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Drosophila homolog of the myotonic dystrophy-associated
gene, SIX5, is required for muscle and gonad development
Ruth J. Kirby*§, Graham M. Hamilton‡§, David J. Finnegan*, Keith J. Johnson‡

and Andrew P. Jarman*†

SIX5 belongs to a family of highly conserved Results and discussion
A Drosophila homolog of SIX5 was isolated by screeninghomeodomain transcription factors implicated in

development and disease [1–3]. The mammalian a genomic library with a SIX5 RT-PCR probe. Sequence
analysis showed that this homolog is identical to the re-SIX5/SIX4 gene pair is likely to be involved in the

development of mesodermal structures [4–6]. cently reported gene D-Six4 [10], except for four silent
nucleotide differences. We found no evidence for addi-Moreover, a variety of data have implicated human

SIX5 dysfunction as a contributor to myotonic tional SIX5 homologs in our experiments or in the subse-
quent analysis of the Drosophila genome sequence [11].dystrophy type 1 (DM1), a condition characterized by

a number of pathologies including muscle defects As reported by Seo et al. [10], the comparison of the
protein sequence of the combined Six- and homeodo-and testicular atrophy [7–9]. However, this link

remains controversial. Here, we investigate the mains shows that D-Six4 is most similar to SIX4 and
SIX5 (67% and 65% identity, respectively) (Figure 1a).Drosophila gene, D-Six4, which is the closest

homolog to SIX5 of the three Drosophila Six family Moreover, all three proteins have valine in homeodomain
position 5, which is a potential contributor to DNA bind-members [10]. We show by mutant analysis that

D-Six4 is required for the normal development of ing specificity, whereas all other Six proteins have serine
or threonine [12]. It is likely that D-Six4 is derived frommuscle and the mesodermal component of the

gonad. Moreover, adult males with defective D-Six4 the common ancestor of both SIX4 and SIX5.
genes exhibit testicular reduction. We propose that
D-Six4 directly or indirectly regulates genes involved During embryogenesis, D-Six4mRNA is expressed in the
in the cell recognition events required for myoblast developing head region, mesoderm, and CNS, (Figure
fusion and the germline:soma interaction. While the 2a–c; see also [10]). Mesodermal expression becomes seg-
exact phenotypic relationship between D-Six4 and mental and then becomes confined weakly to the somatic
SIX4/5 remains to be elucidated, the defects in gonadal precursors (SGPs, also known as follicle cell pre-
D-Six4 mutant flies suggest that human SIX5 cursors) in parasegments 10–12, which subsequently form
should be more strongly considered as being the somatic sheath that surrounds the gonad [13] (Figure
responsible for the muscle wasting and testicular 2b). D-Six4 expression then becomes strong in the SGPs
atrophy phenotypes in DM1. after they have coalesced with the migrating germ cell

precursors (pole cells) to form the immature gonad (Figure
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Consistent with this, the D-Six4289 gene has a nonsense
point mutation (C175 3 � T), resulting in a stop codon in
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Figure 1 Arg281, which corresponds to position 102 within the Six
domain. This Arg is conserved in all Six proteins, implying
that it is important for structure or function of the Six
domain. For some other Six proteins, including mouse
Six4 and Six5, the Six domain has been shown to mediate
the interaction with Eya proteins in vitro, resulting in a
functional heterodimer [16, 17]. We found that Drosophila
Eya is coexpressed with D-Six4 in all the areas of the
latter’s expression (Figure 2d–f). This suggests that D-Six4
is a partner of Eya in these tissues. Consistent with this,
eya mutant embryos also show lack of gonad coalescence
[18]. The molecular defect in D-Six4131 is the first demon-
stration of an amino acid substitution in a Six domain
being associated with a phenotypic effect and supports
the importance of the Six domain for in vivo protein
function.

In D-Six4289 homozygous embryos, initial germ cell inter-
nalization and migration are normal, but the cells then
fail to coalesce to form a gonad (Figure 3c). The failure
of gonad coalescence in D-Six4mutants is consistent with
D-Six4 expression and function in SGPs. To examine the
SGPs themselves, we analyzed the expression of an SGP
marker, the 412 retrotransposon [13]. This element is

(a) A phylogenetic tree comparing the combined Six- and
expressed in the head and the mesoderm (Figure 3d), thehomeodomain amino acid sequences (174 amino acids) of all human
latter probably representing both the fat body precursors(Hs) and Drosophila (Dm) Six proteins shows that they fall into three

subfamilies. D-Six4 is a member of the SIX4/SIX5 subfamily. and the SGPs [19]; expression subsequently becomes
Extradenticle is the outgroup, while ceh represents predicted prominent in the SGPs before and after they form the
Caenorhabditis elegans Six protein homologs. The tree was

gonad (Figure 3e,f). In stage 10 embryos homozygousconstructed using PAUP [32]. (b) The predicted D-Six4 protein,
for D-Six4289, the expression of this marker was entirelyincluding the Six- and homeodomains (HD), with the molecular

lesions identified for the two mutants. abolished (Figure 3g). Late in embryonic development,
412 expression could be observed in 1–5 scattered cells,
which appear to be SGPs (Figure 3h). These experiments
suggest that D-Six4 is required for the correct pattern ofplace of Gln87. The second mutation (D-Six4131) is less
gene expression within the mesoderm and SGPs. Genessevere. D-Six4131 mutant embryos hatch normally, al-
involved in SGP-cell recognition are candidates for D-Six4though many die during larval and pupal stages (data not
target genes.shown). A small proportion survive to adulthood. The

molecular defect of D-Six4131 is a point mutation (C2404 �
T), resulting in an amino acid substitution of Cys for Germ cell coalescence was variably affected in the weaker

Figure 2

A summary of D-Six4 expression during
development. (a–c) In situ hybridization with
an antisense D-Six4 RNA probe. (a) Stage 9;
transient general mesodermal expression. (b)
Stage 13. Expression becomes refined briefly
to developing SGPs (arrows). (c) Stage 15.
D-Six4 is expressed in SGPs after their
coalescence with the germ cells in the gonad
(arrow); some expression is also seen in the
ventral nerve cord of the CNS (arrowhead).
(d–f) D-Six4 is expressed in a subset of the
regions that express Eya. The detection of
D-Six4 mRNA (purple) and Eya protein (brown),
with coexpression observed as a black coincide with an area of Eya expression are coexpressed in the head. (e) Coexpression
coloration. Eya is expressed more widely than (hence, all areas of D-Six4 expression are in the mesoderm. (f) Stage 13; coexpression
D-Six4, whereas all areas of D-Six4 expression black). (d) Stage 10. D-Six4 and Eya in SGPs.
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Figure 3

D-Six4 is necessary for SGP development. All
are lateral views, except (e,h), which are
dorsal. (a–c) Vasa protein marks the germ
cells during their migration and coalescence
with the SGPs to form the gonad. Stage 13
embryos are shown. (a) A wild-type embryo,
showing coalesced germ cells. (b) D-Six4
dsRNA interference. An embryo injected with
D-Six4 dsRNA, showing failure of
coalescence. (c) An embryo homozygous for
D-Six4289, showing failure of coalescence.
(d–h) In situ hybridization of embryos with
the antisense 412 RNA probe as a marker of
mesoderm and SGPs. (d) A wild-type stage
11 embryo, 412 labels the segmental groups
of mesodermal cells. (e) A wild-type stage
15 embryo, showing the SGPs in the
coalesced gonad (arrows). (f) A wild-type
stage 13 embryo, showing the paired gonads.
(g) A stage 11 homozygous D-Six4289

embryo; 412 expression is abolished. (h) A
stage 15 homozygous D-Six4289 embryo; a
few scattered 412-expressing SGPs are seen.

D-Six4131mutant. Inmost embryos, gonads were observed, be observed attempting to form a myotube (Figure 5c),
suggesting that the mutant defect is primarily in fusionas represented by distinct clusters of 412-expressing

SGPs, but these appeared consistently smaller than wild- rather than in initial founder cell specification, although
the latter has not been completely ruled out. Embryostype (Figure 4a–d). These gonads appeared to be popu-

lated by germ cells, although a proportion of the germ cells homozygous for the weaker mutant, D-Six4131, showed
thesemuscle defects to a lesser extent (Figure 5d). Homo-remained scattered (Figure 4e–h). Given the apparent

formation of gonads, we examined the gonads of surviving zygous D-Six4131 adult escapers usually died within a few
days, but preliminary examination did not reveal any grossD-Six4131 adults. Males exhibited severe testicular reduc-

tion, although other structures of the reproductive appara- muscle defect. However, they have bloated abdomens,
owing to a hugely distended crop, which could be a conse-tus were present (being derived from the genital imaginal

disc rather than the gonad) (Figure 4i,j). This suggests a quence of visceral muscle defects. A number of known
genes are required for myoblast fusion [20], either fordegree of testicular atrophy after their formation in the

embryo. Females exhibited strong ovarian reduction, al- the recognition event between founder cells and fusion-
competent myoblasts (such as dumbfounded [21]) or forthough highly defective ovarioles were often present (data

not shown). the events of fusion themselves (such asmyoblast city [22]).
While there are many explanations for the lack of fusion,
it is intriguing that D-Six4 may regulate cell recognitionWe next looked at somatic muscle formation. In late stage

wild-type embryos, an antibody to myosin reveals the processes in both muscle and gonad formation, suggesting
that there are common features to these developmentalregular pattern of myotubes (Figure 5a), but in homozy-

gousD-Six4289 embryos, the somaticmuscles were strongly events.
disrupted. Muscles appeared disorganized in their ar-
rangement or attachment (Figure 5b). Some muscles ap- Given the functions we have uncovered for D-Six4, it

seems likely that vertebrate SIX4, SIX5, or more likely apeared to be entirely missing, although the number and
location of such muscles varied between segments and combination of both genes, will have important functions

in the development of mesodermally derived tissues.between embryos. In Drosophila, somatic muscles are laid
down by a distinct subset of myoblasts known as founder Both are expressed widely, including somites [6], but

mouse knockouts of Six4 or Six5 are viable, suggestingcells. Each founder cell seeds a muscle by fusing with
“generic” fusion-competent myoblasts to form a syncytial that there might be extensive redundancy between the two

genes [23–27]. Human SIX5 was originally identified (asmyotube. Most prominently, in D-Six4289 embryos, many
isolated rounded myosin-expressing cells were scattered DMAHP) as one of the genes adjacent to the CTG repeat

expansion that causes DM1, and there is a variety ofamong the muscles. These appear to be myoblasts that
have not fused with developing myotubes. Thus, there indirect evidence that haploinsufficiency of SIX5 is a

cause of some DM1 pathologies [8, 9, 24]. DM1 is aappears to be a major defect in the fusion process. In
some cases, elongated unfused founder cells could still complex disease with a variety of pathologies, including
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Figure 4 Figure 5

D-Six4 is necessary for somatic muscle formation. Muscle arrangement
is detected using anti-myosin antibodies. Ventro-lateral views of
abdomens of stage 16 embryos. (a) Wild-type embryo, showing the
regular arrangement of syncytial myotubes. (b) A similar view of a

The gonad phenotype of D-Six131. (a–d) 412 expression in stage homozygous D-Six4289 embryo, where muscles are highly disorganized;
15–16 embryonic gonads. (a) Wild-type embryo, lateral view. (b) some are missing (arrows), and there are many unfused myocytes
D-Six131 embryo, lateral view, showing a small but distinct gonad. (c) (arrowheads). (c) A higher power view of the region of (b), showing
Wild-type embryo, dorsal view. (d) D-Six131 embryo, dorsal view, an apparently unfused (mononucleate) muscle founder cell (arrow).
showing two small gonads, one out of focus. (e–h) Vasa protein (d) A homozygous D-Six4131 embryo. Some muscle disruption and
expression in stage 14–15 embryos. (e) Wild-type embryo, lateral unfused myoblasts can be observed, even though such embryos
view. (f) D-Six131 embryo, lateral view, some germ cells have coalesced are able to hatch.
into a gonad, while others remain scattered. (g) Wild-type embryo,
dorsal view. (h) D-Six131 embryo, dorsal view, showing some germ cell
coalescence in the paired gonads as well as scattered germ cells.
(i,j) Testicular loss in adults. (i) A wild-type male gonad and
reproductive apparatus, showing one of the paired testes (t) with DMPK gene [25]. Other facets of the DM1 phenotype in
the seminal vesicle (v), one of the paired accessory glands (a), and muscle and heart tissues may be attributed to effects
the ejaculatory duct (e). (j) Male gonads and reproductive apparatus mediated by DMPK mRNA, but thus far, no compellingdissected from a homozygous D-Six4131 adult escaper. The ejaculatory

evidence has emerged. Recent initial reports of a Six5duct, seminal vesicle, and accessory glands are present (one
accessory gland was lost during dissection), while the testes are mouse knockout support a role for SIX5 mutation in cata-
strongly reduced. ract formation [26, 27], but evidence for a role in mesoder-

mally derived tissues is contradictory. The Six5 mutant
mice produced by one group are reported to have no
muscle or reproductive defects [26], while a second groupmyotonia, muscle wasting, testicular atrophy, and cata-

racts. Recent data strongly support a role in myotonia reports that their Six5 mutant mice are sterile and show
muscle wasting [28]. One possibility is that SIX5 becomesfor RNA-mediated effects of the CUG repeat within the
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from 3500 crosses. Stocks were established and then tested for comple-the more important of the SIX4/5 gene pair later in life,
mentation inter se and with knirps (kni). kni lies within Df(3L)ri XT106 and iswhile the more extreme effects of D-Six4 mutants reflect
known to have gonadal defects. Embryos from non-kni complementation

important early functions of a semiredundant SIX4/5 gene groups were analyzed by anti-Vasa staining for gonad defects. One
pair. How far the similarities between SIX5 and D-Six4 complementation group of two alleles showed a clear lack of gonad

coalesence. The D-Six4 exons were amplified from these mutant allelesextend, therefore, remains to be determined, but it is a
and sequenced.strong possibility that D-Six4 may exhibit similar func-

tional relationships to its vertebrate homologs. At the least,
Sequencing of mutant allelesthe immediate regulatory networks may be conserved.
DNA was isolated for PCR from homozygous mutant flies or embryos.It is an exciting possibility that specific developmental
The four exons were amplified using the following primers. Exon 1:

functions may also be conserved, such as regulating target 5�-TGGGATTAACCGAGTGATTT-3� and 5�-CGGCTGTGAGATTGG
genes involved in cell recognition or association. This may ATA-3�; exons 2 and 3: 5�-GGGAATTTTAGGGGGATC-3� and 5�-CTG

TTCAAGATAGGATGTG-3�; exon 4: 5�-TCCCAGCCTGAACAGCATallow the genetic dissection of such regulatory networks
AATA-3� and 5�-CGAGCTCTTATTGCCCATTGAAAATCGTT-3�. Theand target genes using Drosophila and may illuminate the
PCR products were sequenced directly using the same primers.

role of human SIX4/5 in development and disease.
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