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Abstract Members of the claudin family play important roles in
the formation of tight junctions in the kidneys, liver and intestine.
Claudin-19 (Cldn19), a newly identified member of this family, is
highly expressed in the kidney of the mouse. To have a better
understanding on mouse claudin-19 gene expression, a 0.9-kb
DNA fragment containing the 5 0-flanking region of the Cldn19
gene was isolated. DNA sequence comparison between the mouse
and human Cldn19 promoter regions exhibited little homology.
One transcription initiation site was located at 104 nucleotides
upstream of the start codon (ATG) of the Cldn19 gene. The
mouse claudin-19 promoter lacked typical CAAT or GC-box.
Deletion constructs of the 0.9-kb DNA fragment were generated
and fused to a promoterless luciferase (Luc) reporter plasmid.
Transfection studies using various kidney cell lines (MDCK,
mIMCD3 and HEK293) revealed that the minimal promoter
fragment resided in the �39 to �108 region, which contained a
number of binding sites for transcription factors including Sp1.
Site-directed mutagenesis using specific oligo probes confirmed
that Sp1 was crucial for Cldn19 transactivation in the three cell
lines studied. Electromobility shift assay confirmed that the nu-
clear extracts of these cells bound to the Sp1 oligo derived from
Cldn19 promoter, but not to the mutated Sp1 oligo probe. More-
over, this DNA–protein complex would be recognized by Sp1
antibody, indicating specific Sp1 binding. Collectively, our data
suggest that Sp1 binds to the claudin-19 promoter region and
is responsible for its expression in the kidney cell lines in vitro.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The tight junction (TJ) is a specialized membrane domain at

the most apical region of polarized epithelial and endothelial

cells that not only creates a primary barrier to prevent paracel-

lular transport of solutes (barrier function) but also restricts

the lateral diffusion of membrane lipids and proteins to main-

tain the cellular polarity (fence function) [1]. More than 40 dif-

ferent proteins have been located to the TJs of epithelia,

endothelia and myelinated cells. To date two components of

the TJ filaments have been identified: occludin and claudin.

The word claudin was derived from the Latin word �claudere�
(to close), reflecting their association with TJs. The claudin

protein family comprises more than 20 members and all clau-

dins encode 20–27 kDa proteins with four transmembrane do-

mains [1–3].

Members of the claudin family are involved in various bio-

physiological processes [4] such as regulation of paracellular

permeability [5,6] and conductance [7]. Although a decreased

expression of claudin has been related to a number of breast tu-

mors as well as cancer cell lines [8], a recent study did not sup-

port the involvement of aberrant claudin gene expression in the

sporadic tumors and hereditary breast cancer patients. Other

regulatory or epigenetic factors may be involved in the down-

regulation of this gene during breast cancer development [9].

In this study, we isolated the promoter of a new member of

claudin gene family, claudin-19 (Cldn19), from mouse testis.

Mouse claudin-19 is located on chromosome 4 D2.1 containing

four exons, while Cldn2 was found in the X chromosome. To

functionally characterize the promoter region of claudin-19,

chimeric promoter constructs were generated and transiently

transfected into mammalian kidney cell lines to identify the

minimal promoter region. Furthermore, electromobility shift

assay (EMSA) was performed to confirm the transcriptional

factor involved in the regulation of claudin-19 expression.
2. Materials and methods

2.1. Plasmid, bacteria and reagents
pGL3-Basic, pGL3-Control and pRL-TK reporter vectors, and

Dual-luciferase reporter assay system were obtained from Promega
(Madison, WI, USA). DH5a competent cells were prepared as de-
scribed [10]. Restriction endonucleases, T4 DNA ligase, calf intestinal
alkaline phosphatase and T4 polynucleotide kinase were purchased
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Table 1
Primers used for PCR amplification of the wild type or mutated claudin-19 promoter fragment

Primer Sequence Site (nt)

Cldn19-1 5 0-AGTTACTGTGGGTCCCTCTTCT-30 �797 to �776
Cldn19-4 5 0-CAACAAAGCCTGGTTTCCATAC-30 �568 to �546
Cldn19-5 5 0-CAGAGCACTGGAATCACTCCTA-30 �296 to �274
Cldn19-6 5 0-CCTGCATTCTGGAATCAGCAGC-30 �75 to �54
Cldn19-R 5 0-ATGGCCCAGGTAGGAGTCT-3 0 88 to 106

Unknown AP2 NF-E Sp1
Mut 1 5 0-AAAGATAGCTGCTGGGGA CTGTCTGTGGGCGG-30 �138 to �135
Mut 2 5 0-AAAGAGCTCTGCGTTGGA CTGTCTGTGGGCGG-30 �138 to �135
Mut 3 5 0-AAAGAGCTCTGCTGGGGA CGTGCTGTGGGCGG-30 �138 to �135
Mut 4 5 0-AAAGAGCTCTGCTGGGGA CTGTCTGTTTTCGG-30 �138 to �135

The putative transcriptional factor binding sites are underlined and labelled on the top.
Mutated sequences are in bold.
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from New England BioLabs (Beverly, MA) and Amersham Bio-
Sciences (Piscataway, NJ). Bradford reagent was from Bio-Rad (Her-
cules, CA). Other reagents were from Sigma (St. Louis, MO).

2.2. Isolation of 5 0-flanking region of the claudin-19 gene
The promoter region of the claudin-19 was amplified using the PCR

primers specific to the 5 0-flanking region of the mouse Cldn19 gene
(Table 1) and pfu DNA polymerase (Stratagene, La Jolla, CA). In
brief, the PCRs were carried out at 94 �C for 25 s and then 30 cycles
of 94 �C for 25 s, 60 �C for 1 min, and 72 �C for 4 min and a final
extension step at 67 �C for 4 min in a final volume of 50 ll with 10
pmol of a gene-specific primer. The PCR products were gel-purified
and subcloned into pGL3-Basic vector for transfection study. Both
strands of the cloned fragments were sequenced using the ABI Prism
3100 Genetic Analyser (ABI, Foster City, CA). The promoter frag-
ment was analyzed using on-line Promoter Scan (http://bimas.
dcrt.nih.gov/molbio/proscan/), Signal Scan (http://bimas.dcrt.nih.
gov/molbio/signal/) and ClustalW (http://www.ebi.ac.uk/clustalw) pro-
grams [11].

2.3. Construction of deletion and mutated constructs
The XhoI/HindIII fragment of PCR amplified DNA sequences of the

claudin-19promoter region (corresponding to region�797,�568,�296,
�233, �168, �139, �108, �75 to +106) was subcloned into the XhoI/
HindIII digested pGL3-basic vector. To create mutant claudin-19 pro-
moter constructs, primerswith nucleotides substitutionwere synthesized
(the mutated sequences were underlined). Wild-type: 5 0-AAA-
GAGCTCTGCTGGGGACTGTCTGTGGGCGG-3 0; Mut 1: 5 0-
AAAGATAGCTGCTGGGGACTGTCTGTGGGCGG-3 0; Mut 2:
5 0-AAAGAGCTCTGCGTTGGACTGTCTGTGGGCGG-30; Mut 3:
5 0-AAAGAGCTCTGCTGGGGACGTGCTGTGGGCGG-30; Mut
4: 5 0-AAAGAGCTCTGCTGGGGACTGTCTGTTTTGCGG-3 0.
2.4. Cell culture and transfection
The Madin–Darby canine kidney epithelial cells (MDCK), murine

inner renal medullary collecting duct cells (mIMCD3) and human
embryonic kidney 293 (HEK293) cells were obtained from the Amer-
ican Type Culture Collection (ATCC, MD, USA) and cultured in min-
imal essential medium (MEM), Dulbecco�s minimal essential medium/
Ham�s F12 (DMEM/F12) and DMEM, respectively (Gibco-BRL, Gai-
thersburg, MD), supplemented with 10% fetal bovine serum, penicillin
(50 U/ml), streptomycin (50 U/ml) and 2 mM LL-Glutamine at 37 �C
and 5% CO2. Cell transfection experiments were carried out using Fu-
Table 2
Primers used for EMSAs

Primer Sequence

Cldn19-cSp1 (consensus) 5 0-ACTGTCTGTGGGCGGGTTTTGG-3 0

Cldn19-mSp1 (mutant) 5 0-ACTGTCTGTGTTCGGGTTTTGG-3 0

The putative Sp1 site is marked with bold, mutated nucleotides are
underlined.
Gene 6 transfection reagent (Roche Molec. Biochem., Germany) as de-
scribed previously [12]. Briefly, the cells were grown on a 24-well tissue
culture plate so that the cell layer was 70% confluent on the day of
experiment. For each well, 500 ll of medium containing 1.5 ll of Fu-
Gene 6 was mixed with 500 ng of test plasmid and 50 ng of pRL-TK
plasmid and incubated for 30 min at room temperature. FuGene6–
DNA complex was added slowly to each dish and the dish was incu-
bated at 37 �C for 48 h. The luciferase activity was quantified using
the Dual-luciferase reporter assay system (Promega) and a lumino-
meter in accordance with the manufacturer�s protocols. All the exper-
iments were repeated thrice in duplicates.
2.5. Electromobility shift assay
Nuclear protein extracts from MDCK, mIMCD3 and HEK293 cells

were prepared using the NucBuster Protein Extraction kit (Novagen,
Madison, WI) and quantified using the Bradford protein assay kit
(Bio-Rad, Hercules, CA). The double-strand oligo probes (Table 2)
were labelled with [c-32P]ATP (Amersham BioSciences) using the
Ready-To-Go T4 Polynucleotide kinase kit (Amersham BioSciences).
Unincorporated nucleotides were removed by spin column in the TE
buffer. Ten microgram of nuclear extract was incubated with or with-
out unlabelled oligo probes or Sp1 (PEP2, Santa Cruz Biotech. Inc.,
Santa Cruz, CA) antibody in 1· binding buffer (4% glycerol, 1 lg
poly(dI–dC) Æ (dI–dC), 10 mM Tris–HCl (pH 7.5), 50 mM NaCl, 1
mM MgCl2, 0.5 mM EDTA and 0.5 mM DTT) in a 10 ll reaction
for 10 min at room temperature. Then, radiolabelled probe was added
and incubated for further 30 min at room temperature. The reaction
products were analyzed on a 6% non-denaturing polyacrylamide gel.
The gels were dried under vacuum and autoradiographed on Kodak
MS films overnight at �70 �C.
2.6. Statistical analysis
All results are expressed as means ± S.E.M. Statistical comparisons

were performed with a paired Student�s t test.
3. Results

3.1. Cloning of the Cldn19 promoter

The putative promoter region of the mouse claudin-19 gene

was obtained by PCR amplification using the primers specific

to the 5 0-flanking region of the claudin-19 cDNA sequence.

When compared with the cDNA sequence from the GenBank

database, the putative mouse claudin-19 promoter region was

localized. The fragments were gel-purified and cloned into the

pGL-basic vector. Putative transcription factor binding sites of

the longest amplified fragment were identified (Fig. 1). How-

ever, no conserved CAAT and TATA-box sequences were

found. Sequence comparison of the 5 0-flanking region of the

mouse claudin-19 promoter with the human counterpart using

http://bimas.dcrt.nih.gov/molbio/proscan/
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Fig. 1. The nucleotide sequence and putative regulatory elements of the 5 0-flanking of mouse claudin-19 gene. The large capital A residue at position
+1 indicates the transcriptional initiation site as determined by RACE method. The translation start site (ATG) is underlined. The encoding amino
acid sequence of the first exon of Cldn19 is indicated by bold and capital letters on the top. The putative transcriptional factor binding sites
(unknown, AP2, NF-E and Sp1) located between �139 and �75 are shown. The primer sequences used for construction of claudin-19 deletion
constructs are marked with arrows.
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the GCG SeqWeb program did not show any significant

homology (data not shown). The transcription start site of

claudin-19 was determined by 5 0-RACE method (data not

shown). The longest PCR product obtained corresponded to

the unique transcription start site of 104 nucleotides ahead

of the translation start site of the claudin-19 gene (Fig. 1).

3.2. Transfection of Cldn19 promoter into kidney cell lines

Chimeric constructs containing various lengths of the Cldn19

promoter were tested in three kidney derived cell lines: MDCK,

mIMCD3 and HEK293 (Fig. 2). The luciferase activities of

pGL-797/106Luc (0.8-kb), pGL-568/106Luc (0.6-kb) and

pGL-296/106Luc (0.4-kb) in all the three cell lines were signifi-

cantly increased (4–7-fold increase) when compared to the

pGL-75/106Luc (0.2-kb) or the empty construct pGL3-Basic

(Fig. 2).
3.3. Determination of Cldn19 minimal promoter region

To localize the minimal promoter region of the claudin-19

gene, four additional deletion constructs (pGL-223/106Luc,

pGL-168/106Luc, pGL-139/106Luc and pGL-108/106Luc)

were generated specially between the �296 and �75 regions

(Fig. 3). Transfection of these constructs into the MDCK cell

line demonstrated that pGL-139/106Luc retained strong pro-

moter activity. Further deletion (pGL-108/106Luc) resulted

in a drastic decrease in promoter activity, suggesting that the

functional element of the claudin-19 promoter resided between

the �139 and �108 region. Interestingly, the inclusion of the

�168 to �139 regions suppressed promoter activity

(P < 0.05), suggesting the presence of a silencer element in this

region. Detailed sequence analysis of the mouse claudin-19

promoter region using Signal Scan program (http://bimas.

dcrt.nih.gov/molbio/signal/) revealed one unknown and three

http://bimas.dcrt.nih.gov/molbio/signal/
http://bimas.dcrt.nih.gov/molbio/signal/
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Fig. 2. The transactivation of luciferase reporter constructs by Cldn19
promoter in MDCK, mIMCD3 and HEK293 cells. Various claudin-19
promoter-Luc chimeric constructs are transiently transfected into the
cells. The Luc expression of the empty expression vector is taken to be
1 and relative activities of each Cldn19 promoter are normalized with
pRL-TK expression levels. Values are means ± S.E.M. of at least three
independent experiments.
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Fig. 3. The transactivation of luciferase reporter constructs by Cldn19
promoter in MDCK cells. Various claudin-19 promoter-Luc chimeric
constructs (pGL-296/106Luc, pGL-223/106Luc, pGL-168/106Luc,
pGL-139/106Luc, pGL-108/106Luc and pGL-75/106Luc) are tran-
siently transfected into the cells. The Luc expression of the empty
expression vector (pGL-3Basic) is taken to be 1 and relative activities
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Fig. 4. The transactivation of mutant constructs on luciferase expres-
sion in MDCK, mIMCD3 and HEK293 cells. Various claudin-19
promoter-Luc mutant constructs (Mut 1, Mut 2, Mut 3 and Mut 4; see
Table 1) are transiently transfected into the cells. The Luc expression
of the empty expression vector (pGL-3Basic) is taken to be 1 and
relative activities of the mutant constructs are normalized with pRL-
TK expression levels. Values are means ± S.E.M. of three independent
experiments. Open oval: wild-type sequence, filled oval: mutant for the
unknown, AP2, NF-E or Sp1 site (see Table 1).

254 J.M. Luk et al. / FEBS Letters 578 (2004) 251–256
transcriptional factor-binding sites for AP2, NF-E and Sp1 at

this region (Fig. 1).

3.4. Site-directed mutagenesis of the Cld19 promoter

To study the role of these transcriptional factors on the

mouse claudin-19 promoter activity, mutant constructs specific

to these transcriptional factor-binding sites were generated by

site-directed PCR amplification protocol. Mut1, Mut2, Mut3

and Mut4 primers were specific to the unknown, AP2, NF-E

and Sp1 transcription factor binding sites, respectively. Trans-

fection of these mutated constructs into the three cell lines

demonstrated that Sp1 binding site mutations resulted in a

drastic decrease in the promoter activity, suggesting that Sp1

site is crucial for claudin-19 expression in kidney cells (Fig.

4). Other mutation constructs did not show significant changes

in the promoter activities.

3.5. Specific binding of Sp1 protein on the Cldn19-cSp1

To further demonstrate that the Sp1 protein interacts with

this region, EMSA using Cldn19-cSp1 consensus oligo and
MDCK, mIMCD3, HEK293 or HeLa cell nuclear extracts

was carried out. Our result demonstrated that all the three kid-

ney nuclear extract complexes with Cldn19-cSp1 oligo formed

one major retarded band (Fig. 5A), but not with the Cd19-

mSp1 mutated oligo. Addition of 10–50-fold excess of cold

and specific probe, but not non-specific probe displaced the

binding of the MDCK nuclear extract (Fig. 5B). In order to

confirm the specific Sp1 protein–DNA interaction, we used

antibody against Sp1 protein for the supershift experiment.

Addition of the Sp1 antibody resulted in a further retardation

of the DNA–protein complex for both MDCK and HeLa cells,

suggesting that Sp1 is present in the DNA–protein complex. It

was noted that further addition of Sp1 antibody might desta-

bilize the DNA complex in the EMSA experiment (Fig. 5B,

lane 8). Neither Sp2 nor Sp3 antibody could bind the DNA–

protein complex in the EMSA study (data not shown).
4. Discussion

Members of the claudin family play important roles in the

formation of TJs in the kidneys, liver, brain and intestine [1–

3,13–15]. In this study, the promoter region of claudin-19

(Cldn19), a newly identified member of this family, was isolated

and characterized by transfection and EMSA studies. In mam-

malian cells, gene expression is frequently controlled at the level

of transcription [16]. The control region of typical eukaryotic

genes comprises proximal (core) and distal (enhancer) pro-

moter regions. The core promoter region consists predomi-

nantly of two elements: the TATA-box and/or the Inr

elements (CTCANTCT at �3 to +5 position relative to the

transcriptional start site) [17,18] which can be present either

alternately (i.e., either TATA+Inr� or TATA�Inr+) or in lim-

ited cases, simultaneously (TATA+Inr+) [19]. In the mouse

Cldn19 promoter, no typical CAAT and TATA-box were

found (GenBank Accession No. NT_039265). The Inr element

of Cldn19 gene (GCCACTTA at �3 to +5 position, conserved

residues were underlined) showed weak homology with the con-

sensus sequence. Trans-activation of TATA�Inr+ promoter is



Fig. 5. EMSA using MDCK, mIMCD3, HEK293 or HeLa cell nuclear extracts on Sp1 binding. (A) Radiolabelled Cldn19-cSp1 consensus and
Cldn19-mSp1 mutant oligos are incubated with MDCK, mIMCD3, HEK293 or HeLa nuclear extract (NE) and resolved on a 6% polyacrylamide gel.
(B) Specific DNA–protein complex is confirmed by competition assay using 10–50-fold excessive cold Cldn19-cSp1 (consensus) or Cldn19-mSp1
(mutant) oligo probes and specific antibody raised against Sp1 protein for supershift experiment. The formation of further retarded band (supershift)
at the top with the disappearance of the protein–DNA complex below confirms the specific Sp1 binding.
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mediated by interaction between TFII-I and the Inr element to

recruit TFIID and other components to the promoter [20].

In this study, the minimal 0.3-kb mouse Cldn19 promoter

(pGL-296/106Luc) displayed full transactivation activities.

Interestingly, increase of the length of the promoter (up to

1-kb, pGL-797/106Luc) suppressed the transactivation activ-

ity, notably between the �139 and �168 region in all the

three kidney cell lines tested, suggesting the presence of sup-

pressor element in this region. Several putative transcriptional

factor binding sites were found in this region, including CAP

site, W-element and LBP-1 site. Whether these elements are

important for the Cldn19 gene expression needs further

investigation.

By using site-directed mutagenesis and EMSA, we confirmed

that Sp1 is crucial for Cldn19 expression in the kidney cell lines

studied. Higher trans-activation of the Cldn19 promoter was

found in the MDCK than in the HEK293 and mIMCD3 cells,

albeit they are all kidney derived cell lines. This observation

suggested that factor(s) in addition to Sp1 may co-regulate

Cldn19 promoter activity, although the identity of this factor

remains obscure. This observation was supported by the fact

that Sp1 expression in mouse tissues was highest in the thymus,

lung and spleen than the other tissues such as kidney [21],

where claudin-19 is highly expressed. In addition, it was re-

ported that Sp1 protein expression in normal tissue varies

markedly during development [21]. Sp1 mRNA levels increase

in CV-1 cells in response to SV40 viral infection and in T-lym-

phocytes in response to phorbol ester treatment [22]. There-

fore, it would be important to study the regulation of
claudin-19 expression by manipulating Sp1 expression in vitro

and in vivo. Mutation of the unknown transcription factor

binding site, AP2 and NF-E did not abolish the promoter

activity. However, mutation of the Sp1 site almost completely

abolished the promoter activity in these cell lines. EMSA

showed that Sp1 protein binds to the putative Sp1 site on

the Cldn19 oligo. Addition of Sp1 but not Sp2 or Sp3 antibody

specifically binds to the DNA–Sp1 complex and causes a

supershift product in the gel. However, excessive Sp1 antibody

destabilizes the protein–DNA product in the supershift exper-

iment, suggesting that Sp1 antibody may perturb stable Sp1

protein–DNA complex by competing with Sp1 oligo for Sp1

binding site in vitro.

The 5 0-flanking region of the human and mouse claudin-2

gene contains binding sites for intestine-specific Cdx homeod-

omain proteins and hepatocyte nuclear factor (HNF)-1 [23].

However, no HNF and Cdx sites were found in our putative

Cldn19 promoter region. Thus, at least for claudins-19 and -

2, a differential mode of transcriptional regulation can be sug-

gested. It is known that Sp1 interacts with a variety of gene

promoters containing GC-box elements for constitutive

expression of genes in different tissues [24], including hepato-

cyte growth factor receptor gene in the kidney [25]. Whether

co-regulation of Sp1-mediated transcription occurs in kidney

remains an open question.

In conclusion, the minimal promoter region of Cldn19 was

mapped to the �139 region relative to the transcription start

site. An Sp1 site plays an important role in the expression of

the gene in the kidney cell lines.
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