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Restrictions on the zeros of a polynomial as a consequence
of conditions on the coe&cients of even powers and odd

powers of the variable
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Abstract

The classical Enestr-om–Kakeya Theorem states that if p(z)=
∑n

v=0 avz
v is a polynomial satisfying 06 a06

a16 · · ·6 an, then all of the zeros of p(z) lie in the region |z|6 1 in the complex plane. Many generalizations
of the Enestr-om–Kakeya theorem exist which put various conditions on the coe&cients of the polynomial (such
as monotonicity of the moduli of the coe&cients). We will introduce several results which put conditions on
the coe&cients of even powers of z and on the coe&cients of odd powers of z. As a consequence, our results
will be applicable to some polynomials to which these related results are not applicable.
c© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

There are numerous results concerning the location of zeros of a polynomial in the complex plane.
A classical result which puts no restriction on the coe&cients is due to Cauchy:

Theorem 1.1. All the zeros of p(z)=
∑n

v=0 avz
v, where an �= 0, lie in the circle |z|¡ 1+M , where

M =max06j6(n−1)| ajan |.

The Enestr-om–Kakeya theorem is also a classical result, but only applicable to a specialized class
of polynomials, namely those with real, nonnegative and monotone increasing coe&cients:

Theorem 1.2 (Enestr-om–Kakeya). If p(z) =
∑n

v=0 avz
v is a polynomial of degree n with real coef-

'cients, satisfying 06 a06 a16 · · ·6 an, then all the zeros of p(z) lie in |z|6 1.
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There are several generalizations [5] of Theorem 1.2. We only mention the results relevant to our
study. In particular, the restriction of monotonicity of coe&cients has been signiCcantly softened.
The following result is due to Gardner and Govil [3] and puts a condition on the real and imaginary
parts of the coe&cients.

Theorem 1.3. Let p(z) =
∑n

v=0 avz
v be a polynomial of degree n. If Re aj = 	j and Im aj = 
j for

j = 0; 1; 2; : : : ; n, an �= 0 and for some k and r and for some t¿ 0,

	06 t	16 t2	26 · · ·6 tk	k¿ tk+1	k+1¿ · · ·¿ tn	n;

and


06 t
16 t2
26 · · ·6 tr
r¿ tr+1
r+1¿ · · ·¿ tn
n;

then p(z) has all its zeros in R16 |z|6R2, where

R1 = min{(t|a0|=(2(tk	k + tr
r)− (	0 + 
0)− tn(	n + 
n − |an|)); t}
and

R2 =max
{ [

|a0|tn+1 − tn−1(	0 + 
0)− t(	n + 
n) + (t2 + 1)(tn−k−1	k + tn−r−1
r)

+ (t2 − 1)


k−1∑
j=1

tn−j−1	j +
r−1∑
j=1

tn−j−1
j




+(1− t2)

 n−1∑
j=k+1

tn−j−1	j +
n−1∑
j=r+1

tn−j−1
j


 ]/

|an|; 1t
}
:

Notice that if each 
j = 0; a0¿ 0, t = 1 and k = n in Theorem 1.3, then we get Theorem 1.2.
Govil and Rahman [4] introduced a restriction on the arguments of the coe&cients (along with

a monotonicity-type condition on the moduli) to generalize Theorem 1.2. A related result is the
following [1]:

Theorem 1.4. If p(z)=
∑n

v=0 avz
v is a polynomial such that |arg aj−
|6 	6 �

2 for j∈{0; 1; : : : ; n}
and for some real 
, and if for some positive number t and some nonnegative integer k,

|an|6 t|an−1|6 · · ·6 tk |an−k |¿ tk+1|an−k−1|¿ · · ·¿ tn|a0|;
then all the zeros of p(z) lie in |z|6R where

R=max

{
(2|an−k |tk − |an|) cos 	+ |an| sin 	+ 2 sin 	

∑n−1
v=1 |an−v|tv + tn|a0|(1 + sin 	− cos 	)

|an|t ;
1
t

}
:
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Notice that if t = 1 and k = n, then p(z) has all its zeros in |z|6R where

R= cos 	+ sin 	+
2 sin 	
|an|

n−1∑
v=0

|av|

(this is the result of Govil and Rahman [4]).
Motivated by Theorems 1.3 and 1.4, we give results concerning the locations of zeros of a poly-

nomial by putting hypotheses on the coe&cients of the even powers of z and on the odd powers of z.

2. The main results and applications

Motivated by Theorem 1.3, we put restrictions on the real and imaginary parts of the
coe&cients.

Theorem 2.1. Let p(z) =
∑n

v=0 avz
v, where an �= 0, be a polynomial and Re(aj) = 	j, Im(aj) = 
j

for j=0; 1; : : : ; n such that for some positive number t and some nonnegative integers k and s, and
positive integers l and q

	06 	2t26 	4t46 · · ·6 	2k t2k¿ 	2k+2t2k+2¿ · · ·¿ 	2�n=2�t2�n=2�;

	16 	3t26 	5t46 · · ·6 	2l−1t2l−2¿ 	2l+1t2l¿ · · ·¿ 	2�(n+1)=2�−1t
2�n=2�;


06 
2t26 
4t46 · · ·6 
2st2s¿ 
2s+2t2s+2¿ · · ·¿ 
2�n=2�t2�n=2�;


16 
3t26 
5t46 · · ·6 
2q−1t2q−2¿ 
2q+1t2q¿ · · ·¿ 
2�(n+1)=2�−1t
2�n=2�:

Then all the zeros of p(z) lie in R16 |z|6R2 where

R1 = min
{
t|a0|
M1

; t
}

and R2 = max
{
M2

|an| ;
1
t

}
:

Here

M1 =−(	0 + 
0) + (|	1|+ |
1|)t − (	1 + 
1)t + 2[	2k t2k + 	2l−1t2l−1 + 
2st2s + 
2q−1t2q−1]

− (	n−1 + 
n−1)tn−1 − (	n + 
n)tn + (|	n−1|+ |
n−1|)tn−1 + (|	n|+ |
n|)tn;

M2 = tn+3(|a0| − 	0 − 
0) + (|a1| − 	1 − 
1)tn+2 + (t4 + 1)(	2k tn−1−2k + 	2l−1tn−2l

+ 
2stn−1−2s + 
2q−1tn−2q)− (	n−1 + 
n−1) + |an−1| − (	n + 
n)t−1
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+(t4 − 1)


 2k−2∑
j=0; j even

	jtn−1−j +
2l−3∑

j=1; j odd

	jtn−1−j +
2s−2∑

j=0; j even


jtn−1−j

+
2q−3∑

j=1; j odd


jtn−1−j −
2�n=2�∑

j=2k+2; j even

	jtn−1−j −
2�(n+1)=2�−1∑
j=2l+1; j odd

	jtn−1−j

−
2�n=2�∑

j=2s+2; j even


jtn−1−j −
2�(n+1)=2�−1∑
j=2q+1; j odd


jtn−1−j


 :

Due to the Fexible condition on the coe&cients of p(z), Theorem 2.1 is applicable to a rather
large class of polynomials. We can also extract some more concise corollaries by choosing speciCc
values for the parameters involved. For example, if k = 	n=2
, l=1, t =1 and the polynomial p(z)
has real coe&cients, then we have the following.

Corollary 2.1. Let p(z) =
∑n

v=0 avz
v be a polynomial with real coe7cients such that,

a06 a26 a46 · · ·6 a2�n=2�;

a1¿ a3¿ a5¿ · · ·¿ a2�(n+1)=2�−1:

Then all the zeros of p(z) lie in R16 |z|6R2 where

R1 = min
{ |a0|
M1
; 1
}

and R2 = max
{
M2

|an| ; 1
}

and

M1 =−a0 + |a1|+ a1 + 2a2�n=2� + |an−1| − an−1 + |an| − an;

M2 = |a0| − a0 + |a1|+ a1 + 2a2�n=2� + |an−1| − an−1 − an:

We now apply this corollary to a speciCc polynomial.

Example 2.1. Consider p(z) = 1− z+3z2 − z3 + 3z4: Then according to Corollary 2.1, the zeros of
p(z) lie in 1=76 |z|6 5=3. By Theorem 1.1, p(z) has all its zeros in |z|6 2. Theorems 1.2, 1.3
and 1.4 do not apply to p(z).
With Theorem 1.4 as our inspiration, we now consider restrictions on the moduli of the coe&cients.

Theorem 2.2. Let p(z) =
∑n

v=0 avz
v be a polynomial such that |arg aj − 
|6 	6 �=2 for j =

0; 1; 2 : : : ; n and for some real 
, and for some positive number t and some nonnegative integer k
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and positive integer l

|a0|6 |a2|t26 |a4|t46 · · ·6 |a2k |t2k¿ |a2k+2|t2k+2¿ · · ·¿ |a2�n=2�|t2�n=2�;

|a1|6 |a3|t26 |a5|t46 · · ·6 |a2l−1|t2l−2¿ |a2l+1|t2l¿ · · ·¿ |a2�(n+1)=2�−1|t2�n=2�:
Then all zeros of p(z) lie in R16 |z|6R2 where

R1 = min
{
t|a0|
M1

; t
}

and R2 = max
{
M2

|an| ;
1
t

}
:

Here

M1 = |a1|t + |an−1|tn−1 + |an|tn

+cos 	
[−|a0| − |a1|t + 2|a2k |t2k + 2|a2l−1|t2l−1 − |an−1|tn−1 − |an|tn

]

+sin 	


2 n−2∑

j=2

|aj|tj + |a0|+ |a1|t + |an−1|tn−1 + |an|tn



and

M2 = |a0|tn+3 + |a1|tn+2 + |an−1|+ cos 	


(t4 − 1)


 2k−2∑
j=0; j even

|aj|tn−1−j

+
2l−3∑

j=1; j odd

|aj|tn−1−j −
2�n=2�∑

j=2k+2; j even

|aj|tn−1−j −
2�(n+1)=2�−1∑
j=2l+1; j odd

|aj|tn−1−j




+(t4 + 1)(|a2k |tn−1−2k + |a2l−1|tn−2l)− |a0|tn+3 − |a1|tn+2 − |an−1| − |an|t−1}

+sin 	


(t4 + 1)

n−2∑
j=2

|aj|tn−1−j + |a0|tn−1 + |a1|tn−2 + |an−1|t4 + |an|t3

 :

Again we can choose speciCc values for k and l to get corollaries. In particular, with k = 0,
l= 	(n+ 1)=2
, t = 1 and 	= 
 = 0, we have:

Corollary 2.2. Let p(z) =
∑n

v=0 avz
v, where an �= 0, be a polynomial with real, nonnegative coe7-

cients such that

a0¿ a2¿ a4¿ · · ·¿ a2�n=2�¿ 0;

06 a16 a36 a56 · · ·6 a2�(n+1)=2�−1:
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Then all the zeros of p(z) lie in R16 |z|6R2 where

R1 = min
{
a0
M1
; 1
}

and R2 = max
{
M2

an
; 1
}

and

M1 = a0 + 2a2�(n+1)=2�−1;

M2 = 2a0 + 2a2�(n+1)=2�−1 − an:

Corollary 2.2 also follows from Theorem 2.1.

Example 2.2. Consider again p(z) = 1 + 5z3 + z4 + 5z5. Then according to Corollary 2.2, the zeros
of p lie in 1=116 |z|6 7=5. By Theorem 1.1, p(z) has all its zeros in |z|6 2. Theorems 1.2, 1.3
and 1.4 do not apply to p(z).
We mention that our results can be easily generalized by putting the monotonicity-like condition

on the coe&cients aj for each equivalence class of index j modulo N (in this paper, our hypotheses
are based on the case N =2). The method of proof of these types of generalizations will be evident
from the content of the next section.

3. Proofs of the results

Proof of Theorem 2.1. We consider the following polynomial:

g(z) = (t2 − z2)p(z) = t2a0 + a1t2z +
n∑
j=2

(ajt2 − aj−2)zj − an−1zn+1 − anzn+2 = t2a0 + G1(z):

On |z|= t

|G1(z)|6 |a1|t3 +
n∑
j=2

|ajt2 − aj−2|tj + |an−1|tn+1 + |an|tn+2

6 (|	1|+ |
1|)t3 +
n∑
j=2

(|	jt2 − 	j−2|tj + |
jt2 − 
j−2|tj)

+ (|	n−1|+ |
n−1|)tn+1 + (|	n|+ |
n|)tn+2

= (|	1|+ |
1|)t3 − (	0 + 
0)t2 − (	1 + 
1)t3

+ 2[	2k t2k+2 + 	2l−1t2l+1 + 
2st2s+2 + 
2q−1t2q+1]

− (	n−1 + 
n−1)tn+1 − (	n + 
n)tn+2 + (|	n−1|+ |
n−1|)tn+1 + (|	n|+ |
n|)tn+2

= t2M1:
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We apply Schwarz’s Lemma [6, p. 168], to G1(z), and we get

|G1(z)|6 t2M1|z|
t

= tM1|z| for |z|6 t;

which implies

|g(z)|= |t2a0 + G1(z)|¿ t2|a0| − |G1(z)|¿ t2|a0| − tM1|z| for |z|6 t:

Hence, if |z|¡R1 = min{t|a0|=M1; t}, then g(z) �= 0 and so p(z) �= 0.
We consider g(z) again,

g(z) = (t2 − z2)p(z) = t2a0 + a1t2z +
n∑
j=2

(ajt2 − aj−2)zj − an−1zn+1 − anzn+2

=−anzn+2 + G2(z):

Then

∣∣∣∣zn+1G2

(
1
z

)∣∣∣∣=
∣∣∣∣∣∣t2a0zn+1 + a1t2zn +

n∑
j=2

(ajt2 − aj−2)zn+1−j − an−1

∣∣∣∣∣∣
and on |z|= t,∣∣∣∣zn+1G2

(
1
z

)∣∣∣∣6 tn+3|a0|+ |a1|tn+2 +
n∑
j=2

|ajt2 − aj−2|tn+1−j + |an−1|

6 tn+3|a0|+ |a1|tn+2 +
n∑
j=2

(|	jt2 − 	j−2|+ |
jt2 − 
j−2|)tn+1−j + |an−1|

= tn+3(|a0| − 	0 − 
0) + (|a1| − 	1 − 
1)tn+2

+ (t4 + 1)(	2k tn−1−2k + 	2l−1tn−2l + 
2stn−1−2s

+ 
2q−1tn−2q)− (	n−1 + 
n−1) + |an−1| − (	n + 
n)t−1

+ (t4 − 1)


 2k−2∑
j=0; j even

	jtn−1−j +
2l−3∑

j=1; j odd

	jtn−1−j +
2s−2∑

j=0; jeven


jtn−1−j

+
2q−3∑

j=1; j odd


jtn−1−j −
2�n=2�∑

j=2k+2; j even

	jtn−1−j −
2�(n+1)=2�−1∑
j=2l+1; j odd

	jtn−1−j

−
2�n=2�∑

j=2s+2; j even


jtn−1−j −
2�(n+1)=2�−1∑
j=2q+1; j odd


jtn−1−j


=M2:
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Hence it follows by the Maximum Modulus Theorem [6, p. 165], that∣∣∣∣zn+1G2

(
1
z

)∣∣∣∣6M2 for |z|6 t;

which implies

|G2(z)|6M2|z|n+1 for |z|¿ 1
t
:

From this it follows that

|g(z)|= | − anzn+2 + G2(z)|¿ |an‖z|n+2 −M2|z|n+1 for |z|¿ 1
t

= |z|n+1(|an‖z| −M2):

Thus, if |z|¿R2 = max{M2=|an|; 1=t}, then g(z) �= 0 and hence p(z) �= 0, and the proof of the
theorem is complete.

Lemma 3.1. Let p(z) =
∑n

v=0 avz
v be a polynomial such that |arg aj − 
|6 	6 �=2 for j∈

{0; 1; 2; : : : ; n} and for some real 
, and if for positive t and nonnegative integer k,

|a0|6 |a1|t16 |a2|t26 · · ·6 |ak |tk¿ |ak+1|tk+1¿ · · ·¿ |an|tn;
then for j∈{1; 2; : : : ; n}

|taj − aj−1|6 |t|aj| − |aj−1|| cos 	+ (t|aj|+ |aj−1|) sin 	:

This lemma is due to Aziz and Mohammad [2]. Notice that this is just a triangle inequality
concerning complex numbers which lie in the same closed half-plane, but in our statement we quote
from [2].

Proof of Theorem 2.2. Consider

g(z) = (t2 − z2)p(z) = t2a0 + a1t2z +
n∑
j=2

(ajt2 − aj−2)zj − an−1zn+1 − anzn+2

= t2a0 + G1(z):

On |z|= t

|G1(z)|6 |a1|t3 +
n∑
j=2

|ajt2 − aj−2|tj + |an−1|tn+1 + |an|tn+2

6 |a1|t3 +
n∑
j=2

[(‖aj|t2 − |aj−2‖) cos 	+ (|aj|t2 + |aj−2|) sin 	])tj

+ |an−1|tn+1 + |an|tn+2 (by Lemma 3:1)
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= |a1|t3 + |an−1|tn+1 + |an|tn+2

+ cos 	
[−|a0|t2 − |a1|t3 + 2|a2k |t2k+2 + 2|a2l−1|t2l+1 − |an−1|tn+1 − |an|tn+2]

+sin 	


2 n−2∑

j=2

|aj|tj+2 + |a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2




= t2M1:

Now since G1(0) = 0, then it follows from Schwarz’s Lemma, that

|G1(z)|6 t2M1|z|
t

= tM1|z| for |z|6 t;

which implies

|g(z)| = |t2a0 + G1(z)|
¿ t2|a0| − |G1(z)|
¿ t2|a0| − tM1|z| for |z|6 t:

Therefore, if |z|¡R1 = min{t|a0|=M1; t}, then g(z) �= 0 and so p(z) �= 0.
In the following, we again consider the polynomial

g(z) = (t2 − z2)p(z)

= t2a0 + a1t2z +
n∑
j=2

(ajt2 − aj−2)zj − an−1zn+1 − anzn+2

=G2(z)− anzn+2:

Then ∣∣∣∣zn+1G2

(
1
z

)∣∣∣∣=
∣∣∣∣∣∣t2a0zn+1 + a1t2zn +

n∑
j=2

(ajt2 − aj−2)zn+1−j − an−1

∣∣∣∣∣∣ ;
and on |z|= t,∣∣∣∣zn+1G2

(
1
z

)∣∣∣∣
6 |t2a0|tn+1 + |a1t2|tn +

n∑
j=2

|ajt2 − aj−2|tn+1−j + |an−1|

6 |a0|tn+3 + |a1|tn+2 +
n∑
j=2

[|t2|aj| − |aj−2‖ cos 	+ (t2|aj|+ |aj−2|) sin 	
]
tn+1−j + |an−1|

by Lemma 3:1
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= |a0|tn+3 + |a1|tn+2 + |an−1|+ cos 	


 (t4 − 1)


 2k−2∑
j=0; j even

|aj|tn−1−j

+
2l−3∑

j=1; j odd

|aj|tn−1−j −
2�n=2�∑

j=2k+2; j even

|aj|tn−1−j −
2�(n+1)=2�−1∑
j=2l+1; j odd

|aj|tn−1−j




+(t4 + 1)(|a2k |tn−1−2k + |a2l−1|tn−2l)− |a0|tn+3 − |a1|tn+2 − |an−1| − |an|t−1




+sin 	


(t4 + 1)

n−2∑
j=2

|aj|tn−1−j + |a0|tn−1 + |a1|tn−2 + |an−1|t4 + |an|t3



=M2:

Then it follows by the Maximum Modulus Theorem [6, p. 165], that∣∣∣∣zn+1G2

(
1
z

)∣∣∣∣6M2 for |z|6 t;

which implies

|G2(z)|6M2|z|n+1 for |z|¿ 1
t
:

From this it follows that

|g(z)|= |anzn+2 + G2(z)|¿ |an‖z|n+2 −M2|z|n+1 for |z|¿ 1
t

= |z|n+1(|an‖z| −M2):

Thus, if |z|¿R2 = max{M2=|an|; 1=t}, then g(z) �= 0 and hence p(z) �= 0, and the proof of the
theorem is complete.
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[5] G.V. MilovanoviPc, D.S. Mitrinovi-c, Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros,

World ScientiCc Publishing Co, River Edge, NJ, 1994.
[6] E.C. Titchmarsh, The Theory of Functions, 2nd Edition, Oxford University Press, London, 1939.


	Restrictions on the zeros of a polynomial as a consequenceof conditions on the coefficients of even powers and oddpowers of the variable
	Introduction
	The main results and applications
	Proofs of the results
	Acknowledgements
	References


