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Abstract. In the theory of denotational semantics of programming languages Dedekind-complete,
algebraic partial orders (domains) frequently have been considered since Scott’s and Strachey’s
fundamental work in 1971 (Stoy, 1977). As Scott (1982) showed, these domains can be represented
canonically by (deterministic) information systems. However, recently, more cumplicated construc-
tions (such as power domains) have led to more general domains (Plotkin, 1976, Smyth and
Plotkin, 1977; Smyth, 1983). We introduce non-deterministic information systems and establish
the representation theorem similar to Scott (1982) for these more general domains. This result
will be the basis for solving recursive domain equations.

1. Introduction

In the mathematical theory of denotational semantics of programming languages,
various kinds of systems of information and associated partial orders (domains) of
information have been extensively studied. Scott [16] introduced information sys-
tems as consisting of a set of tokens (to be imagined as propositions or units of
information) together with consistency and entailment relations. Kahn and Plotkin
[9] considered concrete data structures and concrete domains. Winskel [21] studied
event structures and event domains (see also [4, 5]). Ali of these domains have the
property that any bounded subset has a supremum and an infimum.

The latter order-theoretic property is reflected in Scott’s theory by the deterministic
assumption that a given set of information either implies a new information or not
(and in principle this is known to us). This approach was inspired by the investiga-
tions of Horn formulas in first order theories in logic. However, more recently, in
[13,7,8] more general partial orders have been studied and shown to exhibit
interesting features needed for concise description of information. In these orders
(D, =), a bounded subset A may have several minimal upper bounds. It is the aim
of this paper to introduce and study non-deterministic information systems and
their associated partial orders of information.

A non-deterministic information system (for short, just informatien system) &€
consists of a set E of tokens together with a binary entailmert relation + for finite
subsets of E; we can interpret the relation A~ B by saying that the set A implies
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one of the possibly several elements of B. Scott’s approach can now be obtained
simply by the additional requirement that B is either empty (equivalently, in Scott’s
notation, A is not consistent) or a singleton. We ncte that similarly as Scott’s
information systems correspond to Horn theories in logic, our (non-deterministic)
information systems can be shown to reflect arbitrary first order theories. A state of
information is a subset X of E such that whenever A is a subse. of X and A entails
B, then X contains at least one element of B. The set (D(%), <) of all such states
of information, partially ordered under inclusion, will be called the information
domain associated with €. We say that a partial order (D, <) is generated by &, if
it is isomorphic to (D(%), <); ir this case, (D, <) is also called an information
domain.

Let us now give a summary of our results. We wil! first study order-theoretic
properties of information domains (D(%&), <). These orders are directed-complete
but not necessarily algebraic, and a finite subset A of D(&) may in general have
an even infinite (but complete) set of minimal upper bounds. Next we show that if
(D, <) is aigebraic, directed-complete and each finite subset A of D(€) has a finite
set of (compact) minimal upper bounds (such b2 **"  -cers will be called almost
dcterministic domains), then (D, <) is an infiorrasi, domain. In particular, each
finite partial order (D, <) is an information domaia, In general, the representing
information system € is not unique. However, under canonical additional assump-
tions on the information systems & considered, we derive a uniqueness result. As
a consequence, we aiso obtain a corresponding result for the domains and informa-
tion systems considered by Scott.

Recursive domain equations are usually considered as fixpoint equations to be
solved in categories instead of complete partial orders (cf. [11, 18,20]). Domains
may “‘approximate” each other in various ways, the classical and appropriate concept
of approximation being that of embedding [15, 18, 19]. Hence one applies a categori-
cal version of the usual Knaster-Tarski theorem for cpos and obtains solutions of
domain equations only up to isomorphism. Here we will take up an approach of
Berry and Curien [2] for concrete data structures, which was also employed in
[3,5,10].

We introduce a natural substructure relation for information systems, under which
the class of all information systems becomes a complete partial order. We show for
any two almost deterministic domains (D, <), (D’ <) that there exists a stable
injection-projection pair from D to D' in the sense of [2, 3], iff D, D' are generated
oy information systems &, &’, respectively, such that & is a substructurc of &'. This
result allows us to solve fixpoint equations for almost deterministic domains now
in the compiete partial order of the more concrete information systems and thus to
obtain exact solutions, not just isomorphisms.

In our final section, we give a (sometimes easily applicable) topological charac-
terization of when an arbitrary partial order (D, <) is an information domain. It
turns out that this is the case iff there exists a topology 7 on D such that (D, <, 7)
is a compact and totally order disconnected space; these spaces have been examined
in the mathematical literature in quite some detail, see e.g. the survey in Priestley [ 14].
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2. Basic properties of information domains

2~ am ) P o

ve will study basic properiies of non-deterministic information
orresponding domains. Let us start with the precise definition

12 T2

. For any set E, let Fin{ E) denote the set of aii finite subsets of E.

(; i

Definition 2.1. A non-deterministic information system (or, for short, information
5 y‘siér‘ri yisa palf € =(E,+) where E is a set (the elements or units of information)
and < Fin(E) x Fin( E) is a binary relation (the entailment relation) between finite
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A subset X ¢ E is called a state of &, if whenever A< X and Bc E with A-B,
then X" B#0. We let D(€)={X<cE; X is a state of &€}, and (D(&), <) is called
the information domain associated with &. A partiaily ordered set (D, <) is called
an information domain, if there exisis an information system & such that (D(&, <) =
(D, =<); in this case, we say that (D, <) is generated by &.

Let € be an information system. A finite subset A of E can be said to be consistent,
if not A@. Then, if X is a state of &, each finite subset of X is consistent. The
present notion of a non-deterministic information system generalizes the concept
of the “information systems” considered, ¢.g., in [16, 10]. We obtain their ci-iceat,
if we assume that whenever A, B< E with A+ B, then |B|<1, and certain fi..*her
axioms; details and consequences of this will be studied in Section 3. Subsequenti Yy,
if Ac E and e, x € E, we will write A—e{(¢+ A, e x) as an abbreviation for A+ {e}
({e} A, {e}—{x}), respectively.

Now we wish to study the basic order-theoretic properties of information domains
(D(%), <). Let us first introduce some notation. Let (D, <) be a partially ordered
set. A non-empty subset A< D is called upper directed (or shortly directed), if for
any a, b€ A there is ce A with a<c and b < c. Similarly we define lower directed.
We say that (D, <) is A-complete (V-complete)_if each upper (lower) directed subset
of D has a supremum (infimum) in D, respectively. An element d € D is compact
(or finite), if whenever A < D is directed and x =sup A exists in (D, <) with d <x,
then d < a for some a € A. Let D° be the set of all compact elements of D. We will
call (D, <) algebraic, if d =sup{xe D°, x<d}foreachde D. If a,be D witha<b
and there is no d € D with a <d < b, we say that [a, b] is a gap in (D, <). Now let
Ac D and d € D. Occasionally we write A<d to denote that a <d for zach a€ A;
then we say that d is an upper bound of A. Furthermore, if A<d and any xe D
with A < x < d satisfies x = d, we call d a minimal upper bound of A. Let Mubp, <,(A)
or, if there is no ambiguity, Mub(A) denote the set of all minimal upper bounds
of A (this set may be empty). We say that Mub(A) is complete, if for any y € D with
A<y there is x € Mub(A) with x < y. If for each subset A< D, Mub(A) is complete,
we call (D, <) mub-complete. In a similar vein, if & is an information system and
A c E, we let Mub(A) be the set of all states X € D(&) such that A< X and whenever
Y e D(&) with Ac Yc X, then Y = X. We call Mub(A) complete, if for any Y e
D(&) with Ac Y there is X € Mub(A) with X c Y.
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Proposition 2.2. Le: & be an information system.

(a) D(&) is closed under taking unions of upper directed subsets and intersections
of lower directed subsets of D(&). In particular, (D(€), <) is A-complete and V-
complete.

(b) Any subset A< E has a complete set Mub(A) of minimal upper bounds in
D(&). In particular, (D(&), <) is mub-complete.

(c¢) Let A< E be finite and assume X € D(&) is the smallest state of &€ containing
A. Then X € D°(9).

(d) Whenever X, Y e D(&) with X Y, there are A, Be D(&) such that X< A<
B<c Yand [A, B] is a gap in (D(€), <).

(e) Define —* < Fin(E)x Fin(E) by putting A-* Biff B~ A, and let €* = (E, +*).
Then D(&*)={E\X; X € D(¥)}.

Proof. (a) Let{X;; ic I}bealowerdirected subset of D(&),andlet X = )., Xi.
et AcX and B={b,,...,b,}< E with A~B. Suppose X nB=0. For each
ie{l,...,n} there is i*e { with b;¢ X;-. Choose je I with X;< X« for each i€
{1,...,n}. Then X;n B =0, a contradiction. Hence X € D(&). The rest is clear.

(b) If Ye D(%) with Ac Y, by (a) and Zern’s lemma there exists a minimal
state X of & with Ac XcY.

(c) Straightforward.

(d) Choose e€ Y\X. By (a) and Zorn’s lemma, choose first a maximal state
A€ D(%) such that X< A< Y and e A, and then a minimal state B € D(&) with
A< Bc Y and e B.

(e) Straightforward by checking the definitions. [J

Note that in Proposition 2.2(e), (D(&%*), <) is anti-isomorphic to (D(%), <). It
follows that if an order-theoretic property holds in all information domains, so does
the dual property obtained by interchanging < and =. For instance, Proposition
2.2(b) remains true if “upper bound” is replaced everywhere by “lower bound”.

Let D be a set. A proper subset ¥ of (D), the power set of D, is called a filter
on D, if Z is closed under finite intersections and whenever X € ¥ and X € Y < D,
then Y € %. By Zorn’s lemma, each filter is contained in an ultrafilter, i.e. a maximal
filter on . Now let & be an information system and % a filter on D(&). We say
that X € D(&) is a limit point of ¥ for &, if for each Fe % we have( \,.rZ< X <
Uzer Z.

Clearly, if each ultrafilter on D(&) has a limit point for &, then so does in fact
each filter. Now let (D, <) be partially ordered and & a filter on D. Similariy as
before, we say tuat x € D is a limit point of F for (D, <), if the following conditions
are satisfied for each ye D and Fe &:

(1) (VzeF:y<z) = ys<x;

(2) (VzeF:zsy) = x<sy.

If (D, =) is 4- and V-complete, conditions (1) and (2) are equivalent to demanding
that mlb(F) < x <mub(F) for each Fe %, where mlb(F) denotes the set of all
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maximal lower bounds of F in D. Clearly, if € is an inforination system and &% a
filter on D(€), then any limit point of ¥ for & is also a limit point of % in (D(&), <)
(but not necessarily conversely).

Proposition 2.3. Let € be an information system, and let F be a filter on D(&). Then
% has a limit point X € D(&) for &.

Proof. We may assume that & is an ultrafilter. We put
X={ecE;AFeFVZecF:ecZ}=Urcs(\zcr Z

We claim that X € D(&). Indeed, let Ac X and B< E with A-B. There exists
Fe % such that AcZ for all Ze F. Hence ZnB#@ for all Ze F and F=
\reg{Z € F; be Z}. Since & is an ultrafilter, we have {Z e F; be Z} € & for some
be B. Then be X n B.

Next let Fe %. Clearly [ )z.r Z < X. For any e€ X there is Ge & with ec Z for
all Z e G. Observing that FN G #0, we obtain X c| J,.rZ O

Our proof of Proposition 2.3 used the set-theoretic assumption, implied by the
axiom of choice, that each filter on D(&) is contained in an ultrafilter. Examples
given below will show that even in the important case that E is countable, D(¥%)
may be very large, e.g. have cardinality of the continuum. However, in order to
obtain a more constructive argument for our result, we will now show that for the
case that E is countable, it is nevertheless possible to prove Proposiiion 2.3 without
additional set-theoretic assumptions, by using just ordinary induction.

Proof of Proposition 2.3 (assuming that E is countable). Since by our assumption
< Fin(E)xFin(E) is also countable, we can enumerate — as a sequence — =
(A;, B;));cn. Let F be the ideal dual to F in P(D(&)), that is, $ ={F°, Fe %}. We
now define X, < E, H,c P(D(&))\ ¢ with X, X,., and H,,, < H, such that

(*) XicUFes mZEH,-r\FZ

for each ieN, inductively as follows.

Put X,=Ugcs[zer Z and H,= D(&). Now assume that X;, H; have been
defined such that (*) holds. If X, is a state of &, we put X;,,= X, and H.,,= H,.
Now assume X; € D(&). Choose j € N minimal with A;- B;, 4;< X; and X;n B; =.
Since A, is finite, by () there is F* € % such that A, Z for all Ze€ H, F*. Then
clearly H;n F*= e H;p with H;,={Ze H,nF*; be Z} (be B)). By H;2 $ we
obtain H; n F*¢ 4, since otherwise H, < (H; n F*) U F*°¢ #, a contradiction. Hence
there exists be B; with H,,¢ $. Now put H,,, = H;;, and X;.,= X; U {b}. Then (*)
holds for X,,, H;,,.

Now let X =iy Xi. We first show that X € D(&). Let ieN with A;< X and
suppose X n B;=0. Choose jeN with A, c X;. Then X;¢ D(&) by X;n B, =0.
However, by construction we have X;,; " B; #, a contradiction. Finally, we check
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that X is a limit point of & for &. Let Fe %. Clearly MNzer Z< X, < X. To prove
that X € Uz. - Z, let ec X. There are icNand F'e ¥ witheec Z forall Ze H,n F'.

By H;¢ $ we have again H; NF' nFe¢$ as before, in pariicular H;n F'n F#§.

rhl.ls EEUZEF L. D

As a consequence of Propositior 2.3, in information domains (D, <) any filter ¥
on D has a limit point x = D for (D, <). As an easy application of Proposition 2.3
we note the following.

Corciiary 2.4. Let & be an information system, and iet s{ = D{(&) be any infinite set

of states of 5. Then there is X € D(&) such that whenever ¥ < o contains all but at
most finitely many elements of A, then( \y.y YEX S Uy o Y.

e an o

Proof. Let F={% < D(¥);, 4\Z is finite}, a fiiter on D(&), and apply Proposition
23. O

We can think of X as a state of information which “collects” any information
which is contained in almost all elements of &, but which is still not too large, i.e.
contained in any union of almost all elements of &/. A mathematical reason for our
calling such a state X a “limit point” will be given in Section 5.

Next we will give a few examples of information systems & where a finite set
A< D°(€) has an infinite set Mub(A) of minimal upper bounds.

Examples 2.5. Let N; be the set of non-negative integers and a, b two symbols not
belonging to N,. We put E ={a, b} UN,.

(n\ Define — h\l l‘\llfh“lﬂ

{a, b}+{0, 1}
ia,i-b,0—a,0~b
2i—1|—{2i,2i+1}]
2i-2i—1 i forallieN;
2i+1+2i-1
moreover let
(*) {2i,2i+1}~0 foreachieN,.
Put € =(E,*). For each keN, let
k={a, b,2k} U {jeN;j<2k, jodd}, and let
0 ={a, byu{jeN;jodd}.

Then D(&)=D"(€) =10, {a], 1D} U M where M = {i; A eNyu {&}}. 1n (D(€), ©)
(Fig. 1), we have Mub({a}, {b}) = Mub({a, b}) =
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Fig. 1. (D(€), <).

Let ={Ac D(%);,; D(%)\A is finite}, the filter of all cofinite subsets of D(&).
Then oo is the only limit point of % for €. Although coe D% &), there is no finite
subset A < N such that o is ilic smallest state of € containing A. Hence the converse
of Proposition 2.2(c) fails.

(b) Define ' precisely as +~ in (a), except by omitting requirement (*). Let
&' = (E,+"). Define k, co(k € N,) as before, and for each A<= Nyu {0} let A=y 4 k.
Hence, if A is infinite, we have A={2k; ke AnN}uU . Then

D(€')={0,{a}, {b}} U{A; AcNyU {0}
and
D°(€')={@,{a}, {b}} U{A; AcFin(N,)}.

In particular, e D(&")\ D°(€’) and thus (D(%’), <) is not algebraic. Moreover,
the set {x € D% &’); x < o} is obviously not directed. Again Mub({a, b}) = M with
M as in (a). Any upper bound of any infinite subset of M contains co.
(c) Define —* by letting
{a, b}*{2i 2i+1}
i-*a,i-*bh foreachieN,.
{2i,2i+1}-*0
Let &*=(E,+*). Then

D(8*)=D(&*) =19, {a}, {(b}}UM,

where M = Mub({a, b}) consists of all subsets X < E such that {a,b}< X and
|X n{2i,2i+1}|=1 for each i eN,. Hence D°(&*) has cardinality of the continuum,
which provides a sharp counterexample to the converse of Proposition 2.2(c). Also,
if & is the filter of cofinite subsets ¢f D(&) (as in (a)), now each element of M is
a limit point of % for &*.

(d) (The oblique ladder). Define - as + in (a), except by replacing (*) by the
requirement

{2i,2i+1}~*2j foralli,jeN, with j<i+1.

Put ¢*=(E,+"). For each keNyu {0}, define k as before an_d let k*={a, b}u
{jeNg; <2k} and oo*=E Then D(%")={p,{a}, {b}}u{k k*; keNyu{co}}.



290 M. Droste, R. Gobel

Fig. 2. (D(%%),<).

Again, M ={k; k e Ny L {0} satisfies M = Mub({a, b}). For any k, m € N, U {00} with
k<m we havs

sup{k, m}=m* in(D2(g"), ).

Moreover, D(&*)\ D% &*) ={c0, E} (see (Fig. 2)).

In Section 5 we will see that there are partial orders (D, <) which possess all the
order-theoretic properties derived in Propositions 2.2 and 2.3, but which, neverthe-
less, are not information domains. The complications are caused by finite subsets
A< D° for which Mub(A) is infinite. Therefore we will first study in Sections 3 and
4 the case where for each finite subset A< D°, Mub(A) is finite (and again contained
in D°).

3. Almost deterministic domains

In this section we will study A-complete and algebraic partial orders (D, <) in
which each finite subset of D° has a complete finite set of minimal upper bounds
contained in D°. We will show that each of these orders (D, <) is an information
domain, i.e. generated by some information system &. Here, in general € is not
unique, but for a particular class of information systems we will also derive existence
and uniqueness (up to isomorphism) of the generating information system. As a
consequence, we derive corresponding results for the particular information systems
considered in {10, 16].

Definition 3.1. Let (D, <) be a partial order.
(a) We say that (D, <) satisfies condition (M), if whenever A< D® is a finite

subset, then A has in D a compiete and finite set of minimal urper bounds such
that Mub(A) < 5.
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(b) We call (D, <) an almost deterministic domain, if (D, <) is A-complete and
algebraic and satisfies condition (M ).

Note that in particular, if (D, <) satisfies conditica (M), then (D, <) has a
complete finite set Mub(@) of minimal elements each of which belongs to D°. Also,
a A-complete algebraic partial order (D, <) satisfies condition (M) iff

(1) for each d € D the set {xe D° x<d} is directed, and

(2) each finite subset A< D° has a complete and finite set of minimal upper
bounds Mub(A) < D.

Next we define corresponding notions for information systems. Throughout this
section, if & is an informaticn system and ec E, let é={x€ E; e x}.

Definition 3.2. Let € =(E, ) be an information system.
(a) & is called almost deterministic, if the following conditions are satisfied:
(1) Whenever e€ E and A, B< E such that ea for each ac A and A+ B, then
there is be B with e b.
(2) For each finite subset X < E there is Ac E such that XA and X < a for
each ae A.
(b) & is said to satisfy condition (M), if for each finite subset X < E, Mub(X)c
D°(%) and Mub(X) is finite.

Here, condition (1) is a weak form of transitivity for . It is equivalent to
demanding that €€ D(&) for each e € E. Condition (2) implies, in particular (put
X =0), that each state of & is non-empty. Related structures have recently been
studied independently by Zhang [23] in order to obtain a characterization of
SFP-domains in terms of “‘generalized information systems”. The following result
shows that almost deterministic information systems generate almost deterministic
domains.

Proposition 3.3. Let € =(E, ) be an almost deterministic information system.

(a) For each state X € D(€), we have X € D°(€) iff X = x for some x € X.

(b) Let X, A< E such that X+ A and X < a for each ae A. Then Mub(X)c
{d; ae A}n D°(9).

(c) & satisfies condition (M).

(d) (D(9%), <) is an almost deterministic domain.

Proof. (a) First assume X € D% &). For each x € X, x is a state with X = X. We claim
that ¥ ={%; x€ X} is directed and that X =|,.x X Indeed, let x,, x,€ X. Choose
Ac E with {x,, x,}—A and {x,, x,} = a foreachae A. Then X nA#{and X,, X, S
ae ¥ for any a€ X N A. Since X € D%(&), we obtain X # ) as remarked above and
hence the assertion.

The converse is immediate by Proposition 2.2(c).
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(b) Let Ze D(¥%) with X c Z. There exists ac Zn A. Then X

ca
D(&). Hence Mub{(X)c{a;ac A}. Now assume ac A satisfies Mub(X).
A Wi A alecen avictiea he A~ 7 Than Y hea chawing hrﬁ:':on/l ac OfCP\
AS AFA, HITIC CAISIS U Al 4. 110 A = U = U, S1IUwillg U< & U daiiG & © \©@y

(d) By Proposition 2.2(a), (D(&), <) is A-complete. Now let X € D(&). By (a)
and (b), for each x € X there is e € E such that €€ Mub({x}) D%¥)and ecéc X.

v lf SN0 PV 20nd (NP =) ic algaheaic
luua X = U‘[C CC/\ €c \(o};, ala \U\(o),:) i5 aigcoraic.

Next let &f < D°(&) be finite. By (a), &« ={x,,..., x,} for some x,,...,x,€E

Eae ann

such that x;€ X; for all i=1,..., n. For each state Z of € we have X, Z lff x; € Z.
Thus Mub(sf) = Mub({x,,..., x,})c D% &) and Mub(«) is finite by (c). Hence
(D(&), <) satisfies condition (M) and is almost deterministic. [J

Nexi we wish to prove a converse of Proposition

Definition 3.4. Le: ( D, <) be an almost deterministic domain. De¢fine an information
system €, =(Ep, ) as follows:
(1) Ep= D%
(2) whenever X, Ac E, are finite, let X+ Aiff either A=Mub(X) or A=
{a},Ixe X. a<x.
Then &, is called the canonical information system associated with (D, <).

It is immediate that €, is almost deterministic. Hence the following result is the
converse of Proposition 3.3(d).

Theorem 3.5. Let ( D, <) be an almost deterministic domain, and let &, be the canonical
information system associated with (D, <). Then the mapping

(D, <)->(D(p), <)

d->d={ecEp;e<d}
is an isomorphism.

Proof. Clearly, for each d € D, d is a state of &, and hence f is well-defined. For
eachd e D wehave d =sup d in (D, <). Hence, forany d,, d,€ D,d, < d, iff d, = d;.
To show that f is onto, let X be any state of €,. We claim that (X, <) is directed.
Indeed, let Y < X be finite. Put A= Mub(Y). Then Y+ A and thus X n A # . Now
let d =sup X € D. Clearly X < d. For the converse, let e € Ep, = D° with e < d. There
is xe X with e<x. Hence {x}-e and ec X. Thus X =d, and f is an isomorphism
as claimed. O

As an immediate consequence of Theorem 3.5 we note thai each finite partiai
order (D, <) is an informatizn domain. Let us say that two information systems
&€ =(E,~) and & = (E', ') are isomorphic, if there exists a bijection f: E -~ E' such
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that for any A, B< E, A+ B iff f(A)~'f(B). Any such function f is then called an
isomorphism from € onto &'. As easy cxamples show, in general an aimost deter-
ministic domain may be generated by several (non-isomorphic) almost deterministic
information systems. However, this only indicates that the conditions of Definition
3.2 are not tight enough for uniqueness. We rush to impose the canonical (necessary
and sufficient) restriction which serves our purpose.

Definition 3.6. An almost deterministic information system & =(E,+) is called
canonical or, for short, a CANDIS, if the following conditions are satisfied for all
elements a, be E and finite subsets X, Ac E:

(1) at+a;

(2) if ab and b+a, then a =b;

(3) if xe X and x+a, then X+a;

(4) if X+A, a,be A and at b, then a =b;

(5) if XA, ac A and there is ye X with —(aty), then A={a} and there is

x e X with x+a.

It is easy to see (using the axiom of choice) that for each information system
&€ = (E, ) there exists an information system &*=(E*, %) satisfying conditions
(1)-(3) such that E*< E and D(%*)= D(&). Hence the essential conditions are
those of Definiiions 3.2(a) and 3.6(4), (5). Also compare Definitions 3.6(5) and
3.4(2).

The following is immediate by checking the definitions.

Proposition 3.7. Let (D, <) be an almost deterministic domain and €, the canonical
information system associated with (D, <). Then €, is a CANDIS.

Next we show the following.

Theorem 3.8. Let € be a CANDIS, and let 9 = 9(&). Then the mapping
[:€->¢p
e>é={xeE;e~x} (ecE)

is an isomorphism.

Proof. By condition (1) of Definition 3.6 and Proposition 3.3(a) we have e€ é and
ée D°=E, for each ec E. Hence f is well-defined. By Proposition 3.3(a) and
condition (2) of Definition 3.6, f is a bijection. Now let X, A< E be finite subsets
and X ={%; xe X}, A={a; ac A}. We claim that X+ A in €iff X+ A in &,. We
distinguish between two cases.

Case 1: Assume that a—x (i.e. ¥x< a) for all ae A, xe X. If X+ A, Proposition
3.3(b) implies Mub(X)=Mub(X)< A. By condition (4) of Definition 3.6 and
completeness of Mub(X) here we have, in fact, equality. Thus X - A. Conversely,
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let X+ A, i.e. Mub(X) = A. Choose A* < E with X - A* and X < a for each a € A*.

Then A=Mub(X)={a; ac A*), hence A= A* as f is one-to-one. Thus X - A.
Case 2: Assume that —(a+y) for some ae A, ye X. If XA condition {5)

of Definition 3. 6we obtain A = {a} and x - a forsome x € X. Then X +a. Conversely,

if X+ A, again |A|=1, thus A={a} 3

condition (3) of Definition 3.6. [J

Ef‘l yCA 1) Ve Y P e ™ U)’ CONGiuosn \J)

As an immediate consequence of Theorems 3.5, 3.8 and Propositions 3.3(d), 3.7

obtain the following.

Corollary 3.9. The operations €- D(&) and D- &, provide up to isomorphism,
inverse bijections between the classes of canonical almost deterministic information
systems and of almost deterministic domains.

The following is our uniqueness result for canonical almost deterministic informa-
tion systems with given information domain.

Corollary 3.10. Let &,, &, be two CANDIS with isomorphic information domains
(D(€,),c)=(D(%,),<). Then &,=8,.

Proof. By Theorem 3. 8 g| gD({’ ) = gD(t‘ = gz O

Next we wish to derive as consequences, results corresponding to Theorem 3.5
and Corollary 3.10 for the kind of particular information system considered, e.g.,
in [16, 10].

Definition 3.11. Let € = (E, ) be an information system such that whenever A, B€ E
with A< B, then |B|<1. Assume that the following conditions are satisfied where
Cons={Ae Fin(E); (A+0}:

(1) Ac BeCons = AeCons;

(2) ee E = {e}eCons;

(3) X+~e—1 = X u{e}eCons;

(4) XeCons,xe X = Xrx;

(5) e,xe E, YeCons with ey for each ye Y, and Yx = etx;

(6) XeCons, xe X, x-e = Xte.
Then & will be called a Scott-information system. Such a system is called canonical,
if it satisfies, in addition:

(7) XeCons = 3JecE: X+eand Xc e,

(8) a,yeE, x-y and y-x = x=y;

(9) Xe = XceéordxeX:xre

Let € be a Scott-information system. If X a, then X € Cons by conditions {3),
(1). Conditions (5) and (6) are slightly weaker than condition (1.1) (v) in [10]. A
subset X of E is a state of & iff the following conditions are satisfied:

(1) whenever Ac X and A is finite, then A€ Cons;
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(2) whenever Ac X, ec E and At e, then ec X.
Any canonical Scott-information system satisfies all axioms of a canonical almost
deterministic information system except possibly, condition (3) of Definition 3.6.

Definition 3.12. An almost deterministic domain (D, <) is called deterministic, if
|[Mub(A)|<1 for each finite subset A< D°.

These are precisely the A-complete, algebraic partial orders (D, <) which have
a smaliest element and are consistently complete (i.e. any upper bounded subset of
D has a supremum in D). It is well known that the deterministic domains are also
precisely those partial orders which are generated by Scott-information systems
(see, e.g. [16, p. 585] or [10, p. 114]). Next we wish to derive from Theorem 3.5 and
Corollary 3.10 a sharpening of this result.

Lemma 3.13. Let €=(E,) be a canonical almost deterministic information system
such that whenever A, BS E with A+ B, then |B|<1. Let Cons={A€Fin(E);
—(A+@)} and let

+*={(A, B)e+; AcCons or B=0}.

Then &€* =(E,+*) is a canonical Scott-information system with precisely the same
states as &.

Proof. Note that Cons={A € Fin(E); A< X for some X € D(&)}. Hence D(&*)=
D(&). The rest is straightforward. [J

Now we show the following.

Coroilary 3.14. Any deterministic domeain (D, <) is generated by a canonical Scott-
information system &. Moreover, & is unique up to isomorphism.

Proof. Let € =(E, ) be the canonical information system associated with (D, <).
Then & is canonical and almost deterministic, € generates (D, <), and whenever
A, B E with A+ B, then |B|<1. Now apply Lemma 3.13 to obtain a canonical
Scott-information system &* generating (D, <). If & =(E’, ') is another canonical
Scott-information system generating (D, <), define €"=(E’, ") such that for any
A', B'e Fin(E'), A'+"B' iff there exists A< A’ with A~'B’. Then €= %" by Corol-
lary 3.10. Applying the procedure of Lemma 3.13 to &, we come back to %'. Hence
g*=¢'. O

4. Solving recursive domain equations

In this section we will characterize when iwo almost deterministic demains
(D, <),(D’, <) can be generated by information systems &, &', respective'y, such
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that € is (in a natural way) a substructure of &'. Since the class INF of ail information
systems will be A-complete, this allow us, as mentioned in the introduction, to use
the ordinary Knaster-Tarski theorem for complete partial orders to solve recursive
domain equations for almost deterministic domains in INF and thus obtain exact
solutions, not just isomorphisms. First let us introduce our substructure criterion
for information systems.

Definition 4.1. Let €= (E,+), €' =(E’,') be two information systems. We call &
a substructure of &', denoied by € < &, if the following conditions ar¢ saiisiied:
(i) ECE;
(2) A, B< E and A-B imply A-'B;
(3) A< E,B< E' and A+'B imply A-Bn E.

Note that if € < &’, then in particular for any A, B< E, A+ B iff A+’ B; however,
in general our requirements for & < &' to hold are stronger than the latter property.
Qur reason for this is that we want € = &’ to imply that D(&) < D(&’), cf. Proposition
4.3.

Let INF denote the class of all (non-deterministic) information systems. Then
(INF, <), where < is the substructure relation defined above, satisfies all axioms
of a partial ordering except that INF is a class, not a set. Moreover, (INF, <) is
A-complete: that is, every directed subset of INF has a supremum in INF; this is
obtained by taking componentwise set unions.

Also, cbserve that if € = €’ and &' is almost deterministic (canonical, respectively),
then so is €. Moreover, if C is a directed set of almost deterministic (canonical,
respectively) information systems and & € INF is the supremum of C in INF, then
€ is again almost deterministic (canonical, respectively).

The following order-theoretic notion will be useful.

Definition 4.2. Let (D', <) be a partial order, and let D< D’. We call D an ideal
of (D', <), denoted by D < D/, if the following conditions are satisfied:
(1) xe D', ye D and x<y imply x€ D,
(2) whenever A< D and de D’ satisfy A<d, there exists x€ D such that
Asx=d.

The final requirement shows (with A =0) in particular that if D <[}, then for
any d € D' there is x € D with x <d. Next we show the following.

Proposition 4.3. Let &, €' be two information systems such that € < €'. Then D(&) <
D(&').

Proof. By conditions (1), (3) of Definition 4.1, we have D(&) < D(&'). Condition
(1) of Definition 4.2 is clear. Hence it suffices to show:



Non-deterministic information systems 303

(*) Let Mc E and Y e D(&’') with M c Y. Then there exists X € D(&) with
McXcY.

Let S be the system of all pairs (A, B) satisfying ACENnY, B E an: A- 3 Put
X=Mu U (YnB).

(A,B)eS
Thenobviously Mc X c YN Ec Y.If Ac X and B< E with A~ B, thei. (A, B)e S
and A+'B, hence Y n B#0 and thus X n B #. This proves X € D(¥#). [

Subsequently we will also obtain a partial converse of Proposition 4.3. We will
relate ideals of partially ordered sets with stable injection-projection pairs defined
below. For any set S, let ids denote the identity mapping on S. Let (P, <), (Q, <)
be two partial orders and f, g: P> Q two mappings. We write f< g if f(x)<g(x)
for all x € P. Also, f is called continuous, if whenever A< P is a directed subset and
x =sup A exists in (P, <), then sup f(A) exists in (Q, <) with f(x)=sup f(A).

Definitior 4.4 (cf. Berry and Curien [2], Turien [3]). Let (P, <), (Q, <) be two
partially ordered sets, and let ¢: P> Q, ¢: @~ P be continuous. Then (¢, ¢) is
called a stable injection-projection pair (sipp) fren (£, <) to (Q, <), if the following
conditions are satisfied:

(1) geop=idp;

(2) pey=<idy;

(3) xe P,ye Q and y<¢(x) imply (¢ ° ¢)(y)=y.
Hence ¢ ° ¢ acts like the identity at least at ali points which lie below some element
of ¢(P). Here, (2) and (3) can be replaced by

(2) x,ve Q and x<y imply (¢ > $)(x)=x A (¢ Y)(y).

Now we show the following.

Proposition 4.5. Let (D, <) be algebraic, and let E < D.
(a) Let ¢: E - D be the identity mapping, and let  : D - E be defined by

Y(d)=sup{xe E;x<d} (de D).
Then (¢, ) is a sipp from (E, <) to (D, <).
(b) (E, <) is algebraic, and (E,<)’=(D,<)°nE.

Proof. (a) For each d € D, the set {xe E; x<d} contains a greatest element, as
E < D. Hence ¢ is well-defined. Also, again by E <D, ¢ is continuous. Next we
show that ¢ is continuous. Clearly  is order-preserving. Let A< D be directed
and d =sup A in (D, <). We claim that (d) =sup ¢(A) in (D, <) (and hence also
in (E, <)). Indeed, let x € D satisfy ¢y(A) < x. Lei e€ E with e<d. Foreach ye D’
with y<e there exists ae A with y<a and hence, by yeE, also ysy¢(a)<x.
Therefore e < x, as D is algebraic, showing ¢(d) <x and our claim.
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Obviously, ¢ o ¢ =idg and g ey <idp. Nowlet x€ E and ye D with y < p(x) =x.
Then ye E, thus (¢ o ¢)(y)=y.

(b) Clearly (E, <) is algebraic. Let xe E ° de D, and let A< D be directed such
that x<d =sup A in D. Then (A) is directed, and ¢(d)=sup ¥{A) in (E, s).
Since x < y(d), there is ac A with x<¢(a)<a. Thus xe D°. O

The example in Fig. 3 of a A-complete partial order (D, <) show: thai in
Proposition 4.5 some kind of algebraicity assumption on (D, <) is necessary in
order for ¢ to be continuous (put E ={a,, b} << D and observe that a, <b = )(a)).
Observe that D is not algebraic, since b is not a supremum of compact elements.
In Section 5 we will see that (D, <) is an information domain.

Fig. 3. (D, <).

Lemma 4.6. Let (P, <), (Q, <) be two partially ordered sets and let (¢, &) be a sipp
from (P, <) to (Q, <). Put P*= @(P). Then

(a) (P, s)=(P* =),

(b) P*<Q,

(¢) (o ¢)(y)=sup{xe P*;x<y} forallye Q,

(d) the paii (id, ¢ ° ¥) is a sipp from (P*,<) to (Q, <).

Proof. (a) Immediate by ¢ o ¢ =idp.

(b) If xe Q and ze P with x< ¢(z), clearly x=¢(¥(x))e P*. Now let Ac P
and ye Q with ¢(A)<y. Then x:= (¢ ¢)(y)e P* and p(a)=¢(d°p(a))<x<y
for all ae A.

(c) Let ye Q. Any ve P* with x <y satisfies x<(¢ ° ¢/)(y). Now observe that
(¢og)(y)e P* and (¢ o ¢)(y)=<y.

(d) This is straighttorward, since (¢ ° ¢)|p=id. O

Now we can summarize our results.

Theorem 4.7. Let (D, <), (D’, <) be two partial orders such that (D', <) is an almost
deterministic domain. The the following are equivalent:

(1) there exists a sipp from (D, <) to (D', <);
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(2) there are two information systems &, &' generating D, D', respectively, such that
Ec ¥,

(3) there are two canonical almost deterministic information systems €, €' generating
D, D', respeciively, such that €< &'

Proof. (1) (3): Let (¢, ¢) be a sipp from (D, <) to (D', <), and let D* = ¢(D).
By Lemma 4.6, we have {D*, <)=(D, <) and D*< D'. Since (D', <) is an almost
deterministic domain, we obtain by D* <« D’ that

(*) Mubp <)(A) = Mubp« - ,(A)c D* forany Ac D*,

and by (*) and Proposition 4.5(b) that (D*, <) is also an almost deterministic
domain. Let €=(E,+) (respectively, &€ =(E',+’)) be the canonical information
system assowiated with (D*, <) (respectively, (D', <)). By Theorem 3.5 and Proposi-
tion 3.7, it only remains to prove that € < &'. Since E = (D*, <)’ and E'= (D', <)°,
we obtain E < E’ by Proposition 4.5(b). Using (*) and condition (1) of Definition
4.2, it is straightforward to check conditions (2), (3) of Definition 4.1. Hence &, < &,.

(3) > (2): Trivial.

(2)>(1): By Propositions 4.3 and 4.5(a) there exists a sipp from (D, <)=
(D(&), c)to(D(E), c)=(D',=<). O

5. A characterization of information domains

In this section we give a topological characterization of when an arbitrary partial
order (D, <) is an information domain. L2t us introduce some notation. Let (D, <)
be a partial order and 7 a topology on D. A subset A< D is a final segment, if
xeA,ye D and x<y imply y € A. A is called clopen, if A is simultaneously closed
and open. Then (D, <, 7) is called totally order disconnected, if it satisfies the
following separation axiom:

(S) For any x, ye D with x ¥ y there exists a clopen final segment A in D with
x€Aand y# A.

Such spaces have been thoroughly examined in the mathematical literature, see,
e.g., the survey in [14]. We wish to show the fellowing.

Theorem 5.1. Lei (D, <) be any pariial order. Then the following are equivalent:
(1) (D, =) is an information domain,
(2) there exists a topology T on D such that (D, <, r) is a compact totally order
disconnected space.

The following well-known remarks will be used in the proof of Theorem 5.1. For
any set E, let ?(E) be the power set of E and 2E be the set of all functions from
E into the 2-element set {0, 1}. Under the usual product topology (where {0, 1}

carries the discrete topology), 2° is compact. For f, ge 2° we put f< g iff f(2) < g(e)



306 M. Droste, R. Gobel

for ail ec E. If Ac E, let 1,€2F denote the characteristic function of A; that is
14(e)=1 iff ec A. Then the mapping ¢:(P(E), <)~ (2%, <) given by ¢(A)=1,
(A< E)is an order-isomorphism, and below we will identify (?(E), <) with (28, =)
via ¢. Hence, if €=(E,+) is an information system, D(&) can be regarded as a
subset of 2F (as such, it is closed, as shown below). Now we give the proof.

Proof of Theorem 5.1. (1) (2): We may assume that (D, <) =(D(¥), <) for some
information system & = (E, ). As noted above, we have D(€) < 2E. We show that
D(2) is closed in 2F. Indeed, let f=1, €25\ D(&). There are Ac Y, B< Y° with
AFB. Let C=AUB and U={ge2%;g|c =f|c}. Then U is clopen and fe Uc
D(€)*. Now let 7 be the subspace topology induced on D < 2F. Then, since 2° is
compact, so is (D, 7).

Next let x,ye D with x¥y. Choose ec E with eex\y, and let A'=
{fe2E; f(e)=1}. Then A=A’ D is a clopen final segment in (D, <, 7) with xe A
and y¢ A.

(2)>(1): Let E be the set of all clopen final segments in (D, <, 7). For any
g, BeFin(E) we put S—RB iff (acw AS Ugew B. Let €=(E,+), and define a
mapping ¢ : (D, <)->(D(€), <) by putting o(d)=d:={Ac E; dc A} (d e D). We
claim that ¢ is an order-isomorphism.

First we show that ¢ is weli-defined. Lei de D and sfc d, B < E with o+ 3.
Then d € N s < U B. Hence there is Be BN d and d is a state of &. Secondly, let
d,,d,e D. Then d,<d, iff for all Ac E, d, € A implies d,€ A, iff d,< d,.

It only remains to check that ¢ is onto. Let Z< D(¥%). We first claim that
M ={\acz AN [ \ger\z B is non-empty. Indeed, otherwise by a compactness argu-
ment there are finite subsets &f = Z and B < E\Z such that( \acw AN \ges B°=0,
i.e. +—3AB. This contradicts Ze D(¥%). Now choose any de M. Then clearly
Z=d 0O

An ideal J of a lattice (L, <) is called a prime ideal, if x, ye L and x A y € J imply
xeJoryel

It is known that a further conditior. equivalent to condition (2) of Theorem 5.1 is:

(3) (D, =) is isomorphic to the partially ordered set (X,, <) of all prime ideals
of a distritutive lattice (L, <) with smallest and greatest element.

In fact, if (D, <) is as in Theorem 5.1(2), we may put (L, <)=(E, <) where E is
(as in the proof of Theorem 5.1) the set of all clopen final segments of (D, <, 7).
For details on this, we refer the reader to [14].

The characterization of information domains (D, <) given in Theorem 5.1 is not
completely saticfuctory, as it is not solely in order-theoretic terms. To the best of
our knowledge, a satisfactory order-theoretic characterization of when a partial
order (D, <) can be made into a compact totally order disconriected space is still
an open problem in lattice theory (see e.g. [14, Section 6] or [1] and the references
mentioned there). Nevertheless, sometimes it is easy to find a topology 7 on D as
required; then the proof of Theorem 5.1 shows how to obtain an information system
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€ generating (D, <). A natural candidate for 7 is quite often the interval topology
IV(D) on (D, <); this has the sets {xe D;x<d}, {xeD;d=<x} (deD) as a
sub-basis for the closed sets. Let us summarize some order-theoretic properties of
information domains (D, <).

Corollary 5.2. Any information domain (D, <) has the following properties:
(a) (D, <) is A- and V-complete,
(b) if x, y€ D with x <y, there are a, b€ D with x<a <b<y such that [a, b] is a
gap in (D, <);
(c) the interval topology 1V(D) is compact;
(d) (D, =) is an information domain;
(e) any filter F on D has a limit point for (D, <).

This result, with the exception of (c), is immediate from Propositions 2.2 and 2.3.
It can also easily be derived from Theorem 5.1. We now prove (c) and also (e)
which exemplifies the reason for our notion of ““limit points.

Proof of Corollary 5.2(c) and (e). By Theorem 5.1, let 7 be a topology on D such
that (D, <, 7) is compact and totally order disconnected.

(c) By axiom (S), for each d € D the sets {x € D; x<d}, {x e D; d < x} are closed
in (D, 7). Hence 1V(D) < 7, showing that (D, IV{D)) is compact.

(e) We may assume that % is an ultrafilter on D. By compactness & converges
to some x € D. We show that x is a limit point of # for (D, <).Letye Dand Fe %
with y =<z for all ze F. Suppose that y % x. Choose a clopen final segment A in D
with ye A and x & A. Then A° is an open neighborhood of x, hence A°e . There
exists ze A°n F. Now y€ A and y <z imply z € A, a contradiction. Similarly, F<y
implies x=<y. O

We note that for any partial order (D, <), the interval topology IV(D) on D is
compact iff the following condition holds in (D, <):

(C) Assume A, B€ D are such that for any finite subsets A’c A, B'< B there
exists ye D with A’<y=< B’. Then there is x€ D with A<x<B.

Lewis and Ohm [12, p. 823] gave an example of a partially ordered set (D, <)
which satisfies conditions (a)-(c) of Corollary 5.2, but which, by Theorem 5.1, is
not an information domain. Since in this example each maximal chain in (D, <)
contains only precisely two elements, (D, <) is algebraic and also satisfies con?’tion
(5.2)(e).

Let (D, <, 7) be a compact totally order disconnected space. It is well known
and easy to see (using the continuity of the mapping id: (D, 7) - (D, IV(D)) that if
the interval topology IV(D) on D is Hausdorff, then V(D) = =. Hence if IV(D) is
Hausdorff, it is the only possible candidate as a topology to make a partial order
(D, <) a compact totally order disconnected space. Necessary and sufficient condi-
tions for the interval topology of an arbitrary partial order to be Hauscorff were



308 M. Droste, R. Gobel

given in [6, 7]. A subset Ac D is called an antichain, if a,be A and a<b imply
a = b. Whenever { D, <) has no infinite antichain, IV(D) is Hausdorif [22]. Also, it
is easy to see that if (D, <) satisfies condition (b) of Corollary 5.2 and each antichain
in D has at most two elements, then (D, <,IV(D)) is totally order disconnected.
This shows, for example, that the partial order (D, <) of Fig. 3 is an information
domain. Moreover, following the proof of Theorem 5.1, we obtain the subsequent
explicit representation of (D, <) by a non-deterministic information system.

Example. Let E ={x;, y;: ieN} and let - be defined by
X%, x;+=y;, yiry, wheneverj<i,
yit-{x;, yx} wheneverj<iand keN,
{x;, yi}r=x; foralli,jeN.

Let €=(E,+~). Put B={y;:ieN} and A,={x;,y;:j<i} for each ieN. Then
D(€)={A;: ieN}U{E, B}, and (D(¥), <) is isomorphic to the partial order (D, <)
of Fig. 3.

Acknowledgment

We would like to thank Professor Martin Ziegler (Bonn) for drawing our attention
to the topological characterization described in Section 5, which uses familiar tools
from model theory.

References

{11 R. Balbes, On the partially ordered set of prime ideals of a distributive lattice, 11, Bull. Acad. Polon.
Sci. Sér. Muth. Astron. Phys. 26 (1978) 771-773.

[2] G. Berry and P.L. Curien, Sequential algorithms cn concrete data structures, Theoret. Comput. Sci.
20 (1982) 265-321.

[3] P.L. Curien, Categorial Combinators, Sequential Algorithms and Functional Programming, Research
Notes in Theoretical Computer Science (Pitman, London, 1986).

[4] M. Droste, Event structures and domains, Theoret. Comput. Sci. 68 (1989) 37-47.

[5] M. Droste, Recursive domain equations for concrete data structures, Inform. and Comput. 82 (1989)
65-80.

[€] M. Erné, Separation axioms for interval topologies, Proc. Amer. Math. Soc. 79 (1980) 185-190.

[7] G. Gierz and !.D. Lawson, Generalized continuous and hypercontinuous lattices, Rocky Mountain
J. Math. i1 {1981) 271-296.

[8] A. Jung, Cartesian closed categories of algebraic cpo’s, Dissertation, TH Darmstadt, 1988.

[9] G. Kahn and G. Plotkin, Domaines concretes, Rapport de Recherche no. 336, IRIA, Paris, 1978.

t10] K.G. Larsen and G. Winskel, Using information systems to solve :ecursive domain equations

efiectively, ia: G. Kahn, D.B. MacQueen and G. Plotkin, eds., Semantics of Data Types, International

Symposium Sophia-Antipoiis 1984, Lecture Notes in Computer Science 173 (Springer, Berlin, 1984)
109-129.



Non-deterministic information systems 309

[11] D.J. Lehmann and M.B. Smyth, Data types, in Proc. 18th Conf. on Foundctiors of C omputer Science,
Providence, RI {1977) 97-114.

[12] WJ. Lewis and J. Ohm, The ordering of Spec R, Canad. J. Math. 3 (1976) 820-835.

[13] G. Plotkin, A powerdomaziii construction, SIAM J. Comput. 5 (1976) 452-488.

[14] H.A. Priestley, Ordered sets and duality for distributive lattices, in: M. Pouzet and D. Richard,
eds., Orders: Description and Roles, Annals of Discrete Math. 23 (North-Holland, Amsterdam,
1984) 39-60.

[15] D.S. Scott, Continuous lattices, in: Proc. 1971 Dalhousie Conference on Toposes, Algebraic Geometry
and Logic, Lecture Notes in Mathematics 274 (Springer, Berlin, 1971) 97-136.

[16] D.S.Scott, Domains for denotational semantics, in: Proc. 9th Internat. Coll. on Automata, Languages
and Programming, Aarhus, Lecture Notes in Computer Science 140 (Springer, Berlin, 1982) 577-613.

[17] M.B. Smyth, The largest cartesian closed category of domains, Theoret. Comput. Sci. 27 (1983)
109-119.

[18] M.B. Smyth and G. Plotkin, The category-theoretic solution of recursive domain equations, in:
Proc. 18th Symp. on Foundations of Computer Science, Providence, R1 (1977).

[19] J. Stoy, Denotational Semantics: The Scoti-Strachey Approach to Programming Languages (MIT
Press, Cambridge, MA, 1977).

[20] M. Wand, Fixed-point constructions in order-enriched categories, Research Report TR 23, Indiana
University, 1975.

[21] G. Winskel, Event Structures, Lecture Notes in (Computer Science 255 (Springer, Berlin, 1987)
325-392.

[22] E.o. Wolk, Order-compatible topologies on a partially ordered set, Proc. Amer. Math. Soc. 9 (1958)
524-529.

[23] G. Zhang, Logic of domains, PhD thesis, University of Cambridge, 1989.



