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Abstract-h this paper, we discuss the discrete dynamical system 

GL+1 = PGI -g(h), n=O,l,..., (*I 

arising as a discrete-time network of single neuron, where p is the internal decay rate, g is a signal 
function. First, we consider the case where g is of McCulloch-Pitts nonlinearity. Periodic orbits are 
discussed according to different range of p. Moreover, we can construct periodic orbits. Then, we 
consider the case where g is a sigmoid function. Sufficient conditions are obtained for (*) has periodic 
orbits of arbitrary periods and an example is also given to illustrate the theorem. @ 2003 Elsevier 
Science Ltd. All rights reserved. 
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1. INTRODUCTION 

There are a lot of problems which can be described, at least to a crude approximation, by a 
simple first-order difference equation 

%+1 = f(GJ, 72=0,1,.... (1.1) 

Studies of the dynamical properties of such models can provide us with many useful messages. 
There are many works in this area [l-5]. Since Li and York [6] and May [7] noticed that even 
simple mathematical models can demonstrate very complicated dynamics, people have paid more 
attention to the periodic solutions and “chaotic” behavior of discrete dynamical systems; we refer 
to [&lo]. However, most works of (1.1) are based on the assumption that f is continuous. But 
in reality, for example, in some models of neural networks, f may be not continuous [ll-131. 

In this paper, we consider the following discrete-time equation: 

%+1 = P% - s(GL), n=O,l,..., (1.2) 

where p E (0, oo), g is a nonlinear function. 
Equation (1.2) arises as a discrete-time network of single neuron where p is the internal decay 

rate, g is a signal function [ll]. W e consider two cases of the signal function: 
(I) g is of McCulloch-Pitts nonlinearity; 

(II) g is a sigmoid function. 
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Now we recall some definitions [8]. 

DEFINITION 1.1. A point x, is called a stationary state of (1.1) if 

DEFINITION 1.2. A stationary state x, of (1.1) is stable if for every E > 0, there exists 6 > 0 
such that 

1x0 -x,1 < 6 implies that Ix, -x,1 < e for all n 2 1. 

A stationary state x, that is not stable is said to be unstable. 

DEFINITION 1.3. An orbit 0(x0) = {x0,x1,x2,. . .} of (1.1) is said to be periodic of period p > 2 
if 

xp=xo and xi#xe, forl<i<p-1. 

DEFINITION 1.4. A periodic orbit {x0, x1,. . . , ~~-1,. . . } of period p is stable if each point xi, 
i = O,l,. . . ,p - 1, is a stable stationary state of dynamical system x,+1 = fP(x,). A periodic 
orbit {x0,x1,. . . ,xp-1, . . . } of period p which is not stable is said to be unstable. 

DEFINITION 1.5. A point z is said to be a limit point of 0(x0) if there exists a subsequence 

{%k : k = O,l,. . . } of O(xe) such that Ix,, - z[ -+ 0 as k -+ 00. The limit set 15(x0) of the orbit 
0(x0) is the set of ai1 limit points of the orbit. 

DEFINITION 1.6. An orbit 0(x0) is said to be asymptotically periodic if its limit set is a periodic 
orbit. An orbit 0(x0) such that x,+* = x, for some n 2 1 and some p > 2 is said to be eventually 
periodic. 

In Section 2, we shall discuss the periodic orbits of (1.2) when g is of McCulloch-Pitts nonlin- 
earity. We shall show that (1.2) has a unique stable periodic orbit of period 2 when p E (0,l); 
equation (1.2) h as infinitely many stable periodic orbits of period 2 when p = 1; equation (1.2) 
has an unstable stational state and unstable periodic orbits of period 2,4 when p E (1, a); equa- 
tion (1.2) has unstable periodic orbits of all even periods when p E [a, (1 + fi)/2), and (1.2) 
has periodic orbits of arbitrary periods when p E [(l + fi)/2, oo). Moreover, we can construct 
the periodic orbits of (1.2). In Section 3, we consider (1.2) when g is a sigmoid function. By 
using Li and York’s theorem [6], we get a sufficient condition for (1.2) to have periodic orbits of 
arbitrary periods. We also give an example to illustrate the result. 

2. g IS OF MCCULLOCH-PITTS NONLINEARITY 

Throughout this section, we will assume that g is of McCulloch-Pitts nonlinearity and 

g(x) = 
{ 

1, ifx>O, 

-1, if x < 0. 
(2.1) 

First, we consider (1.2) when p E (0, l), and we have the following theorem. 

THEOREM 2.1. Assume that /? E (0,l). Then the periodic orbit O(l/(p+ 1)) is a stable periodic 
orbit with period 2. And for every xe E R, the orbit 0(x0) is asymptotically periodic with 

Jqxo) = {l/V + 11, -l/V + 1)). 
PROOF. Let h(x) = ,f3x - g(x). Then (1.2) can be rewritten 

x,+1 = h(xn), n=O,l,.... (2.2) 

Clearly, 
1 ( > 1 1 

( > 

1 

hP+l= -p+lp h-P+l=pzi 

thisimplies0(1/(~+1))={1/(~+1),-l/(P+l),... } is a periodic orbit of (1.2) with period 2. 
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Now we show that O(l/(p + 1)) is stable. In fact, for each E > 0, let b = min{l/(P + l),e}. 

This shows that l/(p + 1) is a stable stationary state of the dynamical x,+1 = h2(z,). Similarly, 
-l/(p + 1) is a stable stationary state of the dynamical zn+l = h2(z,). 

For every zo E R, there is no harm in assuming that z. 2 0. Since E,+~ = @, - 1 5 2, - 1 
for zn. 2 0, there exists a nonnegative integer no such that zi 2 Cl for 0 5 i 5 no and +,+I < Cl. 
Thus, 

This leads to 

&lo+2 = P&l,+1 + 1 = P2Go + 1 - P. 

5no+2 - p + 1 &32(xno--&). 

In general, we have 

Therefore, lim,,, 3&+2n = l/(P + 1). 
Similarly, we get limn+oo z,o+1+2n = - l/(P+l). Thus, L(xo) = {l/(P+l),--l/(P+l)}, and 

the proof is complete. 

Similar to proof of Theorem 2.1, we can show the following theorem. 

THEOREM 2.2. Assume /3 = 1. Then, for every zo E R, the orbit 0(x0) of (1.2) is eventually 
periodic with period 2. 

Now we consider the case when /3 > 1. 

THEOREM 2.3. Let ,B E (1, oo). Then (1.2) has a stationary state, periodic orbits of period 2,4. 
Suppose there is a positive integer k such that 

p2” - 2p2”-2 + 1 > 0. (2.3) 

Then, (1.2) has a periodic orbit of period 2k. Suppose there is a positive integer k such that 

P 2k+l - 2~2”~’ - 1 10. (2.4) 

Then, (1.2) has a periodic orbit of period 2k + 1. 

PROOF. l/(p - 1) is a stationary state of (1.2); O(l/(p + 1)) is a P-periodic orbit of (1.2) and 

O((P + W(P2 + 1)) is a 4-periodic orbit of (1.2). 
NOW suppose (2.3) holds. We will construct a periodic orbit O(z0) of period 2k such that 

x0 > 0, Xl 2 0, x2 < 0, x3 < 0, (-1)ixi > 0, 

for i = 4,. . . , 2k - 1, (2.5) x2k = x0. 

Then 

Xl = @x0 - 1 2 0, 

x2 = /32x0 - p - 1 < 0, 

x3 = p3xo - p2 - p + 1 < 0, 

x4 = p4xo - p3 - p2 + p + 1 > 0, 

25=p5xo-P4-p3+P2+p-1<0, 

X2kel = /p-lx, - p-2 - p=-3 + p=-4 + p2”-5 _ p=-6 + . . . _ 1, 

x2k = p2kxo - p-1 _ p-2 + @k--3 + p-4 _ p-5 + p-6 _ . . . + 1. 



1158 2. ZHOU 

Since 22k = xc, we get 

xo = p2k-’ + p2k-2 - Pzk-3 - @k-4 + p-5 _ p2k-6 +. . . _ 1 

02k - 1 (‘JJ3) 

By (1.2), we see that 

min{xO, x1,24,x6,. . . ,X2&2} = X1 = 

p2k-1+2k-2~~2k-3+~2k-4~p2k-5+p2k-6 _. . . + 1 

p - 1 
= (/j - 1) (p=-2 -/j--4 _ p2k-6 - . . . _ 1) 

p - 1 

= p - 2/P”-2 + 1 > 0 

(P2k - 1) (P + 1) 

and 

ma{527 x3y x5r 27,. . . ,X2k-1} = X2kvl 

= -pzk-l + p2k-2 + p=-3 +2k-4 _ w2k-5 + P2k-6 _ . . . + 1 

p- 1 

< 0. 

Thus, if (2.3) holds, the orbit 0(x0) where x0 is defined by (2.6) satisfies (2.5) and is a periodic 
orbit of period 2lc for (1.2). 

Similarly, if (2.4) holds, we can show that the orbit 0(x0) where 

xo = p2” - p2k-1 - ,82k-2 + p2”-3 _ p-4 + /j2k-5 - p2k-6 +. . . _ 1 
P2k+l-l (2.7) 

is a periodic orbit of period 2k + 1 for (1.2) and satisfies xc > 0, xi < 0, 22 < 0, (-l)ixi < 0 for 
i = 3,. . . ,2k. 

REMARK 2.1. If /3 > 1, all periodic orbits of (1.2) are unstable and (2.3) always holds for k = 1,2. 

By a simple computation, we see that the equation 

x2k - 2x=-2 + 1 = 0 (2.8) 

has a unique positive rea.I root (Yk for k 2 3. Clearly, (2.3) holds for p > ck’k. Let ~1 = ~2 = 1 
since (2.3) always holds for k = 1 and k = 2. Then, {c&),+2 is an increasing sequence in [l, a) 
and Iimk+, (Yk = Jz. 

The equation 
x2k+l - 2x2”-l - 1 = 0 (2.9) 

has a unique positive real root /& for k 2 1 and pi = (1 + fi)/2. Clearly, (2.4) holds for p 2 ,&, 
{pk} is a decreasing sequence in (Jz, 2), and Iimk+, pk = Jz. 

Based on the above discussion and Theorem 2.3, we have the following corollary. 

COROLLARY 2.4. If (2.3) holds, (1.2) has periodic orbits of period 2k, 2k - 2,. . . , 4,2 and a 
stationary state. If (2.4) holds, (1.2) has periodic orbits of period 2k + 1,2k + 3,. . . . Especially, 
for p E [a, oo), (1.2) has periodic orbits of arbitrary even periods; for p E [(l + &)/2, OO), 
(1.2) has periodic orbits of arbitrary periods. 

REMARK 2.2. ,d E [(l+fi)/2, 00 is a necessary and sufficient condition for (1.2) has a periodic ) 
orbit of period 3. 
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3. g IS A SIGMOID FUNCTION 
In this section, motivated by [14], we assume that there exist positive constants r, E such that 

lg(z) - 11 < E, if 2 2 T, 

ld~:> + 11 I f, if 5 5 --T. (3.1) 

THEOREM 3.1. Assume that p E ((l+fi)/2, oo), T E (0, (p2--p-l)/(p3-l)), g(x) is continuous 
in R and satisfies (3.1). If 

$ ( 1 1 l+p+pQ >( p"-p-l+ p3 - 1 > 2+E2 7 P ( 3+F+++p+$ 4 2 > 

+2" 1+l+1+1+' 
P2 ( P P2 P3 P4 )C 

P2-B-lwr 
> ( 

< 
ps-1 - 

P2-P-ler 2 
> 03-l ’ 

(3.2) 

foreverym=1,2,..., (1.2) has a periodic orbit of period m. 

PROOF. Since @r - g(z) is continuous in R, by Theorem 1 of [6], it suffices if we can prove 
that (1.2) has a periodic orbit of period 3. We rewrite (1.2) as 

Gl = j&+1 + $7(zn). (3.3) 

Now, we show that 

Yn+1 = $Yn + $7(Yn-2) (3.4) 

has a 3-periodic solution {yz}. Then O(yz) is a 3-periodic orbit of (1.2). 
If y-2, y-1, yo are given, by (3.4), we have 

Yl = $Yo + ;dY-2)7 

Y2 = $Yo + &(Y-2) + jdY-1). (3.5) 

Y3 = $Yo + jg(Y-2) + +?(Y-1) + $S(Yo). 

We define a map H from R3 to R3 by H&l,Y2,Y3) = (ZlrZ2,Z3) where 

21 = jY3 + jsbl), 

z2 = kY3 + j&dYl) + jS(Y2), 

Q3 = $Y3 + +dYl) + +J(Y2) + ;g(y3). 

(3.6) 

Let 5 = (171, A, j&3) where 

+2+/3+1 
ii1 = p3 _ 1 > 

g2=P2-P+l 
ps-1 ’ 

g3-= P2 + P - 1 
ps-1 . 

Here Ys, @, gl are the first three terms of the 3-periodic orbit O((p2 + p - l)/(p3 - 1)) in 
Theorem 2.3. Clearly, 11 < 0, ~2 > 0, g3 > 0 and we have 

(3.7) 
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If J(Yl - VI)2 + (y2 - g2)2 + (y3 - ij3)2 < Jo = (p2 _ p _ I)/(/33 _ 1) _ r, 

y1 L $7, + so = -r, 

Y2 2 g2 - so = 
B2-P+l-P2-p-1+r>T 

p3 - 1 p3-1 - ' 

Y3 2 ?73 - 60 = 
P2+P-1-P2-p-1+r>r 

p3 - 1 p3-1 -. 

In view of (3.6),(3.7), we get 

Zl - g1 = $ (Y3 - ?733) + j(g(yr)+l). 

Noticing (3.1), we have 

Similarly, we get 

lzz-821Aof L+L E, 
( > P2 P2 P 

lz3 - a31 I 160+ 
P3 ( 

'C '+A f. 
P3 P2 P > 

Therefore, by (3.2), 

(21 - g1J2 + (z2 - ji2)2 + (23 - g3)2 i - 
i2 ( 

1 + ++$Js:+g3’$+g+;++‘J 

2&E 

( 

1 
+p2 A+ A+' 

l+g+p2 p3 p4 > 

< P2-P-ldr 2=fi2 - 
( p3 - 1 > 

0' 

Thus, H maps N(y, 60) = {(YI,Y~,Y~) E R3 : (YI - yr)’ + (YZ - y2)2 + (~3 - Gs)~ 5 6;) into 
N(y,be). By the Brouwer fixed-point theorem, H has a fixed point (y;, y;,yz) E N(y,be). The 
solution of (3.4) with initial condition y-2 = y;, y-1 = y;, ye = y$ is a periodic solution of 
period 3. The theorem is now complete. 

REMARK 3.1. It is obvious that (l/p2)(1 + l/p2 f l/p4) < 1 for /3 E ((1 + fi)/2,oo), and 
thus, (3.2) can be satisfied if we choose small C. 

EXAMPLE. Let c > 0 and go(x) = (1 - eeCz)/( 1 + eMcz). Then 

Igo - 11 = - 2eecx 
1 + eWcx 

5 2emcT, if z 2 r, 

190(x) + 11 = - 2 - < 2ewCT, if 2 -r. 
1-t e-cz 

< 

Assuming P E ((1 + &)/a, oo), T E (0, (p2 - p - l)/(P3 - l)), (3.2) holds, and c 2 (l/r) ln(2/e) 
(E < 2), then (3.1) holds for g = go. According to Theorem 3.1, 

x,+1 = px, - go(xn), n=O,l,..., 

has periodic orbits of arbitrary periods. 
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