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Abstract. In the theory mr A -- -+,+; VI ueuucac.onal semantics of programming languages Dedekind-complete, 
algebraic partial orders (domains) frequently have been considered since Scott’s and Strachey’s 
fundamental work in 1971 (Stoy, 1977). As Scott (1982) showed, these domains can be represented 
canonically by (deterministic) information systems. However, recently, more culnplicated construc- 
ti ms (such as power domains) have led to more general domains (Plotkin, 1976; Smyth and 
Plotkin, 1977; Smyth, 1983). We introduce non-determinhstic information systems and establish 
the representation theorem similar to Scott (1982) for these more general domains. This result 

will be the basis for solving recursive domain equations. 

In the mathematical theory of denotational semantics of programming languages, 
various kinds of systems of information and associated partial orders (domains) of 
information have been extensively studied. Scott [16] introduced information sys- 
tems as consisting of a set of tokens (to be imagined as propositions or units of 
information) together with consistency and entailment relations. Kahn and Plotkin 
[9] considered concrete data structures and concrete domains. Winskel[21] studied 
event structures and event domains (see also [4,5]). A11 of these domains have the 
property that any bounded subset has a supremum and an i&mum. 

The latter order-theoretic property is reflected in Scott’s theory by the deterministic 
assumption that a given set of information either implies a new information or not 
(and in principle this is known to us). This approach was inspired by the investiga- 
tions of Horn formulas in first order theories in logic. owever, more recently, in 
[i&7, S] more general partial orders have been studied and s own to exhibit 

interesting features neede 
(0, c), a bounded subset 
of this paper to introduce and study non-deterministic 

associated partial orders 
nora-deterministic infor 
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one of the possibly several elements of B. Scott’s approach can now be obtained 
simply by the additional requirement that B is either empty (equivalently, in Scott’s 
notation, A is not consistent) or a singleton. We note that similarly as Scott’s 
information systems correspond to Horn theories in IOgic, our (non-deterministic) 
information systems can be shown to reflect arbitrary first order theories. A state of 
information is a subset X of E such that whenever A is a subse _ of X and A entails 

B, then X contains at least one element of B. The set (D( %), C_ ) of all such states 
of information, partially ordered under inclusion, will be called the information 
domain associated with 8’. We say that a partial order (D. s) is generated by 8, if 

it is isomorphic to (D( %), G); in this case, (0, “-) is also called an information 

domain. 
Let us now give a summary of our results. We will first study order-theoretic 

properties of information domains (D( %), E ). These orders are directed-complete 
but not necessarily algebraic, and a finite subset A of D(g) may in general have 
an even infinite (but complete) set of minimal upper bounds. Next we show that if 
(D, =G) is algebraic, directed-complete and each finite subset A of rrjl( g) has a finite 
set of (compact) minimal upper bounds (such DE- a T ’ xers will be called almost 
deterministic domains), then (0, <) is an inf~r~zLi, domain. In particular, each 
finite partial order (0,~) is an information domain, In general, the representing 
information system 8 is not unique. However, under canonical additional assump- 
tions on the information systems % considered, we derive a uniqueness result. As 
a consequence, we also obtain a corresponding result for the domains and informa- 
tion systems considered by Scott. 

Recursive domain equations are usually considered as fixpoint equations to be 
solved in categories instead of complete partial orders (cf. [ 11,18,20]). Domains 
may “approximate” each other in various ways, the classical and appropriate concept 
of approximation being that of embedding [ 15,18,13]. Hence one applies a categori- 
cal version of the usual Knaster-Tarski theorem for cpos and obtains solutions of 
domain equations only up to isomorphism. Here we will take up an approach of 
Berry and Curien [2] for concrete data structures, which was also employed in 

[3,5,101= 
We introduce a natural substructure relation for information systems, under which 

the class of all information systems becomes a complete partial order. We show for 
any two almost deterministic domains (0, s), (D’ S) that there exists a stable 
injection-projection pair from D to D’ in the sense of [2,3], iff D, D’ are generated 
by information systems ‘8, %“, respectively, such that 8 is a substructure of 8’. This 
result allows US to so!ve fixpoint equations for almost deterministic domains now 
in the complete partial order of the more concrete information systems and thus to 
obtain exact solutions, not just isomorphisms. 

In our final section, we give a (sometimes easily applicable) topological charac- 
terization of when an arbitrar s) is an information domain. 
turns out that this is the case i ology 7 on 

act and totally or er disconnected space; these spaces have 
hematical literature in quite some detail, see e.g. the su 
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In this section we will study basic properties of non-deterministic information 
systems and their corresponding domains. Let us start with the precise definition 
of these notions. For any set E, let Fin(E) denote the set of all finite subsets of E. 

A non-deterministic information system (or, for short, information 
system) is a pair 2% - (E, I-) where E is a set (the elements or units of information) 
and t- c Fin(E) x Fin(E) is a binary relation (the entailment relation) between finite 

subsets of E. 

A subset X c E is called a state of 8, if whenever A c X and B c E with At-B, 

then X n B Z 0. We let D( 8) = {X c E; X is a state of 8}, and (D( %), E ) is called 
the information domain associated with 8. A partially ordered set (0, S) is called 

an information domain, if there exists an information system E such that (D( 8, c_ ) 2 

(0, s); in this case, we say that (0, S) is generated by 8. 
Let % be an information system. A finite subset 14 of E can be said to be consistent, 

if not A t-0. Then, if X is a state of ?& each finite subset of X is consistent. The 
present notion of a non-deterministic information system generalizes the concept 
of the “information systems” considered, e.g., in [ 16, 10-J. We obtain their cc.~c+t, 
if we assume that whenever A, B G E with At- B, then 1 BI 6 1, and cezrtain f:._&e~ 
axioms; details and consequences of this will be studied in Section 3. Subsequently, 
if A c E and e, x E E, we will write At- e(t+- A, et-x) as an abbreviation for At-(e) 

({e} k A, {e} t- {x)), respectively. 
Now we wish to study the basic order-theoretic properties of information domains 

(D( %), c). Let us first introduce some notation. Let (0, S) be a partially ordered 
set. A non-empty subset A 2 D is called upper directed (or shortly directed ), if for 
any a, b E A there is c E A with a -S c and b s c. Similarly we define lower directed. 

We say that (0, S) is A-complete (V-complpte) if each upper (lower) directed subset 
of D has a supremum (infimum) in D, respectively. An element d E D is compact 
(or finite), s if whenever A c_ D is directed and x = sup A exists in (D, s) with d s X, 
then d s a for some a E A. Let Do be the set of all compact elements of D. We will 
call (0, S) algebraic, if d = sup{x E Do; x G d} for each d E D. If a, b E with a c b 

and there is no d E D with u < d < b, we say that [a, b] is a gap in (0, “-)- Now 

A G D and d E D. Occasi 
then we say that d is an upper bound of A. Furthermore, if As d a 
with A s x s d satisfies x = d, we ca 
or, if there is no ambiguity, 
of A (this set may be em 
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Le; 8 be an information system. 

losed under taking unions of upper directed subsets and intersections 

of lower directed subsets of ( 25’). In particular, (D( @, c ) is A-complete and V - 

complete. 

(b) Any subset A C_ E has a complete set Mub(A) of minimal upper bounds in 

lar, ( D( %‘), c ) is mub-complete. 

be finite and assume X E D( 8) is the smallest state of 8 containing 

(d) Whenever X, YE D( %) with X 5 Y, there are A, B E D( 2%‘) such that X c As 

Bc Y and [A, B] is a gap in (D( %), C_ ). 

(e) Dejne I-* c Fin(E) >1( Fin(E) by putting At-* B iffBt- A, and let %* = (E, I-*). 

Then D(%‘*)=(E\X; XE D(Q). 

. (a) Let{X,; iEZ)be a lower directed subset of D( %‘), and let X = nit I Xi. 
Let AGX and B={b,,.. .,b,)cE with AI-B. Suppose XnB=@ For each 
iE{I 9***3 n j there is i* E I with bi e X;+. Choose j E I with Xj C_ Xi* for each i E 

11 9 c a l 9 n}. Then Xi n B = (3, a contradiction. Hence X E D( %). The rest is clear. 
(b) If YE D(g) with A c Y, by (a) and Zcrn’s lemma there exists a minimal 

state X of % with AG X G Y. 

(c) Straightforward. 
(d) Choose eE Y\X. By (a) and Zorn’s lemma, choose first a maximal state 

AE D( %‘) such that X G A c Y and e e A, and then a minimal state B E D( 8) with 
AcBc_ Y and eEB. 

(e) Straightforward by checking the definitions. •J 

Note that in Proposition 2.2(e), (D( %‘*) , c_ ) is anti-isomorphic to (D( %‘), c). It 
follows that if an order-theoretic property holds in all information domains, so does 
the dual property obtained by interchanging c and 2. For instance, Proposition 
2.2(b) remains true if “upper bound” is replaced everywhere by “lower bound”. 

Let D be a set. A proper subset 9 of .9(D), the power set of D, is called a filter 

on D, if 9 is closed under finite intersections and whenever X E 9 and X c Y c D, 

then YE 9. By Zorn’s lemma, each filter is contained in an ultrafilter, i.e. a maximal 
filter on I>. Now let % be an information system and 9 a filter on D( %‘). We say 
that X E D( 8) is a limit point of gfor %, if for each FE 9 we have nztF Z E X C_ 

U&F z 

Clearly, if each ultrafilter on (8) has a limit point for 8, then so does in fact 
each filter. Now et (0, S) be partially ordered and 9 a filter on D. Similarly as 
before, we say elk t x E D is a limit point of 9 for (0, s), if the following conditions 
are satisfied for each y E D and FE 9: 
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maximal lower bounds of F in D. Clearly, if 8 is an information system and 9 a 
filter on D( %‘), then any limit point of 3 for 8 is also a limit point of 9 in (D( %‘), E ) 
(but not necessarily conversely). 

reposition 2.3. IA 25 be an information system, and let 9 be ajlter on D( %). Then 

9 has a limit point X E D( %) for 8. 

roof. We may assume that 9 is an ultrafilter. We put 

We claim that X E D( 8). Indeed, let A c X and B c E with AI- B. There exists 
FEN such that AcZ for all ZEF. Hence ZnB#@ for all ZEF and F= 
[jcG B (2 E F; b E 2). Since 9 is an ultrafilter, we have (2 E F; b E 2) E 9 for some 
bEB. Then bEXAB. 

Next let FE 9. Clearly nzE F ZrX.Foranye~XthereisG~Qwithe~Zfor 
all 2 E 6. Observing that F n G # 0, we obtain X c UzEF 2. 0 

Our proof of Proposition 2.3 used the set-theoretic assumption, implied by the 
axiom of choice, that each filter on D( %) is contained in an ultrafilter. Examples 
given below will show that even in the important case that E is countable, D( 8) 
may be very large, e.g. have cardinality of the continuum. However, in order to 
obtain a more constructive argument for our result, we will now show that for the 
case that E is countable, it is nevertheless possible to prove Proposition 2.3 without 
additional set-theoretic assumptions, by using just ordinary induction. 

ositisn 2.3 (assuming that E is countable). Since by our assumption 
I- c Fin(E) x Fin(E) is also countable, we can enumerate I- as a sequence I-- = 

CAi9 Bi?icN* Let 9 be the ideal dual to 9 in P(D( ZY)), that is, 9 = {F’; FE @}. We 
now define Xi z E, Hi E 9’( D(g))\.9 with Xi c Xi+, and Hi+, c Ifi such that 

for each i E N, inductively as follows. 
Put X, = UFE,+ nZEF 2 and H, = D( 8). Now assume that 

defined such that (*) holds. If Xi is a state of 
NOW assume Xi e D( Z’). Choose j E kl mi 
Since Aj is finite, by (*) there is F* E 9 such that 

there exists b E Bj with 
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that X is a limit point of 9 for 8. Let FE 9. Clearly nZEF 2 G 
thatXcUzEPZ,leteEX.ThereareiENand F’E$witheEZ 
By Hi E 9 we have again Iii r\ F’n FE 9, as before, in particul 

Thus e E Uzc F z. a 

As a consequence of Proposition 2.3, in information domains ( c) any filter 9 

on D has a limit point x 2 D for (0, s). As an easy application of Proposition 2.3 
we note the fol 

Let 8 be an information system, and let & E D( %) be any injinite set 

of states of 8. *Then there is X E I)( 8) such that whenever 9 s & contains all but at 

most finitely many elements qf J$ then 0 YE +, Y E: X c U k, LI cly Y. 

roof. Let 9 = (9 c D( %); &\Z is finite}, a filter on D( %), and apply Proposition 
2.3. 0 

We can think of X as a state of information which “collects” any information 
which is contained in almost all elements of Sp, but which is still not too large, i.e. 
contained in any union of almost all elements of &. A mathematical reason for our 
calling such a state X a “limit point” will be given in Section 5. 

Next we will give a few examples of information systems 8 where a finite set 
A c D”( %‘) has an infinite set Mub(A) of minimal upper bounds. 

xamples 2.5. Let No be the set of non-negative integers and a, b two symbols not 
belonging to No. We put E = {a, b} u No. 

(z) lkfine I- by pl_rt_t$g I _--___ 

it-a, iFb, Ot-a, Ot- b 

2i-ll-{2i,2i+l} 
1 

2it2i-1 - forall iEN; 

2i+lt-2i-1 ! 

moreover let 

(*) {2i,Z+l}t--(d foreach &IWO. 

Put 8 = (E, I--). FSK each k E No let 

f= {a, 9 2k) u {j E N; j < 2k,j odd}, and let 
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Fig. 2. (D( if?), r ). 

Again, M = {E; k E N,u {a}} s:atisfies M = Mub({a, b}). For any k, m E N,u (~0) with 
kc m we have 

sup{E, fi) = m* in (DC%+), G). 

Moreover, D( %‘+)\D’( %+) = (co, E} (see (Fig. 2)). 

In Section 5 we will see that there are partial orders (0, s) which possess all the 
order-theoretic properties derived in Propositions 2.2 and 2.3, but which, neverthe- 
less, are not information domains. The complications are caused by finite subsets 
A E Do for which Mub(A) is infinite. Therefore we will first study in Sections 3 and 
4 the case where for each finite subset A c Do, Iv!ub(A) is finite (and again contained 
in DO). 

ains 

his section we will study A-complete and algebraic partial orders (0, s) in 
which each finite subset of Do has a complete finite set of minimal upper bounds 
contained in Do. We will show that ea2^h kl1 of these orders (D, G) is an information 
domain, i.e. generated by some information system EC Here, in general 8 is not 
unique, but for a particular class of information systems WC will also derive existence 
and uniqueness to isomorphism) of the generating information system. As a 
consequence, we ive corresponding results for the particular information systems 
considered in [l 
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(b) We call (0, s) an almost deterministic domain, if (0, <) is A-complete and 
algebraic and satisfies condition ( 

Note that in particular, if (0, G) satisfies conditixr (IV), then (D, G) has a 
complete finite set Mub(Q)) of minimal elements each of which belongs to Do. Also, 

a A-complete algebraic partial order (D, 6) satisfies condition (M) iff 
(1) for each d E D the set {x E Do; x s d} is directed, and 
(2) each finite subset c Do has a complete and finite set of minimal upper 

bounds Mub(A) c D. 
Next we define corresponding notions for information systems. Throughout this 

section, if % is an information systelm and e E E, let c = (x E E; e I- x}. 

efinition 3.2. Let 8 = (E, I-) be an information system. 
(a) 8 is called almost deterministic, if the following conditions are satisfied: 
(1) Whenever e E E and A, B c E such that et- a for each a E A and A+ B, then 

there is 6 E B with e I- b. 

(2) For each finite subset X c E there is A E. E such that X kA and X E a’ for 
each a E A. 

(b) % is said to satisfy condition (M), if for each finite subset X c E, Mub(X) C_ 
D”( E’) and Mub(X) is finite. 

Here, condition (I) is a weak form of transitivity for I-. It is equivalent to 
demanding that e’ E D( 8’) for each e E E. Condition (2) implies, in particular (put 
X = 0), that each state of %’ is non-empty. Related structures have recently been 
studied independently by Zhang [23] in order to obtain a characterization of 
SFP-domains in terms of “generalized information systems”. The following result 
shows that almost deterministic information systems generate almost deterministic 
domains. 

osition 3.3. Let 8 = (E, t-) be an almost deterministic information system. 

(a) For each state X E D( %), we have X E D”( 25) iff X = 2 for some x 

(b) Let X, A c E such that XI- A and X c a’ for each a E A. Then 

{li; a E A} n D”( 25). 

(c) 8 satis$es condition (A4). 

(d) (D(g), 3 is an almost deterministic domain. 

. (a) First assume X E 
that s9= {X; x E X) is direct 
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(b) Let ZED(%‘) with X&Z. There exists aEZnA. Then Xcie’c 

D( 8). Hence Mub(X j - { c ii; G E A}. Now assume a E A satisfies a’ 

As J&A, there exists bEAna’. Then Xcdcti9 showing bG=6a 

by (a). 
(c) Immediate 
(d) By Proposition 2.2(a), (D( %), E) is A-complete. Now let E D@). By (a) 

and (b), for each x E X there is e E E such that e’ E Mub({x}) (3 D”( %‘) and e E e’ c X. 
Thus x= G-; e E X, ZE D”( %‘)}, and (D( %), t ) is algebraic. 

Next le 6: Do(%) be finite. By (a), &={Z1 ,..., Zn} for some x ,,..., x,+E 
such that xi E %i for all i = 1, . . . , n. For each state 2 of %’ we have gi E 2 iff xi G 2. 

Thus Mub(o4) = Mub({x,, . . . , .q,l) C_ D”( 8) and Mub(& is finite by (c). Hence 
(D( %‘), c ) satisfies condition (M) and is almost deterministic. 0 

Next we wish to prove a converse of Proposition 3.3(dj. 

Le; ( 0, “-) be an almost deterministic domain. Define an information 
system Z& = (ED, t-j as follows: 

(1) ED= Do; 
(2) whenever X, A G ED are finite, let X I-- A iff either A = Mub(X) or A = 

(a),SxEX. aSx. 
Therr Z& is called the canonical information system associated with (0, s). 

It is immediate that &, is almost deterministic. Hence the following result is the 
converse of Proposition 3.3(d). 

Let (0, =s) be an almost deterministic domain, and let %‘D be the canonical 
inforrrration system associated with (0, s). Then the mapping 

d+d:={eEE,;ead} 
is an isomorphism. 

Clearly, for each d E D, d is a state of g P, and hence f is well-defined. For 
each i E D we have d = sup d in (0, s). Hence, for any d, , d2 E D, d +d,iff d,&. 

o show that f is onto, let X be any state of % P. We claim that (X, G) is directed. 
ndeed, let Y c X be finite. Put A = ub( Y). Then Y I-- A and thus X n A # 8. Now 

let d =supXE arly X c & For the c verse, eEEe,= Do with es d. There 
is x E X with e ence {x}t-e and e E Thus = d, and f is an isomorphism 
as claimed. 0 

heorem 3.5 we note that eat 
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that for any A, B c E, A /- B iff f(A) t--'f( ). Any such function f is then called an 
isomorphism from S5’ onto %“. As easy examples show, in general an almost deter- 
ministic domain may be generated by several (non-isomorphic) almost deterministic 
information systems. I-Iowever, this only indicates that the conditions of Definition 
3.2 are not tight enough for uniqueness. We rush to impose the canonical (necessary 
and sufficient) restriction which serves our purpose. 

An almost deterministic information system ‘8 = (E, I-) is called 
canonical or, for short, a CANDIS, if the following conditions are satisfied for all 
elements a, b E E and finite subsets X, A c_ E: 

(1) al-a; 
(2) if al-6 and bt-a, then a = b; 
(3) if xEX and XI-~ then XI-U; 
(4) if Xi-A, a&A and at-b, then a=b; 
(5) if X I- A, a E A and there is y E X with l( a I-Y), then A = {a} and there is 

XEX with XI-U. 

It is easy to see (using the axiom of choice) that for each information system 
SF = (E, I-) there exists an information system 8* = (E*, I-*) satisfying conditions 
(l)-(3) such that E* c_ E and D( 8*) = D( 8’). I-Ience the essential conditions are 
those of Definitions 3.2(a) and 3.6(4), (5). Also compare Definitions 3.6(S) and 
3.4(2). 

The following is immediate by checking the definitions. 

reposition 3.7. Let (0, <) be an almost deterministic domain and &, the canonical 
information system associated with (0, < ). Then Z& is a CANDIS. 

Next we show the following. 

Let % be a CANDIS, and let 9 = 9( 8’). en the mapping 

e+t?={xE E; et-x} (eE E) 

is an isomorphism. 

By condition (1) of nition 3.6 and Propositi 
= En for each e E E. ence f is well-defined. 

condition (2) of Definition 3.6, f is a bijection. Now let 
and X={Z;XEX}, = {a; a E A}. We claim that X t- 

distinguish between two cases. 
Case 1: Assume that Q t-x (i.e. 2 SE a) fo 

(a) we have e E e’ an 



300 M. Droste, R. Giibel 

let X t- A, i.e. Mub(X) = A. Choose A* C_ E with X I- A* and X C_ a’ for each .Q! E A*. 
Then A= Mub(X) = (ti; a E A!“J, hence A = A* as f is one-to-one. Thus X I- A. 

Case 2: Assume that --I( a t-y) for some a E A, y E X. If X I- A, by condition (5) 
of Definition 3.6 we obtain A = (a} and x t- a for some x E X. Then XI- 
if %-A, again I=l, thus A=(a) and a’cZ for some XEX. T 

condition (3) of finition 3.6. Cl 

iate consequence of Theorems 3.5, 3.8 and Propositions 3.3(d), 3.7 
we obtain the following. 

The operations 8 + D(8) and D+ &, provide up to isomorphism, 
inversti bijections between the classes of canonical almost deterministic information 
systems and of almost deterministic domains. 

The following is our uniqueness result for canonical almost deterministic informa- 
tion systems with given information domain. 

Let %, , iiF2 be two CANDIS with isomorphic information domains 
(D(%,),c)=(D(&),c_). Then &=&. 

Next we wish to derive as consequences, results corresponding to Theorem 3.5 
and Corollary 3.10 for the kind of particular information system considered, e.g., 
in [16, lo]. 

1. Let %’ = (E, t-) be an information system such that whenever A; B C_ E 
with A E B, then 1 BI < 1. Assume that the following conditions are satisfied where 
Cons = {A E Fin(E); l(At-0): 

(1) AcB&ons =+ AECons; 
(2) e E E + {e}E Cons; 
(3) Xt-ee * Xu{e}ECons; 
(4) XECons,xEX * Xl-x; 
(5) e,x~ E, YECons with et-y for each YE Y, and Yc-x + et-x; 
(6) XECons, XEX, xt-e + Xt-e. 

Then 8 will be called a Scott-information system. Such a system is called canonical, 
if it satisfies, in addi 

(7) XECons --4 EE:Xt-e and XE~; 
(8) x,y~ E, XI--~ and yt-x + x=y; 
(9) Xt-e * Ace’or3xE 

et g be a Scott-i formation system. I- a, then X E Cons by conditions (3), 
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(2) whenever A c X, e E E and t-e, then eEX. 

Any canonical Scott-information system satisfies all axioms of a canonical almost 
deterministic information system except possibly, condition (3) of Definition 3.6. 

~1~~0~ An almost deterministic domain (ID, 6) is called deterministic, if 
jMub(A)I s 1 for each finite subset A c Do. 

These are precisely the A-complete, algebraic partial orders (D, s) which have 
a smallest element and are consistently complete (i.e. any up er bounded subset of 

D has a supremum in D). It is well known that the deterministic domains are also 
precisely those partial orders which are generated by Scott-information systems 
(see, e.g. [ 16, p. 5851 or [ 10, p. 1141). Next we wish to derive from Theorem 3.5 and 
Corollary 3.10 a sharpening of this result. 

Lemma 3.13. Let % = (E, I-) be a canonical almost deterministic information system 

such that whenever A, B c E with At-B, then IBI 6 1. Let Cons = {A E Fin(E); 

l( A t-0)) and let 

I--* = {(A, 

Then 8* = (E, I-*) 
states as %. 

B)Et;A&OnsorB=fl}. 

is a canonical Scott-information system with precisely the same 

roof. Note that Cons = {A E Fin(E); A c X for some X E D( 8)). Hence D( g*) = 
D( Z?). The rest is straightforward. Cl 

Now we show the following. 

Any deterministic domain (0, s) is generated by a canonical Scott- 
information system %. Moreover, Z5 is unique up to isomorphism. 

roof. Let Z? = (E, I-) be the canonical information system associated with (D, c). 
Then Z!?’ is canonical and almost deterministic, % generates (0, s), and whenever 
A, BE E with At- B, then I BI s 1. Now apply Lemma 3.13 to obtain a canonical 
Scott-information system %‘* generating (0, s j. If 8 = (E’, I-‘) is another canonical 
Scott-information system generating (0, s) 

A’, 63’ E Fin( E’), A’t-+B’ iff there exists A c 
lary 3.10. Applying the procedure of Lemma 3.13 to %+, we corn 
%*=z?. cl 
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that 8 is (in a natural way) a Aubstructure of %“. Since the class INF of all information 
systems Twill be A-co plete, this allow*> us, as mentioned in the introduction, to use 
the ordinary master-Tarski theorem for complete partial orders to solve recursive 
domain equati r almost deterministic domains in INF and th s obtain exact 
solutions, not morphisms. First let us introduce our subst ture criterion 
for information systems. 

4.1. Let 8 = (E, k), V = (E’, I-‘) be two information systems. We call %’ 
a substructure of Z”, denoied by % c %‘, if the following conditions are &sfied: 

(1) E!z E’; 
(2) A,BcE and I-B imply AM?; 
(3) Ac, E, Bc E’ and APB imply AI- Bn E. 

Note that if 8 c %“, then in particular for any A, B E E, A I- B iff APB; however, 
in general our requirements for 8 c 8’ to hold are stronger than the latter property. 
Our reason for this is that we want % C_ 8’to imply that D( %‘) c D(V), cf. Proposition 
4.3. 

Let INF denote the class of all (non-deterministic) information systems. Then 
(INF, c_ ), where c is the substructure relation defined above, satisfies all axioms 
of a partial ordering except that INF is a class, not a set. Moreover, (INF, c ) is 

A-complete: that is, every directed subset of INF has a supremum in INF; this is 
obtained by taking componentwise set unions. 

Also, observe that if %’ c 8’ and 8” is almost deterministic (canonical, respectively), 
then so is 8. Moreover, if C is a directed set of almost deterministic (canonical, 
respectively) information systems and 8 E INF is the supremum of C in INF, then 
% is again almost deterministic (canonical, respectively). 

The following order-theoretic notion will be useful. 

G) be a partial order, and let D c D’. We call D an ideal 
of (D’, s), denoted by D 4 D’, if the following conditions are satisfied: 

(1) XE D’,~E D and xsy imply XE D; 
(2) whenever A G D and d E D’ satisfy A s d, there exists x E D such that 

Asxsd. 

The final requirement shows (with A = 0) in particular that if D 4 D’, then for 
any d E D’ there is x E D with x < d. Next we show the following. 

et 8, ‘8’ be two hformation systems such that iff c_ %‘. Then D( %) 4 
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(*) t MC E and YED(%“) with c Y. Then there exists X E D( %) with 
CXC, Y. - 

Let S be the system of all 

X=Mw U (YnB). 
(A,B)ES 

GXE YnEsY.1 
Yn B#Q) and thus 

and B c E with 
# 0. This proves 

Subsequently we will also obtain a partial converse of Proposition 4.3. We will 
relate ideals of partially ordered sets with stable injection-projection pairs defined 
below. For any set S, let ids denote the identity mapping on S. Let (P, s ), (0,~) 

be two partial orders and J g : P-=+ Q two mappings. We write f~ g if f(x) G g(x) 
for all x E I? Also, f is called continuous, if whenever A c P is a directed subset and 
x = sup A exists in (I?, s), then supf(A) exists in (0, “-) with f(x) = supf(A). 

(cf. B2rr-y and Curien 121, /3urien [3]). Let (P, s), (Q, “-) be two 
partially ordered sets, and let 50 : P + Q, $ : C 0 -+ P ik continuous. Then (rp, +) is 
called a stable injection-projection pair (sipp) fro-3 (i-“, c) to ( Q, 6 ), if the following 
conditions are satisfied: 

(1) $0 q =id,; 
(2) qo$&d l 

(3) x~P,y$‘and y~q(x) imply (4p+)(y)=y. 
Hence q 0 + acts like the identity at least at ah points which lie below some element 
of q(P). Here, (2) and (3) can be replaced by 

(2’) I x v E Q and xs y imply (q 0 Jl)(x) = x A (9 0 e)(y). ?, 

Now we show the following. 

Let (0, S) be algebraic, and let E -u 
(a) Let q : E + D be the identity mapping, and let $: D + E be defined by 

+(d)=sup{xEE;xad; (dED). 

Then ( q4 9) is a sipp from (E, S) to (0, s). 

(b) (E, S) is algebraic, and (E, s)’ = (0, d)‘n 

show that # is continuous. Clearly + is order-preserving. Let 



Obviously, $0 cp = idE and 50 0 $ s idD. NowletxEEandYEDwithY+&X)=~~ 

Then yEE, thus (po+)(y)=y. 
is algebraic. Let x E E”, d E D, and let 

that xsd =su in D. Then #(A) is directed, and t)(d) =sup &{Aj in (A?, s). 

ere is QEA with xSI,~(Q)SQ. Thus XED’. 0 

The example in Fig. 3 of 3 A-complete partial order (II, s) show, th3i in 
Proposition .5 some kind of algebraicity assumption on (0, “-) is necessary in 

order for a,!~ to be continuous (put E = {a,, 6)a D and observe that a, < b = I,!J( a)). 
Observe that D is not algebraic, since 6 is not a supremum of compact elements. 
In Section 5 we will see that (D, “-) is an information domain. 

b 

Fig. 3. (0, a). 

.6. Let (P, s), (Q, S) be two partially ordered sets and let (q, $) be a sipp 
from (P, a) to (Q, s). Put P* = q(P). Then 

(a) (P, S)=(P*, S), 

(W P*aQ, 
(c) (co O ccl)(Y) = sup{x E P”; x 6 y} for Q/l y E Q, 
(cl) the pair (id, cp 0 I,!J) is a sipp from (P”, s) to (Q, S). 

. (3) Immediate by $0 p = idp. 
(b) If x E Q and z E P with x G p(z), clearly x = <p(+(x)) E P*. Now let A c P 

and ~EQ with q(A)sy. Then x:=(qo+)(y)~ P* and q(a)=q(@cp(a))~x~y 
for 311 a E A. 

(c) Let y E Q- A_rr_y Y E P* with x s y satisfies x =S ($0 0 e)(y). Now observe that 

(cp O rlr)(Yk p* 3l-l (<pW(y)~y* 

(d) This is straightforward, since (cp 0 #)lp* = id. 0 

Now we can s mmarize our results. 



Non-deterministic information q Atems 305 

(2) there are two information systems %‘, 8’ generating D, D’, respectively, such that 

8s %‘; 

(3) there are two canonical almost deterministic information systems 8, ZT” generating 

9, I?‘, r&Spcc +x~_v~ such that 8 c 8’. 

roof. (1) + (3): Let (q, #) be a sipp from (0,s) to (D’, s), and let D* = cp( D). 

By Lemma 4.6, we have f D”, s) = (D, 6) and D* 4 D’. Since (D’, “-) is an almost 
deterministic domain, we obtain by D* Q D’ that 

Mub ( D’,s 1 (4 = ub, P*, 5J(A) c D* for any A c D*, 

and by (*) and Proposition 4.5(b) that (D*, S) is also an almost deterministic 
domain. Let 8 = (E, I-) (respectively, %’ = (E’, t-‘)) be the canonical information 
system associated with (D”, “-) (respectively, (D’ , s)). By Theorem 3.5 and Proposi- 
tion 3.7, it only remains to prove that 8 c_ 8’. Since E = (D*, s)’ and E’ = (D’, s)‘, 

we obtain E c_ E’ by Proposition 4.5(b). Using (*) and condition (1) of Definition 
4.2, it is straightforward to check conditions (2), (3) of Definition 4.1. Hence ?Ft C_ &. 

(3) + (2): Trivial. 
(2) + (1): By Propositions 4.3 and 4.5(a) there exists a sipp from (0, s) = 

(D(g), G) to (D(%‘), E)=(D’,~). Cl 

aracterization of ~nfQrma~ion do 

In this section we give a topological characterization of when an arbitrary partial 
order (D, s) is an information domain. Let us introduce some notation. Let (0,~) 

be a partial order and T a topology on D. A subset A c: D is a jinal segment, if 
x E A, y E D and x s y imply y E A. A is called clopen, if A is simultaneously closed 
and open. Then (0, S, T) is called totally ord- or disconnected, if it satisfies the 
following separation axiom: 

(S) For any X, y E D with x 6 y there exists a clopen final segment A in D with 
XEA and yEA. 

Such spaces have been thoroughly examined in the mathematical literature, see, 
e.g., the survey in [14]. We wish to show the fr?!!owing. 

5.1. Let (D, =S ) be any padal order. en the f~~~~wing are eq 

(I) (0, “-) is an information domain; 

(2) there exists a topology 7 on D such that ( c, T) is a compact toQ 
disconnected space. 

The fo!!owing well-known remarks 
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for ail e E E. If A C_ let OA E 2 E denote the characteristic function 

ll,.&)=l iff eEA. en the mapping q:(9(E),~)+(2~,~) given 
(A c E) is an order-isomorphism, and below we will identify (P(E), c) with (2E, S) 

via q. Hence, if 8 = (E, I-) is an information system, 8) can be regarded as a 

subset of 2” (as such, it is closed, as shown below j. Now we give the proof. 

(I)+(2): We may assume that (0, +=( (Z?), E) for some 
(E, I-). As noted above, we have D( %) c 2 E. We show that 
ndeed, let f = 1 y E 2E\D( %5’). There are A c Y, B c Y’ with 

At-B. Let C=Au and U = {g E 2E; glc =flc}. Then I/ is clopen and fc U c 
D( $$‘)‘. Now iet T be the su space topology induced on D c 2 E. Then, since 2 E is 

compact, so is (0,~). 
Next let x, y E D with x g y. Choose e E E with e E x\y, and let A’= 

{fe 2E; f(e) = l}. Then A = A’n D is a clopen final segment in (0, S, T) with x E A 
and ye A. 

(2) + (1): Let E be the set of all clopen final segments in (0, e, r). For any 
Ir;e, 9 E Fin(E) we put .#I- 99 ifI (qAEd A c UBEs B. Let 8 = (E, I-), and define a 
mappingQ:(D,==)+(D(%), r)byputtingcp(d)=d:=(AEE;dEA}(dED). We 
claim that Q is an order-isomorphism. 

First -we show that Q is well-defined. Let d E D and & c 2, % G E with ti I- 3. 
Then d E n a2 C_ u 93. Hence there is BE 9 n d and d is a state of 8. Secondly, let 
d,,d,ED.Thend,~d,iffforallAEE,d,EAimpliesdzEA,iff~~c_~~. 

It only remains to check that Q is onto. Let 2 E D( ii%‘). We first claim that 

M = riAEZ An nsEE,z B’ is non-empty. Indeed, otherwise by a compactness argu- 
ment there are finite subsets & E Z and B c E\Z such that nAEd P (7 nBEB . 

i.e. dt- 3. This contradicts 2 E D(8). Now choose any d E M. Then clearly 
Z=d7 cl 

An ideal J of a lattice (E, c ) is called a prime ideal, if x, y E L and x A y E J imply 
xcJoryc.K 

It is known that a further condition, equivalent to condition (2) of Theorem 5.1 is: 

(3) ( s) is isomorphic to the partially ordered set (X,, c ) of all prime ideals 
of a distributive lattice (L, s) with smallest and greatest element. 
In fact, if (D, s) Es as in Theorem 5.1(2), we may put (L, s) = (E, C) where E is 
(as in the proof of Theorem 5.1) the set of all clopen final segments of (0, s, 7). 
For details on this, we refer the reader to [l4]. 

The characteriz ion of information domains (0, S) given in Theorem 5.1 is not 
completely satic ory, as it is not solely in order-theoretic terms. To the best of 
our knowledge, a satisfactory order-theoretic characterization of when a partial 
order (0, s) can be m a compact totally order disconnected space is still 
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g generating (0, s). A 
IV(D) on (0, s); this 
sub-basis for the closed 

natural candidate for 7 is quite often the interual topology 
has the sets {x E D; x s d}, {x E ;d<x} (dED) as a 
sets. Let us summarize some order-theoretic properties of 

information domains (0, s). 

Any information domain ( D, s ) has the following properties : 
(0, Q) is A- and D-complete; 
if x, y E D with x < y, there are a, b E D with x s a < b s y such that [a, b] is a 
gap in (D, “-); 
the interval topology IV(D) is compact; 
(0, 2) is an information domain; 
any filter 9 on D has a limit point for (0,~). 

This result, with the exception of (c), is immediate from Propositions 2.2 and 2.3. 
It can also easily be derived from Theorem 5.1. We now prove (c) and also (e) 
which exemplifies the reason for our notion of “limit points”. 

Proof of Corollary 5.2(c) an (e). By Theorem 5.1, let 7 be a topology on D such 

that (0, G, 7) is compact and totally order disconnected. 
(c) By axiom \S), for each d E D the sets {x E D; x s d}, {x E D; d s x} are closed 

in (0,~). Hence IV(D) c 7, showing that (D, IV(D)) is compact. 
(e) We may assume that 9 is an ultrafilter on D. By compactness 9 converges 

to some x E D. We show that x is a limit point of 9 for (0, s). Let y E D and 6; E 9 
with y < z for all z E F. Suppose that y sf x. Choose a clopen final segment A in D 
with y E A and x e A. Then A” is an open neighborhood of x, hence A% 9’. There 
exists z E A’n F. Now y E A and y c z imply z E A, a contradiction. Similarly, F s y 

implies x < y. Cl 

We note that for any partial order (0, = ), the interval topology IV(D) on D is 
compact iff the following condition holds in (0, s): 

(C) Assume A G D are such that for any finite subsets ‘EA,B’EB there 
exists y E D with ‘sys B’. Then there is XE D with ASXS B. 

Lewis and Ohm [ 12, p. 8231 gave an example of a partially ordered set ( 4 
which satisfies conditions (a)-(c) of Corollary 5.2, but which, by Theorem , is 

not an information domain. Since in this example each maximal chain in ( 9 

contains only precisely two elements, ( G) is algebraic and also satisfies conPtion 

(5.2)(e). 
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given in [6,7]. A subset A c D is called an antichain, if a, b E A 

a = b. Whenever (0, d) has no infinite antichain, IV(D) is I-Iaus 
is easy to see that if (0, S) satisfies condition (b) of Corollary 5.2 

ost two elements, then (0, s-, IV(D)) is totally o 

This shows, for example, that the partial order (0, S) of Fig. 3 is an information 
domain. Moreover, following the proof of Theorem 5.1, we obtain the subsequent 
explicit representation of (0, “-) by a non-deterministic information system. 

pie. Let E = {Xi, yi: i E N} and let i- be defined by 

xi I- xj, Xi F yj, yi t- yj whenever j s i, 

yi k {Xi. yk) whenever j s i and k E N, 

ixj9 YilExi for all i, j E N. 

Let %=(E,t-). Put B={yi: id} and Ai={xj,yj:j<i} for each idU Then 
D(8) = {Ai: idV}u{E, R),and(D(%) ) , c is isomorphic to the partial order (D, a) 

of Fig. 3. 

We would like to thank Professor Martin Ziegler (Bonn) for drawing our attention 
to the topological characterization described in Section 5, which uses familiar tools 
from model theory. 
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