano. So, we wonder

Question 3.15. Let X be a smooth projective variety and assume thatX has the (weak
strong) CM property. IsX Fano?

Beilinson theorem was stated in 1978 [4] and since then it has became a major
classifying vector bundles over projective spaces. Beilinson spectral sequence was
alized by Kapranov to hyperquadrics and Grassmannians [16,17] and by the authors
smooth projective variety with an excellent collection [9]. We are now ready to gene
Beilinson theorem to any smooth projective variety which has the weak CM propert
to state the main result of this section.

Theorem 3.16 (Beilinson type spectral sequence).Let X be a smooth projective variety of
dimension n with an n-block collection σ = (E0,E1, . . . ,En), Ei = (Ei

1, . . . ,E
i
αi

) of coher-
ent sheaves on X which generates D. Then for any coherent sheaf F on X there are two
spectral sequences with E1-term

IE
pq

1 =
{⊕αp+n

i=1 Extq(REn···Ep+n+1E
p+n
i ,F ) ⊗ E

p+n
i if −n � p � −1,⊕αn

i=1 Extq(En
i ,F ) ⊗ En

i if p = 0,
(3.10)

IIE
pq

1 =
{⊕αp+n

i=1 Extq((E
p+n
i )∗,F ) ⊗ (REn···Ep+n+1E

p+n
i )∗ if −n � p � −1,⊕αn

i=1 Extq(En
i

∗,F ) ⊗ En
i

∗ if p = 0,
(3.11)

situated in the square −n � p � 0, 0� q � n which converge to

IE
i∞ =II Ei∞ =

{
F for i = 0,

0 for i �= 0.

Proof. We will only prove the existence of the first spectral sequence. The other c
done similarly. For anyγ , 0� γ � n, we writeiV •

γ for the graded vector spaces

iV •
γ = Hom•

D
(
REn···Eγ+1E

γ

i ,F
) = Hom•

D
(
E

γ

i ,LEγ+1···En
F

)
where the second equality follows from standard properties of mutations [12, pp. 12

By Remark 3.7, the triangles defining the consequent right mutations ofF and the
consequent left mutations ofF [n] through(E0, . . . ,En) can be written as( αγ⊕

iV •
γ ⊗ E

γ

i

)
[−1] kγ−→ REγ ···E0F [−1] iγ−→ REγ−1···E0F

jγ−→
αγ⊕

iV •
γ ⊗ E

γ

i ,
i=1 i=1
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αγ⊕
i=1

iV •
γ ⊗ E

γ

i

jγ+1

−→ LEγ+1···En
F [n] iγ+1−→ LEγ ···En

F [n + 1] kγ+1−→
( αγ⊕

i=1

iV •
γ ⊗ E

γ

i

)
[1].

We arrange them into the following big diagram:

0= REn···E0F

in

F [n]

i0
⊕αn

i=1
iV •

n ⊗ En
i

kn j0

REn−1···E0F

jn

in−1

LEn
F [n]

k0

i1
⊕αn−1

i=1
iV •

n−1 ⊗ En−1
i

kn−1

dn−1

j1

REn−2···E0F

jn−1

LEn−1En
F [n]

k1

⊕αn−2
i=1

iV •
n−2 ⊗ En−2

i

kn−2

dn−2

j2

RE1E0F

i1

LE2···En
F [n]

in−1
⊕α1

i=1
iV •

1 ⊗ E1
i

k1 jn−1

RE0F

j1

i0

LE1···En
F [n]

kn−1

in
⊕α0

i=1
iV •

0 ⊗ E0
i

k0

d0

jn

F

j0

LE0···En
F [n] = 0

kn

At this diagram, all oriented triangles along left and right vertical borders are d
guished, the morphismsi• andi• have degree one, and all triangles and rhombuses i
central column are commutative. So, there is the following complex, functorial onF ,
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L• : 0→
α0⊕
i=1

iV •
0 ⊗ E0

i →
α1⊕
i=1

iV •
1 ⊗ E1

i → ·· ·

→
αn−1⊕
i=1

iV •
n−1 ⊗ En−1

i →
αn⊕
i=1

iV •
n ⊗ En

i → 0

and by the above Postnikov-system we have thatF is a right convolution of this complex
Then, for an arbitrary linear covariant cohomological functorΦ•, there exists an spectr
sequence withE1-term

IE
pq

1 = Φq
(
Lp

)
situated in the square 0� p,q � n and converging toΦp+q(F ) (see [17, 1.5]). SinceΦ•
is a linear functor, we have

Φq
(
Lp

) =
αp⊕
i=1

Φq
(

iV •
p ⊗ E

p
i

) =
αp⊕
i=1

⊕
l

iV l
p ⊗ Φq−l

(
E

p
i

)

=
αp⊕
i=1

⊕
α+β=q

iV α
p ⊗ Φβ

(
E

p
i

)
. (3.12)

In particular, if we consider the covariant linear cohomology functor which takes a com
to its cohomology sheaf and acts identically on pure sheaves, i.e.,

Φβ(F) =
{

F for β = 0,

0 for β �= 0,

on any pure sheafF , in the square 0� p,q � n, we get

IE
pq

1 =
αp⊕
i=1

iV
q
p ⊗ E

p
i =

αp⊕
i=1

Extq
(
REn···Ep+1E

p
i ,F

) ⊗ E
p
i

which converges to

IE
i∞ =

{
F for i = 0,

0 for i �= 0.

Finally, if we callp′ = p − n, we get the spectral sequence

IE
p′q
1 =

αp′+n⊕
Extq

(
REn···Ep′+n+1

E
p′+n
i ,F

) ⊗ E
p′+n
i

i=1
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situated in the square−n � p′ � 0, 0� q � n which converges to

IE
i∞ =

{
F for i = 0,

0 for i �= 0.
�

4. Splitting vector bundles and cohomological characterization of vector bundles

A well-known result of Horrocks states that a vector bundle onP
n has no intermediat

cohomology if and only if it splits into a direct sum of line bundles. The first goal of
section is to generalize Horrocks criterion to vector bundles on multiprojective space
to any smooth projective variety with the strong CM property. As a main tool we will
the Beilinson type spectral sequences stated in the previous section.

Proposition 4.1. Let X be a smooth projective variety of dimension n with the CM prop-
erty given by the n-block collection σ = (E0,E1, . . . ,En), Ei = (Ei

1, . . . ,E
i
αi

) of coherent
sheaves on X. Let F be a coherent sheaf on X such that for any −n � p � −1 and
1� i � αp

H−p−1(X,F ⊗ E
p+n
i

) = 0.

Then F contains
⊕αn

i=1(E
n∗
i )h

0(F⊗En
i ) as a direct summand.

Proof. By Theorem 3.16, there is a spectral sequence withE1-term

IIE
pq

1 =
{⊕αp+n

i=1 Extq((E
p+n
i )∗,F ) ⊗ (REn···Ep+n+1E

p+n
i )∗ if −n � p � −1,⊕αn

i=1 Extq(En∗
i , F ) ⊗ En∗

i if p = 0,

situated in the square−n � p � 0, 0� q � n which converges to

IIE
i∞ =

{
F for i = 0,

0 for i �= 0.

By assumption,IIE
p,−p−1
1 = 0, i.e., theE1-term looks like

q

• n

0 • n − 1
0

• 2
0 • 1

0 • p

−n −2 −1
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So, the limit IIE
i∞, i.e., F , containsIIE

00
1 = ⊕αn

i=1(E
n∗
i )h

0(F⊗En
i ) as a direct sum

mand. �
As an immediate consequence of Proposition 4.1 we will first re-prove Horrocks

rion.

Corollary 4.2. Let E be a vector bundle on Pn. The following conditions are equivalent:

(i) E splits into a sum of line bundles.
(ii) E has no intermediate cohomology; i.e. Hi(Pn,E(t)) = 0 for 1 � i � n − 1 and for

all t ∈ Z.

Proof. (i) ⇒ (ii). It follows from Bott’s formula.
(ii) ⇒ (i). We may suppose thatE is indecomposable. So that it suffices to prove t

E is a line bundle. To this end, we choose an integerm such thatH 0(Pn,E(m − 1)) = 0
and H 0(Pn,E(m)) �= 0 and we apply Proposition 4.1 toX = P

n, σ = (OPn(−n), . . . ,

OPn(−1),OPn) andF = E(m). We conclude thatOh0E(m) is a direct summand ofF and
sinceF is indecomposable we get thatF = OPn and we are done.�

In [20] Ottaviani pointed out that Horrocks criterion fails on a nonsingular quadric
persurfaceQn ⊂ P

n+1; the spinor bundlesS onQn have no intermediate cohomology a
they do not decompose into a direct sum of line bundles. Nevertheless, we have the
ing cohomological characterization of vector bundles onQn which split into a direct sum
of line bundles; and of vector bundles on a GrassmannianGr(k, n) which also split into a
direct sum of line bundles.

OnQn, we shall use the unified notationΣ∗ meaning that for evenn both spinor bundle
Σ1 andΣ2 are considered, and for oddn, the spinor bundleΣ (see Example 3.4(2) fo
more details).

Corollary 4.3. Let E be a vector bundle on Qn ⊂ P
n+1. The following conditions are

equivalent:

(i) E splits into a sum of line bundles.
(ii) Hi(Qn,E(t)) = 0 for 1 � i � n − 1 and t ∈ Z; and Hn−1(Qn,E ⊗ Σ∗(t − n)) = 0.

Proof. (i) ⇒ (ii). It is a well-known statement.
(ii) ⇒ (i). We may suppose thatE is indecomposable. So that it suffices to prove thaE

is a line bundle. To this end, we choose an integerm such thatH 0(Qn,E(m − 1)) = 0 and
H 0(Qn,E(m)) �= 0 and we apply Proposition 4.1 toX = Qn, σ = (E0, . . . ,En) defined in

Example 3.4(2) andF = E(m) (see also Example 3.13). Hence, we obtain thatOh0E(m)
Qn

is
a direct summand ofF and sinceF is indecomposable we conclude thatF = OQn . �

Keeping the notations introduced in Example 3.4(1), we have:
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Corollary 4.4. Let E be a vector bundle on Gr(k, n) and set

Er = {
ΣαS | k(n − k) − r = |α|}.

The following conditions are equivalent:

(i) E splits into a sum of line bundles.
(ii) Hi(Gr(k, n),E(t) ⊗ ΣαS) = 0 for 1 � i � k(n − k) − 1, t ∈ Z and ΣαS ∈

Ek(n−k)−i−1.

Proof. (i) ⇒ (ii). It is a well-known statement.
(ii) ⇒ (i). We may suppose thatE is indecomposable. So that it suffices to prove thaE

is a line bundle. To this end, we choose an integerm such thatH 0(Gr(k, n),E(m−1)) = 0
andH 0(Gr(k, n),E(m)) �= 0. We consider Proposition 4.1 applied toX = Gr(k, n), σ =
(E0, . . . ,Ek(n−k)) given in Example 3.4(1) andF = E(m) (see also Example 3.13) and w

get thatOh0E(m)
Gr(k,n)

is a direct summand ofF . SinceF is indecomposable we derive th
F = OGr(k,n) and we are done.�
Remark 4.5. Applying again Proposition 4.1 and arguing as in Corollaries 4.3 and 4.4
can deduce the splitting criteria for vector bundles on the Fano 3-foldsV5 andV22 given
by Faenzi in [10,11].

Theorem 4.6. Let X be a smooth projective variety of dimension n with the strong CM
property given by the n-block collection σ = (E0, . . . ,En), Ei = (Ei

1, . . . ,E
i
αi

), of line bun-

dles on X. Let E be a vector bundle on X such that E ⊗ Ei
j is an ACM bundle for any

Ei
j ∈ Ei , 0� i � n − 1. Then, E splits into a direct sum of line bundles.

Proof. We may suppose thatE is indecomposable. So that it suffices to prove thatE is a
line bundle. By assumption, for anyEi

j ∈ Ei , 0� i � n − 1, any 0< p < n and anyt ∈ Z,

Hp
(
X,E ⊗ Ei

j ⊗OX(t)
) = 0.

We choose an integerm such that

αn⊕
j=1

H 0(X,E ⊗OX(m − 1) ⊗ En
j

) = 0 and
αn⊕

j=1

H 0(X,E ⊗OX(m) ⊗ En
j

) �= 0.

We apply Proposition 4.1 toX, σ = (E0,E1, . . . ,En) andF = E(m). We conclude thatF
contains

⊕αn

i=1(E
n∗
i )h

0(F⊗En
i ) as a direct summand and sinceF is indecomposable we ge

thatF = En∗
i for some 1� i � αn which proves what we want.�

As a consequence we get:
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Theorem 4.7. Let X = Pn1 × · · · × Pnr be a multiprojective space and let E be a vector
bundle on X such that

E ⊗OX(t1, . . . , tr )

is an ACM bundle for any −ni � ti � 0, 1 � i � r . Then, E splits into a direct sum of line
bundles.

Proof. Let σ = (E0, . . . ,En1+···+nr ) be the(n1 +· · ·+nr)-block collection of line bundle
onX given in Example 3.4(3) (see also Example 3.13). Then, we apply Theorem 4.6�

The converse of Theorem 4.6 turns to be true for vector bundles on projective s
(Horrocks criterion) but, in general, it is not true. For instance, as a consequence of th
neth formula, on any multiprojective spaceP

n1 × · · · × P
nr there are many line bundlesL

such thatL⊗O(t1, . . . , tr ) is not an ACM bundle (take, for example,L = OP2×P3(−3,4)).
As another application of Beilinson type spectral sequence we will derive a cohom

ical characterization of huge families of vector bundles. The first attempt in this dire
is due to Horrocks who in [15] gave a cohomological characterization of the sheafp-
differential forms,Ωp

Pn . Similarly, in [3], Ancona and Ottaviani obtained a cohomolog
characterization of the vector bundlesψi on Qn introduced by Kapranov in [17]. Thes
two results are a particular case of this following much more general statement.

Proposition 4.8. Let X be a smooth projective variety of dimension n with an n-block col-
lection σ = (E0,E1, . . . ,En), Ei = (Ei

1, . . . ,E
i
αi

) of coherent sheaves on X which generates
D and let F be a coherent sheaf on X. Assume there exists j , 0< j < n, such that for any
−n � p � −j − 1 and 1� i � αp

H−p−1(X,F ⊗ E
p+n
i

) = 0

and for any −j + 1� p � 0 and 1� i � αp

H−p+1(X,F ⊗ E
p+n
i

) = 0.

Then F contains
⊕αn−j

i=1 ((REn···En+1−j
E

n−j
i )∗)hj (F⊗E

n−j
i ) as a direct summand.

Proof. By Theorem 3.16, there is a spectral sequence withE1-term

IIE
pq

1 =
{⊕αp+n

i=1 Extq((E
p+n
i )∗,F ) ⊗ (REn···Ep+n+1E

p+n
i )∗ if −n � p � −1,⊕αn

i=1 Extq(En∗
i , F ) ⊗ En∗

i if p = 0,

situated in the square−n � p � 0, 0� q � n which converges to

IIE
i∞ =

{
F for i = 0,
0 for i �= 0.
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By assumption, there exists an integerj , 0 < j < n, such thatIIE
p,−p−1
1 = 0 for any

−n � p � −j − 1 andIIE
p,−p+1
1 = 0 for any−j + 1 � p � 0. Therefore, we have th

following E1-diagram:

q

• n

0 • n − 1
0

0 • 0 j

0 2
• 0 1

• p

−n −j −2 −1

So, the vector bundleF containsIIE
jj

1 = ⊕αn−j

i=1 ((REn···En+1−j
E

n−j
i )∗)hj (F⊗E

n−j
i ) as a

direct summand. �
Our next goal is to extend Horrocks characterization ofp-differentials overPn to mul-

tiprojective spacesPn1 × · · · × P
ns . To this end, we will first determine the left dual(n1 +

· · ·+ns)-block collection of the(n1 +· · ·+ns)-block collectionσ = (E0, . . . ,E(n1+···+ns))

described in Example 3.4.

Notation 4.9. Let X1 andX2 be two smooth projective varieties and let

pi :X1 × X2 → Xi, i = 1,2,

be the natural projections. We denote byB1 � B2 the exterior tensor product ofBi in
OXi

-mod,i = 1,2, i.e.B1 � B2 = p∗
1B1 ⊗ p∗

2B2 in OX1×X2-mod.

Proposition 4.10. Let X = P
n1 × · · · × P

ns be a multiprojective space of dimension d =
n1 + · · · + ns . For any 0� j � d , denote by Ej the collection of all line bundles on X

OX

(
a

j

1, a
j

2, . . . , a
j
s

)
with −ni � a

j
i � 0 and

∑s
i=1 a

j
i = j − d . Then, for any OX(t1, . . . , ts) ∈ Ed−k and any

0� k � d ,

R(k)OX(t1, . . . , ts) = REd ···Ed−k+1OX(t1, . . . , ts) =
−t1∧

TP
n1 (t1) � · · · �

−ts∧
TPns (ts).



L. Costa, R.M. Miró-Roig / Journal of Algebra 294 (2005) 73–96 93

ves of
Proof. According to Proposition 3.9, (3.9), we only need to see that
∧−t1 TP

n1 (t1)� · · ·�∧−ts TPns (ts) verifies the orthogonality conditions (3.7) and (3.8). For anyi, 0� i � d , let
OX(ai

1, . . . , a
i
s) ∈ Ei . By the Künneth formula,

Hα

(
X,

−t1∧
ΩP

n1 (−t1) � · · · �
−ts∧

ΩPns (−ts) ⊗OX

(
ai

1, . . . , a
i
s

))

=
⊕

α1+···+αs=α

Hα1

(
P

n1,

−t1∧
ΩP

n1 (a
i
1 − t1)

)
⊗ · · · ⊗ Hαs

(
P

ns ,

−ts∧
ΩPns

(
ai
s − ts

))
.

Using Bott’s formula, it is zero unlessα = k, i = d − k and

OX

(
ai

1, . . . , a
i
s

) = OX(t1, . . . , ts),

which proves what we want.�
The following result gives us a precise cohomological characterization of shea

p-differential forms on multiprojective spaces.

Theorem 4.11. Let X = P
n1 × · · · × P

ns be a multiprojective space of dimension d =
n1 + · · · + ns . For any 0 � i � d , denote by Ei = (Ei

1, . . . ,E
i
αi

) the collection of all line
bundles on X

OX

(
ai

1, a
i
2, . . . , a

i
s

)
with −nk � ai

k � 0 and
∑s

k=1 ai
k = i − d . Assume there exists a rank

(
d
j

)
vector bundle F

on X with 0< j < d , such that for any −d � p � −j − 1 and 1� i � αp

H−p−1(X,F ⊗ E
p+d
i

) = 0,

for any −j + 1� p � 0 and 1� i � αp

H−p+1(X,F ⊗ E
p+d
i

) = 0

and Hj(F ⊗ E
d−j
i ) = C for any 1 � i � αd−j . Then F is isomorphic to the bundle of

(d − j)-differential forms, i.e.

F ∼=
d−j∧ (

ΩP
n1×···×Pns (1, . . . ,1)

) ∼=
⊕

t1+···+ts=j−d

−t1∧
ΩP

n1 (−t1) � · · · �
−ts∧

ΩPns (−ts)

being E
d−j = OX(t1, . . . , ts).
i
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f

ndles

ed

ply

and

he
Proof. It follows from Propositions 4.8 and 4.10.�
We will end this section extending Horrocks characterization of sheaves op-

differential forms inP
n to Grassmannians. Notice that under the isomorphismGr(1,

n + 1) ∼= P
n, the universal quotient bundleQ on Gr(1, n + 1) corresponds toΩPn(1).

So, it is natural to get, as a generalization of Horrocks characterization of the bu
Ω

p

Pn(p) = ∧p
(ΩPn(1)), a cohomological characterization of the bundlesΣβQ beingQ

the universal quotient bundle onGr(k, n). More precisely, keeping the notations introduc
in Example 2.4(1) and in Example 3.4(1) we have the following.

According to Example 2.4, for anyβ = (β1, . . . , βn−k) with k � β1 � β2 � · · · �
βn−k � 1, denote byrβ the rank ofΣβQ and considerrj = ∑

|β|=j rβ .

Corollary 4.12. Let F be a vector bundle on Gr(k, n), set d = k(n − k) and

Er = {
ΣαS | k(n − k) − r = |α|}.

Assume there exists j , 0< j < d , such that for any −d � p � −j − 1, 1� i � αp and any
ΣαS ∈ Ed+p

H−p−1(Gr(k, n),F ⊗ ΣαS
) = 0

and for any −j + 1� p � 0, 1� i � αp and any ΣαS ∈ Ed+p

H−p+1(Gr(k, n),F ⊗ ΣαS
) = 0.

If rankF = rj then F is isomorphic to
⊕

|β|=j ΣβQ∗.

Proof. It is well known that the following orthogonality relation between the bundlesΣαS
andΣβQ∗ holds:

Hq
(
Gr(k, n),ΣαS ⊗ ΣβQ∗) =

{
C if α = β̃ andq = |α|,
0 otherwise.

So, the bundlesΣβQ∗ verify the orthogonality conditions (3.7) and (3.8) and we ap
Proposition 4.8. �

5. Final comments

In [21] Rouquier introduced the notion of dimension for a triangulated category
he determined bounds for the dimension of the bounded derived categoryDb(OX-mod)
of coherent sheaves over an algebraic varietyX. In particular, among other results,
proved that if the diagonal of an algebraic varietyX has a resolution of lengthr + 1 then
dimDb(OX-mod) � r and for anyn-dimensional smooth projective varietyX we have
n � dimDb(OX-mod) � 2n . He also posed the following questions:
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ctive

al:

y

m

Question 5.1. Does the inequality

dimDb(OX×Y -mod) � dimDb(OX-mod) + dimDb(OY -mod)

hold forX, Y separated schemes of finite type over a perfect field?

Question 5.2. Is there any example ofn-dimensional smooth projective varietyX with
n < dimDb(OX-mod)?

Using the results we have obtained in this paper, we are able to contribute to
questions and we will prove that the equality in Question 5.1 holds for multiproje
spaces and we will enlarge the family ofn-dimensional smooth projective varietyX such
thatn = dimDb(OX-mod) � 2n. Indeed, we have

Theorem 5.3. Let X be a smooth projective variety with the weak CM property. Then

dimDb(OX-mod) = dimX.

Proof. Denote by n the dimension ofX and consider ann-block collection σ =
(E0, . . . ,En) with Ei = (Ei

1, . . . ,E
i
αi

). Suchn-block collection exists becauseX has the
weak CM property. By Theorem 3.16, we have the following resolution of the diagon

0→
α0⊕
i=1

(
REn···E1E

0
i

)∗ � E0
i →

α1⊕
i=1

(
REn···E2E

1
i

)∗ � E1
i → ·· ·

→
αn−1⊕
i=1

(
REn

En−1
i

)∗ � En−1
i →

αn⊕
i=1

(
En

i

)∗ � En
i → O∆ → 0.

So, according to [21, Proposition 5.5], dimDb(OX-mod) � dimX. On the other hand, b
[21, Proposition 5.36], dimX � dimDb(OX-mod) and we are done.�

In particular, we have:

Proposition 5.4. Let X = P
n1 × · · · × P

ns be a multiprojective space. Then

dimDb(OP
n1×···×Pns -mod) =

s∑
i=1

dimDb(OP
ni -mod).

Proof. Since by Example 3.13(3),X has the weak CM property, the result follows fro
Theorem 5.3 and the fact that, by [21, Example 5.6], dimDb(OP

ni -mod) = ni for any
1� i � s. �
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