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Abstract Nitrogen is an essential macronutrient for plant
growth. Following uptake from the soil or assimilation within
the plant, organic nitrogen compounds are transported between
organelles, from cell to cell and over long distances in support
of plant metabolism and development. These translocation pro-
cesses require the function of integral membrane transporters.
The review summarizes our current understanding of the molec-
ular mechanisms of organic nitrogen transport processes, with a
focus on amino acid, ureide and peptide transporters.
� 2007 Federation of European Biochemical Societies.
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1. Introduction

Nitrogen (N) is quantitatively the most important nutrient

for plant growth and productivity. Plants have evolved diverse

and complex strategies for acquisition, assimilation and parti-

tioning of nitrogen. Uptake of inorganic or organic N from the

soil, and transport of newly synthesized organic N from so-

called source organs (e.g. leaves and roots) to sinks (develop-

ing leaves, flowers and seeds) are integral to the physiology

of plants and essential for plant development. In addition,

reallocation of N stored as protein reserves is important during

leaf senescence, seed germination, spring growth of perennials

and development of new generations from tubers and other

reproductive propagules. Biological membranes provide natu-

ral barriers for movement of assimilates within the plant, but

the presence and tightly regulated activity of transport proteins

allow for controlled distribution within cells as well as between

cells and over short and long distances. Identification and

characterization of transport systems that direct the flow of

N metabolites between cellular compartments, in tissues and
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organs, and throughout the plant, is therefore crucial to under-

standing N transport and allocation.

Research on organic N uptake and distribution has focused

on amino acids (including amides) that represent in most

plants the principal transport form for organic N in both

phloem and xylem. In addition to amino acids, some plant spe-

cies use ureides for long distance N transport. It is generally

assumed that translocation of small peptides contributes to

N allocation in plants, but concentrations of small peptides

in the transport path have not been analyzed in detail. One

exception is glutathione, a tripeptide that is important for

transporting organic sulphur in plants.

This review focuses on membrane proteins that are involved

in transport of amino acids, ureides and peptides. Transloca-

tion processes of other N-containing metabolites such as hor-

mones, nucleobases, nucelosides or nucleotides, as well as

secondary plant metabolites, are not discussed here. Similarly,

transport of peptide-conjugates, i.e. glutathione conjugates by

members of the ABC transporter family, and urea via DUR3

and aquaporins is described elsewhere [1,2] (Maurel, this is-

sue). Here, the role of amino acid, ureide and peptide trans-

porters is presented in the context of their biochemical

properties and in planta function.
2. Transporters for organic nitrogen compounds in plants

While much of the initial research on molecular aspects of

organic N transport was performed using Arabidopsis thaliana,

some transporter homologs have been identified and analyzed

in other model or crop plants, including tomato, potato, broad

and castor bean, pea, barley, and rice [3–6]. Many of the Ara-

bidopsis N transporters were isolated using heterologous com-

plementation of yeast (Saccharomyces cerevisiae) mutants

deficient in the uptake of the respective metabolites. Heterolo-

gous expression in S. cerevisieae and/or Xenopus laevis oocytes

allowed determination of substrate selectivity and affinity of

the transporters, which most likely reflects their biochemical

properties in planta. Naming of the first organic N transporter

families was based on the substrate selectivity originally deter-

mined or on already-characterized homologs in other king-

doms. Thus, names of N transporter families do not always

mirror the complete or correct substrate selectivity of a spe-

cific transporter. For example, the first analyzed member of

the ProT (proline transporter) family, AtProT1, not only
blished by Elsevier B.V. All rights reserved.
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transports proline, but also other compatible solutes, as dem-

onstrated by recent studies [7]. Nevertheless, the analyses

showed that most of the transporters of the same clade (sub-

family) share similar substrate selectivity and affinity (see be-

low). The gene families that have been functionally

characterized are briefly described here, but for a detailed

description of individual gene families and the phylogenetic

relationship of the transporters, for analysis of characteristic

motifs, as well as other information such as an overview of

transporter expression and regulation of expression, we refer

to recent reviews [3–5,8–11].

2.1. Amino acid transporters

Physiological studies on N transport processes in plants

using plasma membrane vesicles indicate that multiple systems

exist for uptake and transport of amino acids [12–15]. So far,

amino acid transporters have been identified as members of at

least five gene families and these transport proteins display dif-

ferent substrate selectivities and affinities as well as distinct

subcellular localization (Table 1).

2.1.1. Amino acid transporters of the ATF family. The ATF

(amino acid transporter family) also referred to as AAAP

(amino acid/auxin permease)-family was first described in

plants and comprises 46 members in Arabidopsis (http://ara-

memnon.botanik.uni-koeln.de; [16]). Within the ATF, 6 sub-

families exist: (i) AAPs (amino acid permeases) with eight

members; AtAAP1 to AtAAP6 and AtAAP8 have been char-

acterized in more detail using heterologous expression systems,

and they preferentially transport neutral amino acids and glu-

tamate [17,18]. While AtAAP6 has a high affinity for these

amino acids, the other AAPs recognize their substrates with

moderate or low affinity.3 Recent studies using Arabidopsis

ataap1 mutants demonstrated that the substrate selectivity of

AtAAP1 in planta is consistent with that resolved by heterolo-

gous expression analyses [19]. Kinetics determined in oocytes

revealed for AtAAP1 random binding and simultaneous trans-

port of amino acids and protons [20] and a general co-trans-

port of one proton per neutral, basic and uncharged acidic

amino acid for all AAPs analyzed [17,20,21]. With respect to

protein structure, up to now there is little direct evidence for

the structure of organic nitrogen transporters and information

on topology is mainly based on predictions. However, using

epitope-tagged proteins expressed in animal tissue culture cells,

11 transmembrane spanning domains could be determined for

AtAAP1/NAT2 [22]. (ii) LHTs (‘lysine/histidine’ transporters)

were named according to the substrate selectivity originally

determined for AtLHT1 [23]. However, more detailed studies

on the biochemical properties of AtLHT1 and AtLHT2 in S.

cerevisiae revealed, that compared to basic amino acids, their

affinities for neutral and acidic amino acids are much higher

[24,25]. Consequently, the LHTs are now classified as high

affinity transporters for these groups of amino acids. (iii)

ProTs transport the imino acid proline, glycine betaine and re-

lated quaternary ammonium compounds, as well as the amino

acid a-aminobutyric acid (GABA) with moderate or low affin-

ity [7]. (iv) GATs (c-aminobutyric acid transporters) transport
3In this review, high affinity refers to K0.5 values for at least one amino
acid (or other organic nitrogen compounds) of smaller than 50 lM,
while K0.5 values for moderate and low affinity transporters are
between 50 and 500 lM and higher than 500 lM, respectively (see also
Table 1).
GABA and GABA-related compounds. At least AtGAT1 dis-

plays a high affinity towards its substrates [26]. (v) ANT1 (aro-

matic and neutral amino acid transporter 1)-like proteins; so

far only AtANT1 has been characterized as a moderate affinity

transporter for aromatic and neutral amino acids, whereas the

biochemical properties of the remaining 18 members are

unknown [27]. Considering the phylogenetic relationship of

ANT1-like proteins, this family might be subdivided into

groups with different substrate selectivity and sub-cellular

localization (see below). (vi) The AUX (auxin-resistant) sub-

group. Based on the phenotype of an Arabidopsis aux1

mutant, a role of AtAUX1 in transport of the phytohormone

auxin, which is structurally related to the amino acid trypto-

phan, has long been postulated, but AtAUX1-mediated

indole-3-acetic acid (IAA) transport has only recently been

demonstrated [28].

While the members of the different Arabidopsis ATF sub-

families might have similar substrate selectivity and affinity,

expression analyses revealed that individual transporters show

highly specific expression patterns, indicating that they fulfil

specific roles in planta [3]. Amino acid transporters isolated

from other plant species exhibited biochemical properties com-

parable to Arabidopsis homologs when analyzed in S. cerevi-

siae or Xenopus oocytes. This suggests that the function of

amino acid transporters is conserved among higher plants.

However, differences in tissue specificity and expression levels

of homologous transporters were observed between species

[3]. For example, RcAAP3 from castor bean has a substrate

selectivity similar to AtAAP3, the most closely related trans-

porter in Arabidopsis, but while AtAAP3 is primarily

expressed in roots, RcAAP3 is expressed in various source

and sink tissues [29].

ATF homologs from other kingdoms show highest similarity

to members of the ANT1-subgroup. In animals, these trans-

porters include a vesicular inhibitory amino acid transporter

(VIAAT), responsible for GABA uptake into synaptic vesicles,

and sodium coupled neutral amino acid (system N/A) trans-

porters, mediating amino acid import (and export), as well

as PAT1 and related transporters responsible for import or ex-

port of amino acids into the cell and out of the lysosome,

respectively [30–32]. Also associated with the ANT1-subgroup

are S. cerevisiae amino acid transporters for vacuolar import

or export [33]. In addition, several amino acid transporters

from parasitic protozoa are distantly related to members of

the ATF [34].

2.1.2. Amino acid transporters of the APC family. The sec-

ond large gene family of amino acid transporters is the plant

APC (amino acid–polyamine–choline) family. Homologs of

this family are present in prokaryotes (bacteria, archaea) and

eukaryotes (parasitic protozoa, fungi, animals). The plant

transporters of the APC transporter family fall into two sub-

groups. (i) CATs (cationic amino acid transporters) show high-

est homology to mammalian CATs, and Arabidopsis AtCAT1

and AtCAT5 have been described as high affinity transporters

for cationic amino acids [35–37]. Furthermore, AtCAT6 has

been recently demonstrated to transport both essential neutral

amino acids and the basic amino acid lysine with moderate

affinity [38]. This transport is likely to be energized by protons

[38]. (ii) LATs (L-type amino acid transporters) were named

after a subgroup found in mammalian systems, representing

the light chain of the hetero(di)meric amino acid transport-

ers (HATs) (LATs are also called gpaAT for glycoprotein

http://aramemnon.botanik.uni-koeln.de
http://aramemnon.botanik.uni-koeln.de


Table 1

Gene families of Arabidopsis transporters for major organic nitrogen compounds

Substrate Gene family Subfamily No. genes Selectivitya Affinitya,b Subcelluar localizationc Reference

Amino acids ATF (or AAAP)

amino acid transporter family

(or amino acid/auxin permease)

AAP amino acid permease 8 neutral amino acids (aa), glutamate moderate (AtAAPl-5, 8),

high (AtAAP6)

PM(AtAAPl,GFP), PM/EM

(AtAAP3, GFP, c-Myc)

[17–19,86]

LHT ‘lysine/histidine’ transporter 10 neutral aa, acidic aa high (AtLHTl,AtLHT2) PM (AtLHTl, proteome), PM

(AtLHT4, proteome),

PM (Atlg48640, proteome)

[24,25,78,95]

ProT proline transporter 3 proline, quaternary ammonium

compounds

moderate/low

(all AtProTs)

PM (AtProTl, 2, 3, GFP) [7]

GAT c-aminobutyric

acid transporter

2 c-aminobutyric acid, and

related compounds

high (AtGATl) PM (AtGATl, GFP), PM

(AtGAT2, proteome, GFPe)

[26,78]

ANT1-like aromatic and neutral

amino acid transporter

19 neutral aa, aromatic aa moderate (AtANT1) TP (At3g30390, proteome);

Cpl (At5g02180, proteome)

[27,70,75]

AUX auxin restistant 4 auxines high (AtAUXl) PM (AUX1, HA-tag,

proteome), PM (AtLAXl,

proteome)

[28,78,95–97]

APC amino acid–

polyamine–choline

CAT cationic amino acid transporter 9 neutral aa high (AtCATl, AtCAT5),

moderate (AtCAT6)

PM (AtCAT5, GFP),

PM/EM (AtCAT6 and 8,

GFP), TP (AtCAT2, GFP),

TP (AtCAT4, proteome)

[11,36,38,70]

LAT L-type amino acid transporter 5 – – – [11]

MCF mitochondrial carrier family BAC (mitochondrial)

basic amino acid carrier

2 Arg, Lys, Orn, His moderate (exchange,

AtmBACl,

AtmBAC2)

Mitochondria [49–51]

OEP16 or PRATd plastid outer

envelope porin of 16 kDa (or preprotein

and amino acid transport)

OEP16 plastid outer

envelope protein of 16 kDa

3 pea OEP16: amino

acids and amines

– Cpl, outer envelope [44–46]

DASS divalent anion:Na+ symporter DiT2-homologs

dicaboxylate transport

2 DiT2.1: exchange

glutamate/malate

– Cpl, inner envelope,

Cpl (DiT2.1, proteome)

[48,75,76]

Ureides DMT drug/metabolite transporter UPS ureide permease 5 allantoin, xanthine, uracil high (AtUPS1, 2, 5) – [54,55]

Peptides PTRd (or POT) peptide transporter

(or proton-coupled oligopeptide transporter)

PTR1-branchf peptide transporter 5f di- and tripeptides high (AtPTRl, AtPTR2) PM (AtPTRl; GFP,

proteome), TP (AtPTR2;

GFPg, proteome)

[58,59,70,72,73,95]

OPTd oligopeptide transporter OPT-subfamily oligopeptide

transporter

9 tetra- and pentapeptides,

glutathione

high (AtOPT4), moderate

(GSH, AtOPT6)

– [6,8,63]

ABCd ATP binding cassette TAP transport associated

with antigen processing

3 larger peptides

(no experimental evidence)

– TP (AtTAP2, proteome) [9,72]

aSubstrate selectivity and affinity were determined in S. cerevisiae and/or Xenopus oocytes.
bHigh affinity refers to K0.5 values for at least one substrate of <50 lM, moderate 50–500 lM and low >500 lM.
cPM, plasma membrane; EM, endomembranes (endoplasmic reticulum, Golgi apparatus or small vesicles); TP, tonoplast; Cpl, chloroplast/plastids (predictions for membrane targeting using bioinformatic tools are not included).
dThese families contain additional subfamilies, which are not listed here (see text).
eMeyer and Rentsch, unpublished.
fFor further putative peptide transporters see Tsay et al. (this issue).
gSuter and Rentsch, unpublished.
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associated amino acid transporters; [37]). So far, no data are

available on the biochemical properties of plant LATs. As ani-

mal homologs require interaction with a glycoprotein for prop-

er targeting, a second, interacting protein might be required for

function in heterologous expression systems.

2.1.3. Amino acid transporters in other gene families. In

animals, amino acid transporters have also been found among

members of the MFS (major facilitator superfamily). These in-

clude, for example, the aromatic amino acid transporter

TAT1, and the vesicular glutamate transporter VGLUT1 as

well as members of the system-L like amino acid transporter

(SLC43) family, which transport neutral amino acids [39–42].

In S. cerevisiae, a family of vacuolar transporters for basic

amino acids (VBA) has been identified [43]. However, there

is currently no experimental evidence that MFS members are

involved in translocation of amino acids in plants.

Interestingly, several other gene families contain plant ami-

no acid transporters which are localized at organellar mem-

branes. Transporters have been identified that facilitate

amino acid transport from the cytosol across the plastid enve-

lopes. In the outer envelope, OEP16 from pea forms a cation

selective high-conductance channel with a strong bias for ami-

no acids and amines [44]. The Arabidopsis genome contains

three OEP16 (outer envelope protein of 16 kDa)-genes belong-

ing to the OEP16 (plastid outer envelope porin of 16 kDa)-

family [45]. OEP16 proteins show homology to the inner

mitochondrial membrane proteins Tim17, Tim22 and Tim23,

and to LivH, a component of a prokaryotic amino acid perme-

ase. Thus, the OEP16 family was also named PRAT (prepro-

tein and amino acid transport)-family [46]. In addition,

although phylogenetically unrelated to OEP16, the OEP24

channel allows passage of amino acids at the outer plastid

envelope membrane. However, OEP24 is rather unspecific, as

it also permits flux of triosephosphate, dicarboxylic acids, sug-

ars, ATP and inorganic phosphate [47].

So far, the only amino acid transporter identified to operate at

the inner plastid envelope is DiT2.1 (dicarboxylate transport),

belonging to the DASS (divalent anion:Na+ symporter) family.

DiT2.1 functions in glutamate/malate exchange essential in the

photorespiratory pathway [48]; transport activity for its closest

homolog, DiT2.2, has not been demonstrated yet.

Mitochondrial amino acid transporters have been found in

plants that, like the yeast and animal mitochondrial transport

systems, are members of the MCF (mitochondrial carrier fam-

ily) [49,50]. In Arabidopsis, two AtmBACs (mitochondrial ba-

sic amino acid carriers) have been functionally characterized,

and their substrate selectivities resemble those of the corre-

sponding human proteins. Reconstituted in liposomes,

AtmBAC1 and AtmBAC2 transport Arg, Lys, Orn and His by

exchange mechanism. AtmBAC2 has a less narrow substrate

selectivity than AmBAC1 since, for example, it also transports

DD-isomers of Arg and Lys [51]. Further, in S. cerevisiae and

humans, mitochondrial aspartate–glutamate and glutamate

transporters of the MCF are known, and homologs might be

present among the plant MCF members [52].

2.2. Ureide transporters

In legumes of warm climates such as soybean, common bean

and cowpea, the ureides allantoin and allantoic acid are the

main products of N2 fixation transported from the nodules

to the shoot. While plant allantoic acid transporters are un-

known, allantoin transporters (ureide permeases; UPS) have
been identified as members of the drug/metabolite transport

(DMT) family [53–56]. The plant UPS share no significant

homology with known allantoin transporters from other

organisms such as yeast or bacteria. Interestingly, the first ure-

ide permease (AtUPS11) was isolated from Arabidopsis, which

does not use ureides as a main form of N for long-distance

transport [53]. Heterologous expression of AtUPS1 in S. cere-

visiae and Xenopus oocytes showed that AtUPS1 mediates

transport of allantoin, but other oxo-N-heterocycles like uracil

and xanthine are transported with circa 10-fold higher affinity

compared to allantoin (Table 1) [53–55]. Further members of

the AtUPS family transport the same substrates as AtUPS1

with highest affinity for uracil (AtUPS2) or xanthine (AtUPS5)

[54,55]. The only ureide transporter thus far isolated from ‘ure-

ide-transporting’ plants is PvUPS1 from common bean [56].

PvUPS1 transports allantoin, but also recognizes uric acid

and xanthine. Since in bean plants allantoin levels in the apop-

last (e.g. nodule and xylem) and phloem are high in compari-

son to concentrations of uric acid and xanthine, and since

PvUPS1 is expressed in phloem tissues, allantoin is expected

to be the physiological substrate for PvUPS1 [56,57].

2.3. Peptide transporters

Plant peptide transporters generally belong to three different

gene families, each recognizing peptides of specific length (Ta-

ble 1). Di- and tripeptides are transported by members of the

PTR (peptide transporter)-family which in other kingdoms

including prokaryotes, fungi and animals, comprises only

few members. In plants, this gene family is much larger and

consists of over 50 genes in Arabidopsis. So far, function in

di- and tripeptide transport has only been demonstrated for

one sub-branch of the PTR family, the AtPTR1-like proteins

[58], also referred to as subgroup II [5] and representing a clade

of subfamily II (Tsay et al., this issue). These AtPTR1-like pro-

teins include functionally characterized peptide transporters

from Arabidopsis (AtPTR1, AtPTR2; [58,59]), faba bean

(VfPTR1; [60]) and barley (HvPTR1, [61]) as well as several

non-characterized genes from Arabidopsis (three genes) and

other plant species. However, recent unpublished data suggest

that peptide transporters are also present in other subgroups of

the PTR family (Tsay et al., this issue). The Arabidopsis PTR1

and PTR2 have been characterized in more detail showing that

they recognize various di- and tripeptides with different affinity

[58,59]. Chiang et al. [59] also established that AtPTR2 trans-

ports peptides and protons simultaneously by a random bind-

ing mechanism. For most plant PTR proteins the substrate

selectivity has not been determined yet, but it is evident that

some PTR proteins do not transport peptides; for example,

Arabidopsis NRT1 mediates transport of nitrate (see Tsay

et al., this issue), and AgDCAT1 from alder transports carb-

oxylates with moderate affinity [62].

Transport of larger peptides (4–5 amino acids) is mediated

by members of the OPT (oligopepide transporter)-family [8].

This family can be grouped into two subfamilies: (i) the true

OPTs (also referred to as peptide transporter (PT) clade of

OPTs) occur only in plants and fungi. There are nine members

in Arabidopsis, for which so far only the uptake of selected tet-

ra- and pentapeptides has been shown [8,63]. In addition, some

OPTs from different plant species are able to transport gluta-

thione and glutathione conjugates when expressed in S. cerevi-

siae, and AtOPT3 might transport metals [6,64,65]. (ii) The

YSL (yellow stripe like) proteins are more widely distributed
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than true OPTs and are found in archae, bacteria, plants and

fungi. In the Arabidopsis genome 8 YSL homologs are present

that are predicted to transport metal–chelating amino acids. At

least for some plant YSL proteins the transport of metal–nic-

otianamine or metal–phytosiderophore complexes has been

shown [6].

In animals, transporters for large peptides (6–59 amino

acids) have been identified as members of the ABC (ATP bind-

ing cassette) transporter gene family [9]. For example, animal

TAPs (transport associated with antigen processings) preferen-

tially mediate transport of peptides of 8–12 amino acids. Hexa-

mers and longer peptides of up to 40 amino acids are also

translocated, but with lower efficiency. Further, TAPL (a

TAP-like transporter) recognizes 6 to 59-mer peptides with a

preference for peptides of �23 amino acids [66]. Three mem-

bers of the TAP subfamily have been identified in the Arabid-

opsis genome (see http://aramemnon.botanik.uni-koeln.de;

[16]). Whether, like in animals, these transporters import pro-

tein degradation products into the ER lumen, is an interesting

hypothesis that remains to be tested.
3. Intra- and intercellular transport of organic nitrogen

A large number of metabolites are synthesized in plant cells,

and the pathways that the metabolites feed into are complex

and often partitioned between cells and organelles. Thus, a vari-

ety of organic N transporters (importers and exporters) are ex-

pected to be present at the different membranes. The

transporters of the ATF, APC, UPS, PTR, and OPT families

characterized so far were all described as cellular uptake sys-

tems. Whether some of these transporters may additionally

facilitate export has generally not been investigated. Up to

now, plant export systems for organic N at the plasma mem-

brane have not been identified at the molecular level. Using acti-

vation tagged mutants, Pilot et al. [67] described a plant-specific

protein with one predicted transmembrane domain that, when

overexpressed, led to increased levels of glutamine in the gutta-

tion droplets of leaf hydathodes. However, the mechanism by

which it contributes to amino acid excretion is unclear. Depend-

ing on gradients of amino acids and co-substrates, in animals,

cellular export of amino acids is mediated by exchange, facili-

tated diffusion, co-transport or vesicular transport [31,32,37].

Export of amino acids by vesicular excretion is also used in S.

cerevisiae [68]. In bacteria, several families of amino acid export

systems have been identified (e.g. LysE, RhtB, ThrE and

BrnFE) that mediate cellular export of specific amino acids by

different mechanisms [69]. Similarly, in plants export might

operate by carrier-mediated efflux or by vesicular transport.

Whether plant transporters that are localized to small vesicles

contribute to vesicular excretion needs to be analyzed.

Based on their transport mechanisms (proton-symport) or

simply based on the ability to mediate uptake of organic N

when expressed in heterologous expression systems, it has been

suggested that most of the transporters are plasma membrane

transporters mediating uptake of N from the apoplast. How-

ever, studies using fusion proteins such as transporter-GFP

or transporter-small epitope (i.e. HA or c-Myc tags) fusions,

as well as information gained from proteome analyses, demon-

strate localization of some of the organic N transport proteins

to membranes other than the plasma membrane (Table 1).

While evidence for their physiological function and mechanism
of operation is still lacking, transporters have been localized to

the tonoplast (AtCAT2, AtCAT4, AtPTR2) or are suggested

to be present at the plasma membrane and ER or Golgi,

respectively (AtAAP3, AtCAT6 and AtCAT8) (Table 1).

Members of the ANT1-subgroup might function at the tono-

plast since homologs from S. cerevisiae and mammalian sys-

tems can mediate amino acid transport across the vacuolar

membrane [30,33]. This notion is consistent with proteome

analyses, which found the ANT1-like protein At3g30390 and

a barley homolog (gi/47497044) at the tonoplast [70,71]. In

addition, proteome studies also identified AtPTR2 and a bar-

ley homolog (gi/1576661) at the vacuolar membrane [70–73].

Physiological analyses with labeled substrates showed carrier

or channel-mediated uptake of amino acids and peptides

across the tonoplast modulated by free ATP [74]. As the con-

centration of amino acids in vacuoles is usually lower than in

the cytosol, energy-dependent vacuolar export systems can be

postulated. So far export by proton-coupled amino acid sym-

port has only been demonstrated for Chara vacuoles [74]. With

respect to peptide translocation processes, AtPTR2, a proton-

coupled transporter for di- and tripeptides [59], was localized

to the tonoplast (Table 1), where it might be responsible for ex-

port of protein degradation products from the vacuole.

Plastids are key compartments for amino acid biosynthesis.

Some amino acids appear to be synthesized exclusively within

plastids (e.g. phenylalanine, tyrosine, tryptophan, lysine)

whereas others are produced in the cytosol (e.g. proline and

asparagine) or even in multiple compartments (e.g. glutamine,

aspartate and serine), suggesting that both import and export

of amino acids are important for cellular function. Proteome

analyses identified DiT2.1 and the ANT1-like protein

At5g02180 as components of the plastid envelope (Table 1)

[75,76]. In addition, bioinformatic analyses using predictions

for plastid targeting signals (and pI values) found several ami-

no acid transporters (i.e. AtDiT2.1, AtDiT2.2, AtLHT4,

AtLHT5, AtCAT6, AtCAT9, AtLAT1 and the AtANT1-like

protein At2g40420) as being localized at the inner plastid enve-

lope [76,77]. However, supporting experimental evidence is lar-

gely missing or contradicts these analyses. In fact, AtCAT6, a

predicted plastid transporter, is localized to the plasma mem-

brane, ER and Golgi [38] and according to proteome data,

AtLHT4 is targeted to the plasma membrane [78]. The only or-

ganic N transporter characterized at the envelope membrane

so far is the glutamate/malate exchanger DiT2.1 [48].

At the mitochondrial membrane, amino acid uptake systems

are important for mitochondrial protein synthesis or amino acid

degradation (e.g. arginine, proline and GABA), but so far only

transporters for basic amino acids have been identified (Table 1)

[49,50]. N transport systems are also expected to occur in other

organelles, including peroxisomes and endoplasmic reticulum,

that are locations for synthesis of a variety of organic N com-

pounds. Proteome analyses, localization approaches and for-

ward genetic screens are certainly excellent tools to identify

the transporters for inter- and intracellular organic N transfer.
4. Uptake of organic N compounds from the soil

Organic N is present in considerable quantities in soils of

natural ecosystems and agricultural systems, but the organic

compounds have generally been considered to be a N source

for soil microbes rather than plants. There is no evidence that

http://aramemnon.botanik.uni-koeln.de
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plants access complex N forms such as protein directly, but it is

established that soil microbes including mycorrhizal fungi

break down complex organic compounds. Mycorrhizal fungi

take up degradation products and deliver low molecular

weight N compounds to the plant host. For example, in the

ectomycorrhizal fungus Hebeloma cylindrosporum, uptake of

amino acids into hyphae is mediated by the amino acid perme-

ase HcGAP1 [79] and di- and tripeptides by HcPTR2A and B

[80]. However, it has long been known that plants can acquire

amino acids directly from the soil and may even prefer amino

acids over inorganic N forms. It is unclear how well plant roots

compete for soil amino acids compared to microbes (see re-

views by [81,82]), but the ability to effectively acquire amino

acids from the soil appears to characterize plants from cold cli-

mate ecosystems such as tundra where mineralization rates are

generally low. Measured concentrations of amino acids in soil

solution range from 0.01 to 1000 lM, and amino acids can

constitute between 1% and 25% of soluble soil N compounds

([81,82] and references cited therein). For uptake of amino

acids by the root, high and low affinity transport systems have

been predicted. Although several amino acid and peptide

transporters are expressed in roots, a direct role in organic N

uptake has only been demonstrated for two amino acid trans-

porters, AtAAP1 and AtLHT1. Using T-DNA insertion lines

as well as overexpressing lines, Hirner et al. [25] showed that,

in Arabidopsis, AtLHT1 is responsible for the uptake of ami-

no acids into roots as well as into mesophyll cells. AtLHT1

was also identified in a forward genetic screen, selecting for

mutants resistant to DD-alanine [83]. In the lht1 mutants, acqui-

sition of a variety of amino acids was reduced and changes of

the composition of free amino acids in leaves were observed

[25,83]. Using a similar approach selecting for mutants resis-

tant to high concentrations of amino acids, AtAAP1 was iden-

tified as an essential uptake system for amino acids in roots

[19]. Transport studies with labeled N compounds established

that in planta AtAAP1 mediates uptake of neutral, uncharged

amino acids and glutamate, confirming earlier work on sub-

strate selectivity of AtAAP1 using heterologous expression of

the transporter in S. cerevisiae and Xenopus oocytes [17]. Stud-

ies with atcat6 mutants showed failure of seedling growth on

medium containing LL-glutamine as sole N source. However,

AtCAT6 is not expressed in root cells involved in uptake of

nutrients from the soil but in root tip cells. Therefore the ob-

served growth inhibition of atcat6 mutants is probably due

to amino acid partitioning processes within the tip of the root

rather than reduced amino acid uptake [38].

In addition to amino acids, soils contain many organic N

compounds of higher molecular weight; of these, small pep-

tides are particularly interesting. There is evidence that plants

can grow with peptides as the sole N source and that putative

peptide transporters are expressed in (cluster) roots of Hakea

[84], but molecular data are lacking. Whether expression of

amino acid and peptide transporters in roots characterizes spe-

cies from ecosystems with different soil N characteristics is an

interesting hypothesis that still awaits experimental support.
5. Long distance transport of organic nitrogen

Soil-derived organic N, as well as organic N compounds syn-

thesized in roots or legume nodules, are delivered in the tran-

spiration stream (xylem) to the source leaves, where they are
either metabolized, transiently accumulated or immediately

transferred to the phloem for long distance transport to sink

tissues. Alternatively, the N exported by the leaf is derived

from reduction of inorganic N delivered via the xylem or from

hydrolysis of leaf protein. Our understanding of the mecha-

nisms operating in mature leaves for long distance transport

of organic N to sink organs is incomplete. In general, amino

acids, ureides or peptides are loaded into the phloem in order

to be exported from the leaf and phloem loading might be by

the symplasmic and apoplastic path, respectively. In the sym-

plasmic loading mechanism, movement of assimilates from

the mesophyll cells to the sieve element-companion cell com-

plex (SE/CC) of the phloem occurs via plasmodesmata. For

apoplastic phloem loading, assimilates are released into the

apoplast, followed by uptake into the SE/CCs, which requires

plasma membrane-located transport proteins. Using pro-

moter-GUS studies and RNA localization experiments,

expression of transporters for amino acids (AtAAP2, AtAAP3

[85,86]), allantoin (PvUPS1 [56,57]) and peptides (AtOPTs,

NaNTR1, AtPTR1 [10,58,87]) has been localized to the vascu-

lature or phloem, suggesting a role in apoplastic phloem load-

ing of organic N. In addition, antisense repression of the

source leaf-specific amino acid transporter StAAP1 from pota-

to led to a reduction in the free amino acid content in tubers,

which indicates function of StAAP1 in uptake of amino acids

into the SE/CC complex for long distance transport to sinks

[88].
6. Translocation of organic N during seed development and

germination

During reproductive growth, seeds represent the major sink

for organic N. In leaves, newly assimilated N, transiently

stored N (e.g. as vegetative storage proteins) or N derived from

protein breakdown during senescence is remobilized and

loaded into the phloem for transport to the seed sinks. Since

the filial parts of the seeds (embryo/cotyledons and endosperm)

are largely symplasmically isolated, organic N is exported from

the maternal seed coat into the seed apoplast, followed by

uptake into filial cells. Imported N compounds might be

needed for seed development and, dependent on the plant spe-

cies, are stored as storage proteins in the endosperm or in the

embryo/cotyledons. Expression of several seed amino acid

transporters precedes storage protein synthesis. AtAAP1,

AtAAP8 and AtCAT6 from Arabidopsis as well as the legume

PsAAP1 and VfAAP1 are predicted to play a role in import of

amino acids into the seed/cotyledons [18,38,85,89,90] and

AtOPT3, AtOPT8, VfPTR1 and AtPTR2 seem to provide

the seed with peptides [10,60,91,92].

So far, only a few organic N transporters have been shown

to be essential for seed loading or development. Homozygous

plants with a T-DNA insertion in AtOPT3 exhibited arrested

embryo growth around the octant stage of embryo develop-

ment, which suggests a critical role in peptide transport at

early developmental stages [92]. In a similar manner, using

antisense repression Song et al. [91] demonstrated involvement

of the di- and tripeptide transporter AtPTR2 in seed growth.

Atptr2 antisense lines showed a delay in flowering and dis-

played arrested seed development. However, this effect could

not be observed in two independent atptr2 knock-out

mutants (Dietrich and Rentsch, unpublished), indicating that
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down-regulation of more than one AtPTR transporter had

occurred in the antisense lines and was necessary to obtain

the growth phenotype observed. None of the amino acid trans-

port mutants analyzed thus far show an obvious phenotype

with respect to seed development, indicating that N import

deficiency might be compensated by other transporters. How-

ever, embryo-specific expression of faba bean VfAAP1 in Vicia

narbonensis and pea led to increased seed size and seed protein

content, suggesting that VfAAP1 expression affects sink

strength and that N import is limiting for seed protein synthe-

sis [93].

Storage proteins are remobilized during germination to sup-

port growth of the seedling. In barley, it could be shown that

uptake rates of small peptides at the scutlleum were higher

than amino acid transport rates. This indicates that storage

protein breakdown products of the endosperm might be trans-

ported as amino acids and small peptides. Localization of the

HvPTR1 peptide transporter exclusively at the plasma mem-

brane of scutellar epithelial cells of germinating barley grains

supports these physiological data and a role of peptide trans-

port during seed germination [61,94]. Miranda et al. [60] sug-

gest that VfPTR1 functions in a similar manner in faba

bean. In addition, several Arabidopsis amino acid (AtAAPs,

[3]; AtCAT6, [38]) and peptide (AtPTR1, [58]; AtOPTs, [10])

transporters have been proposed to be important for seed ger-

mination and establishment of the seedling.
7. Conclusions

A large number of (putative) transporters for organic N

compounds have been identified in the last 15 years. While

individual transporters have been characterized with respect

to their expression in plants and substrate selectivity/affinity

using heterologous expression systems, for most of the organic

N transporters, the biochemical properties and their physio-

logical role in planta remain unknown. The diversity of organic

N transporters characterized from plants so far reflects their

importance for complex regulation of N distribution, compart-

mentation and storage in support of plant growth and repro-

duction, as well as in response to changing environmental

conditions. Only a detailed and comprehensive analysis of N

transport processes using cell-biological techniques combined

with molecular, genetic and physiological approaches will help

discovering and understanding the integrated role of organic N

transporters in overall plant function.
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Kunze, R. (2003) ARAMEMNON, a novel database for
Arabidopsis integral membrane proteins. Plant Physiol. 131, 16–
26.

[17] Fischer, W.N., Loo, D.D.F., Koch, W., Ludewig, U., Boorer,
K.J., Tegeder, M., Rentsch, D., Wright, E.M. and Frommer,
W.B. (2002) Low and high affinity amino acid H+-cotransporters
for cellular import of neutral and charged amino acids. Plant J.
29, 717–731.

[18] Okumoto, S., Schmidt, R., Tegeder, M., Fischer, W.N., Rentsch,
D., Frommer, W.B. and Koch, W. (2002) High affinity amino acid
transporters specifically expressed in xylem parenchyma and
developing seeds of Arabidopsis. J. Biol. Chem. 277, 45338–
45346.

[19] Lee, Y.-H., Foster, J., Chen, J., Voll, L.M., Weber, A.P.M. and
Tegeder, M. (2007) AAP1 transports uncharged amino acids into
roots of Arabidopsis. Plant J. 50, 305–319.

[20] Boorer, K.J., Frommer, W.B., Bush, D.R., Kreman, M., Loo,
D.D.F. and Wright, E.M. (1996) Kinetics and specificity of a H+

amino acid transporter from Arabidopsis thaliana. J. Biol. Chem.
271, 2213–2220.

[21] Boorer, K.J. and Fischer, W.N. (1997) Specificity and stoichiom-
etry of the Arabidopsis H+ amino acid transporter AAP5. J. Biol.
Chem. 272, 13040–13046.

[22] Chang, H.C. and Bush, D.R. (1997) Topology of NAT2, a
prototypical example of a new family of amino acid transporters.
J. Biol. Chem. 272, 30552–30557.

[23] Chen, L. and Bush, D.R. (1997) LHT1, a lysine- and histidine-
specific amino acid transporter in Arabidopsis. Plant Physiol. 115,
1127–1134.



2288 D. Rentsch et al. / FEBS Letters 581 (2007) 2281–2289
[24] Lee, Y.H. and Tegeder, M. (2004) Selective expression of a
novel high-affinity transport system for acidic and neutral amino
acids in the tapetum cells of Arabidopsis flowers. Plant J. 40, 60–
74.

[25] Hirner, A., Ladwig, F., Stransky, H., Okumoto, S., Keinath, M.,
Harms, A., Frommer, W.B. and Koch, W. (2006) Arabidopsis
LHT1 is a high-affinity transporter for cellular amino acid uptake
in both root epidermis and leaf mesophyll. Plant Cell 18, 1931–
1946.

[26] Meyer, A., Eskandari, S., Grallath, S. and Rentsch, D. (2006)
AtGAT1, a high affinity transporter for gamma-aminobutyric
acid in Arabidopsis thaliana. J. Biol. Chem. 281, 7197–7204.

[27] Chen, L.S., Ortiz-Lopez, A., Jung, A. and Bush, D.R. (2001)
ANT1, an aromatic and neutral amino acid transporter in
Arabidopsis. Plant Physiol. 125, 1813–1820.

[28] Yang, Y.D., Hammes, U.Z., Taylor, C.G., Schachtman, D.P. and
Nielsen, E. (2006) High-affinity auxin transport by the AUX1
influx carrier protein. Curr. Biol. 16, 1123–1127.

[29] Neelam, A., Marvier, A.C., Hall, J.L. and Williams, L.E. (1999)
Functional characterization and expression analysis of the amino
acid permease RcAAP3 from castor bean. Plant Physiol. 120,
1049–1056.

[30] Boll, M., Daniel, H. and Gasnier, B. (2004) The SLC36 family:
proton-coupled transporters for the absorption of selected amino
acids from extracellular and intracellular proteolysis. Pflugers
Arch. Eur. J. Physiol. 447, 776–779.

[31] Gasnier, B. (2004) The SLC32 transporter, a key protein for the
synaptic release of inhibitory amino acids. Pflugers Arch. Eur. J.
Physiol. 447, 756–759.

[32] Mackenzie, B. and Erickson, J.D. (2004) Sodium-coupled neutral
amino acid (System N/A) transporters of the SLC38 gene family.
Pflugers Arch. Eur. J. Physiol. 447, 784–795.

[33] Russnak, R., Konczal, D. and McIntire, S.L. (2001) A family of
yeast proteins mediating bidirectional vacuolar amino acid
transport. J. Biol. Chem. 276, 23849–23857.

[34] Akerman, M., Shaked-Mishan, P., Mazareb, S., Volpin, H. and
Zilberstein, D. (2004) Novel motifs in amino acid permease genes
from Leishmania. Biochem. Biophys. Res. Commun. 325, 353–
366.

[35] Frommer, W.B., Hummel, S., Unseld, M. and Ninnemann, O.
(1995) Seed and vascular expression of a high-affinity transporter
for cationic amino acids in Arabidopsis. Proc. Natl. Acad. Sci.
USA 92, 12036–12040.

[36] Su, Y.H., Frommer, W.B. and Ludewig, U. (2004) Molecular and
functional characterization of a family of amino acid transporters
from Arabidopsis. Plant Physiol. 136, 3104–3113.

[37] Verrey, F., Closs, E.I., Wagner, C.A., Palacin, M., Endou, H. and
Kanai, Y. (2004) CATs and HATs: the SLC7 family of amino
acid transporters. Pflugers Arch. Eur. J. Physiol. 447, 532–542.

[38] Hammes, U.Z., Nielsen, E., Honaas, L.A., Taylor, C.G. and
Schachtman, D.P. (2006) AtCAT6, a sink-tissue-localized trans-
porter for essential amino acids in Arabidopsis. Plant J. 48, 414–
426.

[39] Babu, E., Kanai, Y., Chairoungdua, A., Kim, D.K., Iribe, Y.,
Tangtrongsup, S., Jutabha, P., Li, Y.W., Ahmed, N., Sakamoto,
S., Anzai, N., Nagamori, S. and Endou, H. (2003) Identification
of a novel system L amino acid transporter structurally distinct
from heterodimeric amino acid transporters. J. Biol. Chem. 278,
43838–43845.

[40] Reimer, R.J. and Edwards, R.H. (2004) Organic anion transport
is the primary function of the SLC17/type I phosphate transporter
family. Pflugers Arch. Eur. J. Physiol. 447, 629–635.

[41] Halestrap, A.P. and Meredith, D. (2004) The SLC16 gene family –
from monocarboxylate transporters (MCTs) to aromatic amino
acid transporters and beyond. Pflugers Arch. Eur. J. Physiol. 447,
619–628.

[42] Bodoy, S., Martin, L., Zorzano, A., Palacin, M. and Estevez, R.
(2005) Identification of LAT4, a novel amino acid transporter
with system L activity. J. Biol. Chem. 280, 12002–12011.

[43] Shimazu, M., Sekito, T., Akiyama, K., Ohsumi, Y. and Kaki-
numa, Y. (2005) A family of basic amino acid transporters of the
vacuolar membrane from Saccharomyces cerevisiae. J. Biol.
Chem. 280, 4851–4857.

[44] Pohlmeyer, K., Soll, J., Steinkamp, T., Hinnah, S. and
Wagner, R. (1997) Isolation and characterization of an amino
acid-selective channel protein present in the chloroplastic outer
envelope membrane. Proc. Natl. Acad. Sci. USA 94, 9504–9509.

[45] Murcha, M.W., Elhafez, D., Lister, R., Tonti-Filippini, J.,
Baumgartner, M., Philippar, K., Carrie, C., Mokranjac, D., Soll,
J. and Whelan, J. (2007) Characterization of the preprotein and
amino acid transporter gene family in Arabidopsis. Plant Physiol.
143, 199–212.

[46] Rassow, J., Dekker, P.J.T., van Wilpe, S., Meijer, M. and Soll, J.
(1999) The preprotein translocase of the mitochondrial inner
membrane: function and evolution. J. Mol. Biol. 286, 105–120.

[47] Pohlmeyer, K., Soll, J., Grimm, R., Hill, K. and Wagner, R.
(1998) A high-conductance solute channel in the chloroplastic
outer envelope from pea. Plant Cell 10, 1207–1216.
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