Prognostic Impact of Number of Resected and Involved Lymph Nodes at Complete Resection on Survival in Non-small Cell Lung Cancer

Hisashi Saji, MD, PhD,* Masahiro Tsuboi, MD, PhD,* Koichi Yoshida, MD, PhD,* Yasufumi Kato, MD, PhD,* Masaharu Nomura, MD, PhD,† Jun Matsubayashi, MD, PhD,† Toshitaka Nagao, MD, PhD,† Masatoshi Kakhana, MD, PhD,* Jitsuo Usuda, MD, PhD,* Naohiro Kajiwara, MD, PhD,* Tatsuo Ohira, MD, PhD,* and Norihiko Ikeda, MD, PhD*

Background: Lymph node (LN) status is a major determinant of stage and survival in patients with lung cancer. In the 7th edition of the TNM Classification of Malignant Tumors, the number of involved LNs is included in the definition of pN factors in breast, stomach, esophageal, and colorectal cancer, and the pN status significantly correlates with prognosis.

Methods: We retrospectively investigated the prognostic impact of the number of resected LNs (RLNs) and involved LNs in the context of other established clinical prognostic factors, in a series of 928 consecutive patients with non-small cell lung cancer (NSCLC) who underwent complete resection at our institution between 2000 and 2007.

Results: The mean number of RLNs was 15. There was a significant difference in the total number of RLNs categorized between less than 10 and ≥10 (p = 0.0129). Although the incidence of LN involvement was statistically associated with poor prognosis, the largest statistically significant increase in overall survival was observed between 0 to 3 and ≥4 involved LNs (hazard ratio = 7.680; 95% confidence interval = 5.051–11.655, p < 0.0001). On multivariate analysis, we used the ratio between the number of involved LNs and RLNs. The number of RLNs was found to be a strong independent prognostic factor for NSCLC (hazard ratio = 6.803; 95% confidence interval = 4.137–11.186, p < 0.0001).

Conclusion: Complete resection including 10 or more LNs influencing survival at complete NSCLC resection. Four involved LNs seemed to be a benchmark for NSCLC prognosis. The number of involved LNs is a strong independent prognostic factor in NSCLC, and the results of this study may provide new information for determining the N category in the next tumor, node, metastasis classification.

Key Words: Number of resected lymph nodes, Number of involved lymph nodes, Lymph node dissection, Multivariate analysis.

Lung cancer has one of the highest worldwide incidence rates and is the leading cause of cancer-related mortality worldwide.1 In Japan, lung cancer accounts for 60,000 deaths annually, and surgical resections are performed in approximately 27,000 cases, with an overall survival (OS) rate of 60%, according to the annual reports of the Japanese Association for Thoracic Surgery2 and the Japanese Lung Cancer Registry.3 Various pathological and molecular markers have been assessed regarding their status and role in identifying patients at high risk for recurrence. However, the primary tumor, lymph node (LN), and the metastasis (TNM) staging system remain the most important determinant of outcome. Because the prognosis of lung cancer is directly proportional to the presence of LN metastasis, accurate LN assessment is crucial in determining treatment. The role of hilar and mediastinal lymphadenectomy in the staging and treatment of non-small cell lung cancer (NSCLC) remains controversial. Accurate staging of NSCLC requires assessment of the hilar and mediastinal LNs based on pathologic evaluation. In almost all surgical cooperative group trials and clinical settings in Japan, systematic LN dissection in ipsilateral hilar and mediastinal stations is standard. However, there is continual debate regarding the degree to which hilar and mediastinal LNs should be located and removed.

The number of resected LNs (RLNs) has been proven to have prognostic value in colorectal, breast, and bladder cancer.4–6 Moreover, the number of involved LNs at the time of surgery currently influences staging. However, these items have not yet been incorporated into the latest 7th edition of the TNM classification of lung cancer.7 Therefore, we retrospectively investigated the prognostic impact of the number of RLNs and involved LNs in the context of other established clinical prognostic factors, in a series of 928 consecutive patients with NSCLC who underwent complete...
resection at Tokyo Medical University. Specifically, we attempted to clarify the number of LNs that should be resected, and the number of involved LNs needed to make an accurate prognosis.

PATIENTS AND METHODS

Patient Selection

From January 2000 to November 2007, a total of 1311 patients underwent resection for primary lung cancer at our institution. Cases of induction therapy, incomplete resection, and limited resection were excluded from this study. Patients whose tumors were classified histologically as small cell lung cancer or low-grade malignant tumors were also excluded. We retrospectively analyzed the remaining 928 consecutive patients with NSCLC who underwent complete resection with curative intent (minimum procedure of lobectomy) with systematic LN dissection of the hilum and mediastinum according to current surgical methods. Patient charts, including pathologic diagnosis and operative reports, were reviewed. Staging was determined according to the international TNM staging system. The histological tumor type was determined according to the World Health Organization classification, 3rd edition. All dissected LNs were examined pathologically and classified according to anatomical location by the numbering system described in the Naruke map. The number of RLNs and involved LNs was confirmed based on the pathological report provided by M.N., J.M., and T.N. These pathologists were blinded to the clinical outcome.

Patient Characteristics

The characteristics of the 928 consecutive patients who underwent surgery for NSCLC were as follows: age, median (range): 65.0 years (22–87 years); sex: 547 (59.0%) men and 381 (41.0%) women; clinical stages: 768 (82.8%) stage I, 84 (9.1%) stage II, and 76 (8.1%) stage III; pathological stage: 677 (72.9%) stage I, 121 (13.0%) stage II, 129 (13.9%) stage III, and 1 (0.2%) stage IV; histopathological diagnosis: 684 (73.7%) adenocarcinomas, 182 (19.6%) squamous cell carcinomas, 52 (5.6%) large cell carcinomas, and 10 (1.1%) others; surgical procedure: 870 (93.8%) lobectomies, 42 (4.5%) bilobectomies, and 16 (1.7%) pneumonectomies. The mean number of RLNs was 15 (right side, 15.5; left side, 14.3); the mean number of involved LNs was 4.2 (0–22) (Table 1). The median follow-up time was 3.5 years.

Statistical Analysis

We investigated the association between the total number of RLNs or involved LNs and OS. OS was calculated from the date of surgery to the time of death. Observations were censored at final follow-up if the patient was alive. All patients in this series were categorized into four groups according to the number of RLNs less than 5 versus 5 or more, less than 10 versus 10 or more, less than 15 versus 15 or more, and less than 20 versus 20 or more. On analysis of survival differences based on the number of involved LNs, patients were categorized into groups of those with 0 versus 1 or more, less than 3 versus 3 or more, less than 4 versus 4 or more, and less than 5 versus 5 or more of involved LNs.

Survival curves were plotted using the Kaplan-Meier method. Differences in survival among the groups were examined using the log-rank test. A two-category comparison was performed using the Pearson χ^2 test and the Student t test for quantitative data. Multivariate analysis was performed using the Cox proportional hazards model to examine any possible association between the ratio of the total number of RLNs and involved LNs and survival, with adjustment for the effects of other potential prognostic factors, including age, sex, histology, tumor factor, and type of surgery performed. All tests were two sided, and p values of less than 0.05 were considered to represent statistically significant differences. StatView version 5.0 software (SAS Institute Inc., Cary, NC) was used for statistical analysis.

Ethical Considerations

The approval of the Institutional Review Board of Tokyo Medical University was obtained, but as this was a retrospective study the need to obtain written informed consent from either the patients or their representatives was waived, in accordance with the AMA Manual of Style (10th edition).
RESULTS

Survival and Number of RLNs

We investigated the prognostic impact of the number of RLNs (mean number of RLNs = 15). Patients were categorized into four representative groups according to the total number of RLNs: less than 5 versus 5 or more, less than 10 versus 10 or more, less than 15 versus 15 or more, and less than 20 versus 20 or more (Figure 1). Table 2 presents each p value, hazard ratio (HR), and 95% CI comparing each subgroup categorized according to total number of RLNs. The largest significant difference was found in the total number of RLNs categorized between less than 10 and 10 or more (p = 0.0199, HR = 1.795, 95% CI = 1.098–2.912).

However, even 15 or more RLNs had no significant prognostic impact on the survival of patients with NSCLC in the present series. There was no sign of incremental improvement in or impairment of survival after the resection and evaluation of 15 or more LNs for curative resection of NSCLC. There were no statistically significant differences in survival according to the total number of RLNs in cases of stage I NSCLC (Figure 2).

As shown in Table 3, the mean numbers of RLNs on both the right and left sides were significantly higher in pN1 or pN2–3 cases than in pN0 cases (right side: p = 0.0007, p = 0.0002, left side: p = 0.0068, p = 0.0162, respectively). The mean number of RLNs in cases with right-sided tumors was significantly higher than that in cases with left-sided tumors.

Survival and Number of Involved LNs

We analyzed the number of involved LNs that could provide the most appropriate indicator of OS in NSCLC. Although the incidence of LN involvement was associated with poor prognosis, the largest statistically significant increase in OS was observed between zero to three and four or more involved LNs (HR, 7.680; 95% CI, 5.051–11.655, p < 0.0001) (Figure 3). Although patients with no involved LNs had a better outcome than those with 1 to 3 involved LNs, there was no significant difference in survival between the two groups (p = 0.1831). Patients with four or more involved LNs had a significantly worse outcome than those with one to three involved LNs (p < 0.001). These results suggest that four or more involved LNs would be the best benchmark of OS in NSCLC (Figure 4).

<table>
<thead>
<tr>
<th>Values</th>
<th>p</th>
<th>HR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 vs. 5</td>
<td>0.7464</td>
<td>1.135</td>
<td>0.528–2.440</td>
</tr>
<tr>
<td>6 vs. 6</td>
<td>0.5464</td>
<td>1.233</td>
<td>0.624–2.437</td>
</tr>
<tr>
<td>7 vs. 7</td>
<td>0.1611</td>
<td>1.591</td>
<td>0.831–3.047</td>
</tr>
<tr>
<td>8 vs. 8</td>
<td>0.744</td>
<td>1.725</td>
<td>0.948–3.140</td>
</tr>
<tr>
<td>9 vs. 9</td>
<td>0.0217</td>
<td>1.783</td>
<td>1.088–2.923</td>
</tr>
<tr>
<td>10 vs. 10</td>
<td>0.0199</td>
<td>1.795</td>
<td>1.098–2.912</td>
</tr>
<tr>
<td>11 vs. 11</td>
<td>0.0295</td>
<td>1.651</td>
<td>1.051–2.595</td>
</tr>
<tr>
<td>12 vs. 12</td>
<td>0.0473</td>
<td>1.521</td>
<td>1.005–2.302</td>
</tr>
<tr>
<td>13 vs. 13</td>
<td>0.0907</td>
<td>1.394</td>
<td>0.949–2.050</td>
</tr>
<tr>
<td>14 vs. 14</td>
<td>0.1137</td>
<td>1.354</td>
<td>0.930–1.973</td>
</tr>
<tr>
<td>15 vs. 15</td>
<td>0.0832</td>
<td>1.388</td>
<td>0.956–2.014</td>
</tr>
</tbody>
</table>

HR, hazard ratio; CI, confidence interval.
Correlations between Number of RLNs, Involved LNs and pN Status

Before analyzing the possibility of RLNs and involved LNs as possible independent prognostic factors by multivariate analysis, we examined whether RLNs, involved LNs and pN status were confounding factors. The mean and range of the total number of RLNs in our series were 15.0 and 1 to 49, respectively. The mean number of RLNs was significantly increased in pN1 or pN2–3 cases compared with pN0 cases ($p < 0.0001$ and $p < 0.0001$, respectively), whereas the mean and range of the total number of involved LNs in our pN-positive series were 4.2 and 1 to 22, respectively. The mean numbers of involved LNs in pN1 and pN2–3 cases were 2.15 and 6.56, respectively. The number of involved LNs was significantly higher in pN2–3 cases than in pN1 cases ($p < 0.0001$). These results demonstrate that each of these prognostic factors (i.e., the number of RLNs and involved LNs, pN status) is a statistically significant predictor of survival when adjusted for other factors.
and pN status) were confounding factors in our series. Therefore, in the subsequent multivariate survival analysis, we used the ratio between the number of involved and RLNs to reflect both factors in the multivariate analysis similarly to a previously reported method.

Multivariate Survival Analysis

We performed multivariate analysis to confirm the prognostic impact of the total number of RLNs and involved LNs in NSCLC, using the ratio between the number of involved and RLNs, according to a previously observed correlation. As shown in Table 4, RLNs strongly correlated with poor prognosis on multivariate analysis after adjustments for sex, age, histology, tumor factor, and surgical procedure. We therefore concluded that RLN was a strong independent prognostic factor for NSCLC (HR, 6.803; 95% CI, 4.137–11.186; p < 0.0001). Other independent prognostic factors identified on multivariate analysis included sex (HR, 1.598; 95% CI, 1.090–2.341, p = 0.0162), and T factor (HR, 0.392, 95% CI, 0.256–0.600, p < 0.0001).

DISCUSSION

We set out to determine the number of LNs that should be resected, and the number of involved LNs for the accurate prediction of outcome in resectable cases of lung cancer. Opinions still vary among surgeons as to whether to remove all, some, or none of the mediastinal LNs at the time of pulmonary resection for lung cancer, and practices vary worldwide. In almost all surgical cooperative group trials in North America, LN sampling is standard, whereas systematic LN dissection is standard in Japan.

LN status is a major determinant of stage and survival in patients with lung cancer. However, the role of mediastinal lymphadenectomy in the staging and treatment of NSCLC remains controversial. The present results indicate that patient survival after complete NSCLC resection is associated with the number of LNs harvested during surgery. The largest significant difference was observed in the total number of RLNs categorized between less than 10 and 10 or more (p = 0.0199, HR = 1.795, 95% CI = 1.098–2.912). Patients with 10 or more RLNs had significantly worse outcomes than those with less than 10 RLNs (Figure 1), contrary to the findings of previous studies of stage I NSCLC cases. As shown in Table 3, the mean number of RLNs on both the right and left sides was significantly higher in pN1 or pN2–3 cases than in pN0 cases (right side: p = 0.0007, p = 0.0002; left side: p = 0.0068, p = 0.0162, respectively), which may be one reason why patients with NSCLC with 10 or more RLNs had a worse outcome than those with less than 10 RLNs. According to the results of the American College of Surgeons Oncology Group (ACOSOG) Z0030 study, a higher N stage was also associated with increased LN removal (N0: 19.2 ± 10.1; N1: 22.8 ± 10.9; N2: 24.5 ± 10.8; p = 0.043). This is possibly because surgeons tend to harvest more LNs in patients with LN-positive disease at the time of surgery, in expectation of therapeutic benefit. However, even 15 or more

TABLE 4. Univariate and Multivariate Survival Analyses

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>n</th>
<th>Univariate Analysis</th>
<th>Multivariate Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td>HR</td>
</tr>
<tr>
<td>Sex</td>
<td>Men</td>
<td>548</td>
<td>0.011*</td>
<td>0.620</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>381</td>
<td></td>
<td>0.410–0.958</td>
</tr>
<tr>
<td>Age (yr)</td>
<td><70</td>
<td>690</td>
<td>0.0209*</td>
<td>1.598</td>
</tr>
<tr>
<td></td>
<td>≥70</td>
<td>338</td>
<td></td>
<td>1.090–2.341</td>
</tr>
<tr>
<td>Histopathology</td>
<td>Non-adenocarcinoma</td>
<td>244</td>
<td>0.015*</td>
<td>0.790</td>
</tr>
<tr>
<td></td>
<td>Adenocarcinoma</td>
<td>684</td>
<td></td>
<td>0.518–1.203</td>
</tr>
<tr>
<td>T factor</td>
<td>T2–3</td>
<td>433</td>
<td><0.0001*</td>
<td>0.392</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>495</td>
<td></td>
<td>0.256–0.600</td>
</tr>
<tr>
<td>Surgical procedure</td>
<td>Lobectomy</td>
<td>912</td>
<td>0.0136*</td>
<td>2.521</td>
</tr>
<tr>
<td></td>
<td>Pneumonectomy</td>
<td>16</td>
<td></td>
<td>0.768–8.280</td>
</tr>
<tr>
<td>RLNs</td>
<td><0.4</td>
<td>882</td>
<td><0.0001*</td>
<td>6.803</td>
</tr>
<tr>
<td></td>
<td>≥0.4</td>
<td>46</td>
<td></td>
<td>4.137–11.186</td>
</tr>
</tbody>
</table>

* Statistical significance.

RLNs, ratio between the number of involved and resected lymph nodes; CI, confidence interval; HR, hazard ratio.
RLNs had no significant impact on OS in patients with NSCLC in the present series, contrary to the results of a previous large study.13 There appeared to be neither incremental improvement nor impairment of survival after resecting and evaluating 15 or more LNs with curative intent in NSCLC in the current series. One possible explanation for this is that the presence of approximately 10 dissected LNs increases the staging accuracy.

There was no significant difference in survival according to the total number of RLNs in stage I NSCLC in the current series. Recent retrospective studies from cancer registries,14 nonrandomized trials,15 and other institutions,16–21 have indicated that the number of RLNs is associated with better OS.16–19 Although LN removal may be therapeutic, the therapeutic benefit is likely to be small for patients with stage IA NSCLC, because all LNs in stage IA should be negative. The other, less likely explanation, is that a more extensive LN dissection such as systematic mediastinal LN dissection may be therapeutic, at least in stage I NSCLC.

The present analysis shows that an increasing number of RLNs during complete NSCLC resection is associated with a statistically significant difference in survival, which peaks at 10 to 14 LNs. Some studies have recommended that the minimum requirements for accurate nodal staging must include the removal of at least six LNs from hilar and mediastinal stations.7,22,23 However, others have recommended the examination of a minimum of 10 LNs and at least three LN stations.14,19 Although we are reluctant to recommend a definitive optimal number of LNs, the current data support the conclusion that an evaluation of nodal status should include at least 10 LNs.

Nodal involvement is the most important prognostic factor in determining survival for many malignant tumors. These factors are represented by the N category in the TNM classification and are grouped according to the anatomical location and/or number of LN involvement. In the most recently published 7th edition of the TNM Classification of Malignant Tumors (2009),24 the number of involved LNs is included in the definition of pN factors in breast, stomach, esophageal, and colorectal cancer, and pN status shows a significant correlation with outcome. The nodal system in this edition in lung cancer is still based on the anatomical location of involved LNs. The Naruke map and the American Thoracic Society map have been combined into the International Association for the Study of Lung Cancer map, and the Association for the Study of Lung Cancer map, and the American Thoracic Society map have been recommended for the International Association for the Study of Lung Cancer map, and the American Thoracic Society map have been combined into the International Association for the Study of Lung Cancer map, and the Associating with the number of involved LNs (HR, 7.680; 95% CI, 5.051–11.655; \(p < 0.0001 \)) (Figure 2). Therefore, the current data indicate that four or more involved LNs serve as a good indicator of outcome after complete NSCLC resection. Because it is possible that the number of RLNs and involved LNs may indicate the quality of surgery in the determination of accurate staging and survival impact after complete NSCLC resection, we used RLNs as a prognostic predictor on multivariate analysis. In addition to T stage, RLNs had a strong independent effect on survival in patients with complete NSCLC resection in the present study. Indeed, the 5-year survival ratio of patients with RLNs \(\geq 4 \) is similar to that of patients with pN2 disease in our series (data not shown). Although the nodal classification according to the number of involved LNs is simple and easy to be incorporated in the next TNM classification, there are a few limitations that are not helpful in deciding treatment preoperatively because it is mainly based on pathological assessment. However, this may change in the future with the development of new imaging device.

Our data suggested that the number of involved LNs expands pN category information and may provide additional information for the pN category of the next TNM classification. Further large-scale cohort studies, including global prospective validation analyses and multi-institutional studies are warranted.

CONCLUSION

We retrospectively evaluated the prognostic impact of the number of RLNs and involved LNs on the survival of patients with complete NSCLC resection. We found that 10 or more LNs harvested with complete LN dissection possibly influenced survival after complete NSCLC resection. Moreover, the presence of four involved LNs seemed to be a good indicator of outcome after complete NSCLC resection. The number of involved LNs was a strong independent prognostic factor in NSCLC, and this may provide new information for the N categorization of the next TNM classification.

ACKNOWLEDGMENTS

Supported by grants from the Ministry of Education, Culture, Sports, Science and Technology (21791332) and the Ministry of Health, Labour and Welfare (22101601).

The authors thank Mr. Roderick J. Turner, Assistant Professor Edward F. Barroga and Professor J. Patrick Barron, Chairman of the Department of International Medical Communications at Tokyo Medical University for their review of the English manuscript.

REFERENCES